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On Quantifying Memory-Allocation Strategies
Abstract

Performance requirements drive many of our difficult design choices. Memory
management is an area where such choices can have surprising and far-reaching
effects. Although performance of global allocators has improved markedly in recent
years, use of local memory allocators can still provide substantial runtime (and other)
benefits. The key to the effective use of memory allocators is knowing if and when to
use which allocator and why.

To be able to make reasoned recommendations regarding the use of local memory
allocators, we must first understand where and how they can affect runtime
performance. We have identified several ways to characterize how systems can
challenge a global allocator, and how they may benefit by applying a well-chosen
local allocator. In order to develop optimal criteria for how to choose where and how
to apply a local allocator, we need to obtain objective measurements. We have
identified several usage patterns, which we have encoded into benchmarks to identify
precisely where local allocators do (and do not) provide substantial benefits. This
paper presents our preliminary “raw” initial quantitative results (with relatively little
analysis) in the hope of stimulating informed discussion.

Implementations of standard allocators (and others) are freely available today — along
with usage examples — in Bloomberg’s open-source distribution of the BDE library at
<https://github.com/bloomberg/bde>. Benchmark code and results including those
discussed in this paper can be found at
<https://github.com/bloomberg/bde/benchmarks/allocators>.
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1 Introduction

Serious engineers appreciate C++ for enabling them to write code at a low level when
needed. Resource management is an important aspect of low-level control —
particularly memory management.

Should we instrument the standard library for such fine-tuning? The arguments
against are typically that fine-grained memory management requires more up-front
design effort, complicates interfaces, and may actually degrade performance where no
allocator (or an ill-chosen one) is supplied. These are valid concerns that can be
addressed only by having well-supported facts; by employing careful measurement,
we can identify precisely how much performance benefit is available.

A library instrumented to exploit local allocators enables other benefits: allocators
can aid testing, debugging, and measurement. Not all memory is alike — some is
faster for certain processors, some is shared, some may be protected, and we need
allocators to use those effectively.

2 Use an Allocator? Which One?

Before exploring allocator performance metrics, we should identify what we hope to
learn. We need help deciding, first, whether injecting a local allocator will help or
hurt performance. If an allocator won’t help, we should use the system-wide (default)
global allocator.

If an allocator would be helpful, we would then need to determine whether one

should be “baked in” as a type parameter at compile time (e.g., with the intent of
squeezing out the last bit of runtime performance) or passed as an abstract base
class (thereby enabling enhanced interoperability for non-template types). Either
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Supply Allocator?

No

Use Global Allocator Via Base Class?

Yes

Which Allocator?

/ \
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way, we then need to choose the allocator or allocators to use. The rest of this paper
addresses quantitatively the runtime consequences of these choices.

3 Available Concrete Allocators: Monotonic and Multipool

In this paper, we have selected two allocators from the Fundamentals TS, which it
refers to as “monotonic” and “multipool”.

A monotonic allocator supplies memory from a contiguous block sequentially until
the block is exhausted, after which it dynamically allocates a new block of
geometrically increasing size, typically from the global allocator. Returning memory
to a monotonic allocator is a no-op; the returned memory remains unused until the
monotonic-allocator object is destroyed.

A multipool allocator is quite different: It consists of an array of pools, one for each
geometrically increasing request-size range, up to some specified maximum. Each
time memory is requested, the memory is provided from the appropriate pool. If the
pool is empty, a geometrically increasing block is requested, up to some
implementation-defined threshold, from the backing allocator, typically the global
allocator. Blocks that exceed the maximum pool size pass through to the backing
allocator directly. The combination of a multipool allocator backed by a monotonic
allocator forms the third allocator candidate (C) that we consider in this paper.

Both monotonic and multipool allocators are managed allocators. A managed
allocator is an allocator that, in addition to having allocate and deallocate
methods, also has a release method, used to summarily return all the memory it
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manages to its backing allocator. The release method is called implicitly upon
destruction of a managed allocator.

For objects placed in memory obtained from a common managed-allocator instance,
and managing no non-memory resource themselves, we can avoid running the
objects’ destructors. Instead, we can “wink them out” en mass by releasing the
memory they occupy, along with all the memory they manage, via the allocator’s
release method.

The runtime benefits of bypassing individual destruction of each element in a
container can be significant, as deallocating memory is sometimes even more costly
than allocating it. Note that this “winking out” technique requires new-ing the
container object itself into the managed allocator it is to use, so that (1) its destructor
is not called, and (2) its footprint is also released when the allocator goes out of
scope.

4 Our Tool Chest of Allocation Strategies

Before we start considering interesting benchmarks, we need to consider the
available allocation strategies. Each memory-usage pattern will have different
properties, and therefore we can reasonably expect different allocation strategies to
excel.

In this paper, we will consider up to 14 different allocation strategies for each of the
benchmarks we subsequently present. The first of these strategies will be the default
global allocator (bound at compile time) which will form the baseline for each
successive comparison. (Supplying the default at compile-time produces the same
object code, and so we have omitted that as a separate category.) The second case is
the new delete allocator supplied via an abstract base class, which (for compilers
that do not yet elide runtime dispatch where they clearly could) can be used to
compare that additional runtime overhead.

The remaining 12 allocation strategies can best be described by the following cross
product:

Monotonic .
) Type Parameter Normal Destruction
Multipool X X ) )
) ) Abstract Base (magically) “Winked Out”
Monotonic (Multipool)

The first column represents the allocators themselves. The first entry is a monotonic
allocator, the second is a multipool allocator, and the third is a multipool allocator
backed by a monotonic allocator. The second column indicates whether the allocator
is invasively bound into the type of the container or is passed via and abstract base
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class. The third column indicates whether the container was destroyed naturally or,
instead, “winked out” by virtue of letting the supplied managed allocator go out of
scope.

AS1 Default Global Allocator (bound at compile time)

AS2 New/Delete Allocator (bound at runtime)

AS3 Monotonic, Type Parameter, Normal Destruction
AS4  Monotonic, Type Parameter, (magically) “Winked Out”
ASS5 Monotonic, Abstract Base, Normal Destruction

AS6  Monotonic, Abstract Base, (magically) “Winked Out”

AS7  Multipool, Type Parameter, Normal Destruction
AS8 Multipool, Type Parameter, (magically) “Winked Out”
AS9  Multipool, Abstract Base, Normal Destruction

AS10 Multipool, Abstract Base, (magically) “Winked Out”

AS11 Monotonic(Multipool), Type Parameter, Normal Destruction
AS12 Monotonic(Multipool), Type Parameter, (magically) “Winked Out”
AS13 Monotonic(Multipool), Abstract Base, Normal Destruction

AS14 Monotonic(Multipool), Abstract Base, (magically) “Winked Out”

In each and every case, exactly one of these fourteen allocation strategies will be the
best answer from a purely runtime-performance perspective. It is what it is.

Note that, for the purposes of this paper, we have deliberately left the definitions of
the allocate and deallocate methods of all local allocators “out of line” so as to
ensure that the added runtime cost of invoking a (virtual) function is observable;
subsequently, inline-ing all such functions produced a hefty speedup in practice —
e.g., ~33% for Benchmark III (see section 9).
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5 Characterizing Memory-Allocator Usage Scenarios

Knowing when to supply an allocator and which one to use is neither obvious nor is
it typically taught in school at any level. Rather, if and how to use memory allocators
effectively is something that is learned only from repeated real-world experience. In
this paper, however, we attempt to begin to elucidate some of the important
considerations that experts consider when evaluating whether or not to take local
control over memory management.

The first step in characterizing a problem is to normalize it to basic size parameters.
Problems of vastly different sizes are not comparable, so we want to try to avoid that.
After some consideration, we decided that problem size could be roughly
characterized in terms of two parameters:

N the number of instructions executed
W the number of active threads

The relationship between the number of instructions executed and the number of
active threads is not clear, and the value of trying to come up with a single number
that combines the two does not seem to be useful. Clearly the number of available
processors, the size of L1 cache, and a host of other machine-specific physical
parameters will affect the detailed analysis. For the scope of this paper, however, we
will limit ourselves to characterizing the logical program independently of any
physical hardware on which it might be run.

Given this overall “size” characterization (N, W), we now introduce five dimensions
that span the space of memory-allocator usage:

D Density of allocation operations

\' Variation in allocated memory sizes

L Locality facilitating memory access/manipulation

U Utilization of allocated memory

Cc Contention due to concurrent memory allocations
Each of these dimensions resides on a scale from O to 1, where O indicates the low-
end of the scale, and 1 the high end. Note that none of these scales is (necessarily)
linear. It is also important to realize that each of these dimensions applies not to the
overall program, but instead to just an individual targeted subsystem over some
relevant duration of program execution. That is, when considering these dimensions,

we are looking to improve the performance of a particular individual subsystem over
a finite duration of execution, rather than that of the program as a whole.
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5.1 Density of allocation operations

The allocation density is a measure of the relative number of allocation instructions
(allocate and deallocate) to the total number of instructions executed. A density
of O would imply that no allocation operations are employed, while a density of 1
would indicate that every operation involves either allocation or deallocation. As an
example, a std: :vector<int> is incapable of achieving a meaningfully high
allocation density as the number of allocation operations are at most logarithmic in
the number of mutating operations, and we sometimes even do a reserve on vectors,
thereby reducing the number of allocators for this data structure to just 1 (e.g.,
Benchmark I, see section 7). By contrast, a vector of (long) strings could be used in a
way that admits a relatively high allocation density, as each mutating operation
would involve allocation or deallocation of the string-element’s memory. Node-based
containers (that don’t do internal pooling) are similarly capable of achieving a high
allocation density. Even with a potentially high density for mutating operations, the
overall density will depend on the proportion of mutating to non-mutating (i.e.,
accessing or other non-allocation/deallocation-realted) operations.

5.2 Variation in allocated memory sizes

The variation in allocated memory sizes attempts to roughly measure the extent to
which allocated memory requests vary over the region and duration of interest. A
variation of O would mean that only a single memory size is allocated, while a
variation of 1 would suggest a much more uniform (or perhaps hyperbolic)
distribution of memory sizes. A relatively low value might tend to suggest a pool-
based allocator, whereas a higher value might favor a coalescing allocator. Keep in
mind that requests that are relatively close in size might be treated equivalently.

5.3 Locality facilitating memory access/manipulation

The definition of access locality is complex, involving at least three factors:

I the number of instructions executed in the subsystem over the duration

M the size of the memory footprint of the subsystem

T the number of context transitions out of the subsystem during the duration

The locality, L, correlates directly to the number of instructions, I, but inversely to
the memory footprint, M, and the number of transitions, T. We can therefore argue
that access locality, L, can be characterized (to a zeroth-order approximation) as:

In other words, the more instructions that flow through our subsystem, the more
access locality we have. On the other hand, the bigger our subsystem’s footprint or
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the more context transitions that occur away from it, the lower the access locality
becomes. Note that access locality will turn out to be dominant in some long-running
programs — even when the allocation density is negligible (e.g., Benchmark II, see
section 8).

5.4 Utilization of allocated memory

Allocated memory utilization is a measure of the relative amount of allocated
memory that remains in use at any one time; it is defined as the maximum amount of
memory that is ever in use by a subsystem at one time during the durations of
interest divided by the total about of memory allocated by the subsystem over that
period. A utilization of 1 means that, at some point, all of the memory every allocated
by a subsystem over the duration of interest is actively in use. A utilization that
approaches O suggests a long-running system in which the same memory is allocated
and deallocated repeatedly. Subsystems exhibiting high utilization are typically good
candidates for monotonic allocators, while long-running systems having low
utilization are more suited for multipool allocators, or (perhaps even better) a
multipool allocator backed by a monotonic one.

5.5 Contention due to concurrent memory allocations

Allocation contention is a measure of the potential bottlenecks that could result
from multiple threads attempting to access the same synchronized memory allocator.
We define allocation contention as the expected number of concurrent memory
allocation operations in any given instant of time, over the duration of interest,
divided by the number of active threads, W. A contention, C, of O suggests that W is 1
(or the allocation density, D, for all but one thread is 0). A contention of 1 would
mean that W > 1 and each thread is always trying to allocate memory (i.e., D per
thread is 1). Many modern global memory allocators are “thread aware” and make
heroic efforts to mitigate such contention. In doing so, however, they can slow down
subsystems in situations that do not require synchronization, while — falling short of
expert handling — slow down those in situations that do. Note that, because of the
strong correlation between dimensions C and D, it will turn out to be difficult to
observe variations in C independently of D (e.g., Benchmark IV, see section 10).

5.6 DVLUC the Duck!

Remember Rule 6. What is Rule 6, you ask. Rule 6 is, “Don’t take yourself so
#3$%"& seriously!”
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D = Density of allocation operations

V = Variation in allocated memory sizes

L = Locality facilitating memory access/manipulation

U = Utilization of allocated memory

C = Contention due to concurrent memory allocations

Remembering these five dimensions of memory-allocation usage is a challenge for
anyone, including the folks who identified them, so we decided to create a mnemonic
aid by way of a mascot: The mascot is a duck, and his name is DVLUC. Deal with it.

6 Designing Useful Benchmarks

After identifying the dimensions of allocation space to explore, we wanted to come up
with suitable benchmarks to inform as to how each of these dimensions affected our
design decisions. Our first thought was to come up with a single benchmark that
spanned all of the dimensions — the idea being to find the centroid, and then vary the
arguments along each dimension separately in to discover its effect on the best
allocator-strategy choice.

As it turns out, coming up with a single problem that encompasses all five of the
dimensions identified above is not at all easy, as some dimensions are strongly
correlated with others (e.g., Contention, C, and Density, D). Instead, we settled on
four separate benchmarks, which together seem to cover this five-dimensional space
and enable each of the fourteen proposed allocation strategies their fair shot.

Separately, we tried not to assume the answers we expected, and hence strove to
cover the entire design space without prejudice. Hence, in our benchmarks we
typically explore a wide range of problem sizes using successive powers of two. To
better understand secondary effects, we will often choose to trade off comparable
parameters, such as the subsystem size versus the number of subsystems (physical
locality) or the number of consecutive accesses of a subsystem verses the number of
subsystems visited (temporal locality) while holding other benchmark parameters
constant.
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7 Benchmark I: Creating/Destroying Isolated Basic Data Structures.

In this experiment, we look at the process of creating a variety of isolated complex
data structures, using them lightly, and then quickly destroying them. The set of
data structures under test encompass many of those we use every day, and were
chosen specifically to illustrate thoroughly the first couple of dimensions discussed
earlier (section 5). Each standard container under consideration (std: :vector and
std::unordered set) will ultimately consist of elements of either int or std::string
(where the string length in characters, chosen randomly between 33 and 1000
(uniform distribution), is deliberately outside the range where the short-string
optimization pertains).

Twelve representative standard-library data structures were chosen — the second and
third sets of four being, respectively, an std: :vector and std: :unordered set of
elements corresponding to those of the first:

DS1 | vector<int>

DS2 | vector<string>

DS3 | unordered set<int>

DS4 | unordered set<string>

DS5 vector<vector<int>>

DS6 | vector<vector<string>>

DS7 |vector<unordered set<int>>

DS8 | vector<unordered set<string>>

DS9 |unordered set<vector<int>>

DS10 | unordered set<vector<string>>

DS11 | unordered set<unordered set<int>>

DS12 | unordered set<unordered set<string>

The runtime results for executing each of these benchmark tests using each of the 12
data structures above, employing each of the 14 allocation strategies discussed in
section 4, for a wide variety of problem sizes (section 6), on an Intel i7-4770 @
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3.4GHz with 11GB RAM available, are presented below. Numbers in brackets are
run time (in seconds); other numbers (on the same row) are percentages relative to
the corresponding run time. For a program that takes 10 seconds using the default
operators new and delete (AS1), “50%” indicates a runtime of 5 seconds. Rows
numbered 4 to 16 indicate the log> of the size of the data structure constructed - e.g.,
for row 8, the outermost data structure is built up to have 28 = 256 elements before
being destroyed.

This benchmark focuses, primarily, on the dimensions of density (D), variability (V),
discussed in section 5. The relatively short-lived nature of the objects in this
benchmark — along with their extremely high allocation Utilization (U) — facilitate
measuring the benefit of allocations strategies, such as AS4, AS6, AS8, AS10, AS12,
and AS14, that “wink-out” object memory.

Note that each vector in this benchmark is explicitly pre-sized (using reserve) to
have exactly the needed capacity; hence, measurements for vector<int> (DS1),
involving only a single memory allocation, are just noise.

AS1 AS2 AS3 AS4 AS5 AS6  AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

4 ; [0.004s] 1 4 5 4 377 9 1 1 1 3 3 3 3
5 | [0.004s] 1 4 5 3 350 1 1 1 1 2 2 2 2
6 [0.002s] 1 3 4 3 296 1 1 1 1 2 2 2 2
7  [0.003s] 1 2 2 2 208 1 1 1 1 1 1 1 1
8 | [0.002s] 1 1 2 1 162 1 1 1 1 1 1 1 1
9  [0.002s] 1 1 1 1 130 1 1 1 1 1 1 1 1
10 @ [0.002s] 1 1 1 1 117 1 1 1 1 1 1 1 1
11 [0.002s] 1 1 1 1 105 1 1 1 1 1 1 1 1
12 [0.002s] 1 1 1 1 117 1 1 1 1 1 1 1 1
13 ' [0.002s] 1 1 1 1 97 1 1 1 1 1 1 1 1
14  [0.002s] 1 1 1 1 107 1 1 1 1 1 1 1 1
15 = [0.002s] 1 1 1 1 128 1 1 1 1 1 1 1 1
16 @ [0.002s] 1 1 1 1 106 1 1 1 1 1 1 1 1

DS1 vector<int>
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For DS2, vector<string>, we insert 2? strings of randomly distributed size (in the
range [33..1000] bytes), then destroy the vector and repeat for a total of 227 times.

AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14
[24.65] 101 109 111 108 111 68 69 70 69 90 85 88 85
[23.4s] 95 103 102 103 103 72 71 73 72 89 86 88 85
[225] 101 102 99 102 101 78 77 79 78 91 88 91 89

[21.95] 102 109 106 109 108 78 78 79 78 91 88 89 88
[22.55] 101 169 164 169 166 78 78 80 78 89 87 89 86
[22.8s] 102 193 189 192 188 77 77 79 78 89 86 88 85
10  [23.2s] 101 202 196 202 196 75 76 78 76 87 84 87 84
11 . [29.6s] 134 165 164 167 163 60 61 61 60 69 66 69 65
12 [40.5s] 102 128 121 127 122 44 44 45 44 51 48 50 48

O 00 N OO 1 b~

13 [45.1s] 98 110 102 108 102 39 39 41 40 49 44 49 45
14 | [53s] 89 97 87 96 87 34 35 36 35 48 39 47 39
15 [52s] 101 111 95 110 97 36 37 38 37 56 43 55 44

16 [55.4s] 100 105 89 104 90 36 36 38 36 57 41 56 41
DS2 vector<string>

AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14
[5.17s] 108 152 150 157 152 44 46 58 52 102 93 104 96
[4.95] 108 117 113 121 115 43 45 58 52 84 78 84 81

[4.79s] 108 93 89 95 90 44 46 57 51 75 69 77 72
[6.52s] 105 57 56 64 56 31 32 41 36 51 47 52 47
[6.59s] 103 52 50 53 50 31 32 41 36 49 44 49 45
[6.415s] 103 50 48 51 48 32 33 41 37 49 44 48 44
10  [6.33s] 106 51 46 52 47 31 33 42 37 50 44 49 44
11 [6.33s] 104 51 46 51 47 32 33 41 37 49 43 48 44
12 | [6.49s] 102 77 71 76 72 31 32 41 36 49 43 48 43
13 | [7.28s] 104 91 79 90 78 27 29 36 33 45 38 43 38
14 | [7.48s] 104 94 86 94 85 27 28 34 31 44 37 42 37
15  [7.66s] 104 68 54 68 55 26 27 35 31 43 36 42 36
16 [7.98s] 104 65 57 65 57 25 27 34 30 43 35 42 36
DS3 unordered_set<int>

O 00 N O N1 b
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AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

4 | [55.5s] 99 92 91 92 91 66 67 68 66 79 76 78 76
5  [53.1s] 100 87 87 87 86 70 70 71 70 79 78 78 77
6 | [52.4s] 99 83 83 83 81 72 71 72 72 78 77 78 77
7 | [48.8s] 99 99 98 102 98 78 77 78 78 84 82 83 82
8  [50.25] 98 127 125 126 124 78 77 78 78 84 82 83 81
9 | [49.95] 99 138 136 140 137 78 77 79 78 84 82 84 82
10 [51.4s] 99 141 141 141 138 77 76 80 76 83 80 82 80
11 [53.1s] 99 141 141 143 139 75 75 79 75 82 79 81 79
12 = [55.8s] 98 142 138 139 136 73 73 76 73 80 77 79 76
13 [83.9s] 93 101 95 98 94 51 50 53 50 58 54 57 53
14 = [85.6s] 103 109 99 107 97 54 56 59 55 72 62 70 62
15 [104s] 110 95 83 102 87 51 50 59 51 68 58 70 59
16 | [126s] 104 93 80 93 79 49 49 61 50 70 56 72 56

DS4 unordered_set<string>

For the remaining tests, applied to nested data structures, the inner structure was
chosen (arbitrarily) to get 27 =128 elements; the outer container gets 2n elements, and
will be constructed and destroyed 220 times, for a total of 227 insertions, as above. In
this way, we make the total number of insert operations across data structures of
different physical sizes comparable (section 6).

AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14
[0.06s] 174 106 112 171 164 49 49 92 85 103 87 128 119
[0.05s] 218 99 97 152 151 54 54 98 94 82 77 138 125
[0.05s] 214 91 88 157 157 54 57 118 105 79 107 144 128
[0.05s] 223 80 99 387 383 69 58 127 100 82 75 130 134
[0.05s] 471 196 237 677 611 61 70 154 113 74 70 141 133
[0.135] 224 152 143 354 332 25 26 51 49 31 29 66 59
10 | [0.13s] 237 179 164 360 347 26 26 51 49 32 30 62 58
11  [0.16s] 210 102 105 246 210 22 21 41 41 28 24 54 48
12 [0.17s] 224 113 99 243 261 26 20 41 51 26 24 61 55
13 | [0.17s] 271 109 99 270 243 22 21 46 60 31 25 81 78
14 [0.20s] 236 116 93 254 233 24 23 84 62 51 33 126 117
15 | [0.22s] 247 115 98 262 255 38 31 101 83 56 42 158 122
16 | [0.26s] 213 99 78 240 228 37 32 83 78 73 47 137 118
DS5 vector<vector<int>>

O 00 N O 1 b
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AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14
[11.15] 335 261 252 498 500 61 60 119 116 75 68 149 140
[10.7s] 354 254 240 556 539 57 57 118 116 71 64 162 145
[10.3s] 439 282 265 663 662 58 58 139 133 78 69 265 211
[12.15] 454 270 246 632 615 55 56 173 167 104 77 322 275
[17.85] 351 207 178 519 479 51 52 142 149 99 70 262 219
[20.65] 306 179 152 393 361 49 48 122 119 90 60 212 176
10 [25.1s] 286 146 121 321 295 39 39 101 99 74 47 177 147
11 [33.2s] 217 112 91 242 223 29 30 76 74 58 36 136 111
12 [33.25] 217 112 91 241 222 30 30 77 75 59 36 135 111
13 [33.1s] 217 110 89 240 220 30 30 78 75 59 37 149 125
14 [33s] 215 112 90 239 221 31 31 106 103 67 44 192 166
15  [32.8s] 214 111 91 239 219 43 43 123 122 87 64 211 194
16 [33.5s] N/A 110 89 N/A N/A 53 53 N/A N/A 97 74 N/A N/A
DS6 vector<vector<string>>

O 00 N OO 1 B~

AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14
[6.96s] 228 74 71 174 184 69 68 135 130 72 67 145 140
[7.95s] 194 72 68 156 158 58 58 116 109 60 55 123 116
[7.86s] 196 81 77 168 169 58 58 116 109 60 56 125 119
[7.95] 192 82 78 171 169 57 57 115 109 59 55 125 119
[7.97s] 195 85 80 184 180 57 57 116 109 61 56 128 120
[7.815s] 198 85 81 184 179 58 58 117 108 61 55 130 120
10 | [9.15s] 219 77 71 173 166 48 49 101 94 54 47 124 106
11 | [9.48s] 216 78 71 171 162 48 48 104 96 57 46 126 105
12 [9.95s] 208 78 69 165 157 47 46 100 92 57 46 123 102
13 | [9.78s] 207 78 69 162 154 47 47 101 94 58 46 125 103
14 | [9.78s] 207 79 69 163 155 48 48 100 94 59 47 125 103
15« [10.1s] 207 78 69 162 153 48 47 101 94 60 47 126 103
16 | [9.86s] 209 79 71 166 157 50 49 105 97 63 49 132 109
DS7 vector<unordered_set<int>>

O 00 N O N1 b
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AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 ASi14
[6.96s] 228 74 71 174 184 69 68 135 130 72 67 145 140
[7.95s] 194 72 68 156 158 58 58 116 109 60 55 123 116
[7.86s] 196 81 77 168 169 58 58 116 109 60 56 125 119
[7.95] 192 82 78 171 169 57 57 115 109 59 55 125 119
[7.97s] 195 85 80 184 180 57 57 116 109 61 56 128 120
[7.815s] 198 85 81 184 179 58 58 117 108 61 55 130 120
10 | [9.15s] 219 77 71 173 166 48 49 101 94 54 47 124 106
11 | [9.48s] 216 78 71 171 162 48 48 104 96 57 46 126 105
12 [9.95s] 208 78 69 165 157 47 46 100 92 57 46 123 102
13 | [9.78s] 207 78 69 162 154 47 47 101 94 58 46 125 103
14 | [9.78s] 207 79 69 163 155 48 48 100 94 59 47 125 103
15  [10.1s] 207 78 69 162 153 48 47 101 94 60 47 126 103
16 | [9.86s] 209 79 71 166 157 50 49 105 97 63 49 132 109
DS8 vector<unordered_set<int>>

O 00 N OO 1 b~

AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 ASi14
[6.96s] 228 74 71 174 184 69 68 135 130 72 67 145 140
[7.95s] 194 72 68 156 158 58 58 116 109 60 55 123 116
[7.86s] 196 81 77 168 169 58 58 116 109 60 56 125 119
[7.95] 192 82 78 171 169 57 57 115 109 59 55 125 119
[7.97s] 195 85 80 184 180 57 57 116 109 61 56 128 120
[7.815s] 198 85 81 184 179 58 58 117 108 61 55 130 120
10 | [9.15s] 219 77 71 173 166 48 49 101 94 54 47 124 106
11 | [9.48s] 216 78 71 171 162 48 48 104 96 57 46 126 105
12 [9.95s] 208 78 69 165 157 47 46 100 92 57 46 123 102
13 | [9.78s] 207 78 69 162 154 47 47 101 94 58 46 125 103
14 | [9.78s] 207 79 69 163 155 48 48 100 94 59 47 125 103
15« [10.1s] 207 78 69 162 153 48 47 101 94 60 47 126 103
16 | [9.86s] 209 79 71 166 157 50 49 105 97 63 49 132 109
DS9 vector<unordered_set<int>>

O 00 N O N1 b
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AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 ASi14
[6.96s] 228 74 71 174 184 69 68 135 130 72 67 145 140
[7.95s] 194 72 68 156 158 58 58 116 109 60 55 123 116
[7.86s] 196 81 77 168 169 58 58 116 109 60 56 125 119
[7.95] 192 82 78 171 169 57 57 115 109 59 55 125 119
[7.97s] 195 85 80 184 180 57 57 116 109 61 56 128 120
[7.815s] 198 85 81 184 179 58 58 117 108 61 55 130 120
10 | [9.15s] 219 77 71 173 166 48 49 101 94 54 47 124 106
11 | [9.48s] 216 78 71 171 162 48 48 104 96 57 46 126 105
12 [9.95s] 208 78 69 165 157 47 46 100 92 57 46 123 102
13 | [9.78s] 207 78 69 162 154 47 47 101 94 58 46 125 103
14 | [9.78s] 207 79 69 163 155 48 48 100 94 59 47 125 103
15  [10.1s] 207 78 69 162 153 48 47 101 94 60 47 126 103
16 | [9.86s] 209 79 71 166 157 50 49 105 97 63 49 132 109
DS10 vector<unordered_set<int>>

O 00 N O U b

AS1 AS2 AS3 AS4  ASS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

4 | [7.64s] 101 59 51 58 51 42 42 42 38 47 40 47 41
5 [7.77s] 101 65 58 64 58 39 39 39 36 43 37 43 37
6 | [8.08s] 103 65 59 66 60 37 37 38 33 40 35 42 35
7 [7.28s] 117 72 64 73 66 43 42 42 38 45 38 47 39
8  [7.24s] 104 76 69 79 70 43 42 44 38 46 38 47 39
9 | [7.235] 102 84 72 86 74 43 42 43 38 46 37 47 38
10  [9.22s] 84 71 60 73 60 34 35 35 30 40 30 41 32
11 [10s] 103 72 57 72 57 35 35 39 31 46 30 46 31

12 [10.2s] 106 72 58 75 59 36 36 44 33 49 31 50 32

13 | [10.2s] 104 72 57 73 57 36 36 43 33 49 31 50 32

14 | [10.5s] 103 69 55 71 55 37 37 46 33 51 33 51 33

15 @ [12.7s] 116 68 53 68 53 45 43 51 41 54 34 54 35

16 | [11.6s] 116 68 54 68 55 46 44 53 42 57 37 58 37
DS11 unordered_set<unordered_set<int>>
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AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 ASi14

4  [43s] 105 141 138 148 143 50 49 54 50 58 55 59 55
5 [42.1s] 104 140 134 138 143 47 46 51 46 55 51 57 53
6  [44.95] 105 138 132 143 139 43 43 49 43 54 48 58 51
7  [55.3s] 107 116 104 114 102 39 39 48 40 57 46 57 47
8  [68.65] 107 102 88 107 90 36 36 51 37 54 40 53 41
9  [68.25] 102 106 92 107 93 35 35 51 35 52 38 54 40
10 | [70.5s] 102 103 89 102 88 33 32 50 33 52 37 51 36
11 | [73.3s] 101 98 84 98 85 34 35 50 34 50 35 50 36
12 [79.6s] 102 92 79 92 79 34 33 48 34 47 33 47 33
13 | [80.8s] 105 83 71 83 71 35 35 49 35 47 33 47 33
14 | [85.1s] 94 79 67 79 67 38 38 51 38 56 42 56 43
15  [91.6s] 93 76 65 76 65 43 42 56 43 63 50 63 50
16 | [93.1s] 90 73 62 72 62 45 44 57 44 65 52 65 52

DS12 unordered_set<unordered_set<string>>

Most of the results above are not particularly surprising (to us), but with one

exception: AS2 is substantially worse than AS1, but only for DS5-8 - i.e., for all

complex data structures nested within a properly reserved std: :vector. Further
investigation is clearly warranted.

Keep in mind that the member functions of all of our allocators (except for the global
default, AS1) are implemented “out of line” and that we know empirically (from
Benchmark III, section 10) that there can be substantial benefits to making all such

methods inline.

8 Benchmark IlI: Variation in Locality (long running)

One of the most valuable aspects of allocators is not that they speed up short-
running programs, but that they stop long-running ones from slowing down over
time. All global allocators eventually exhibit fragmentation: Memory that, at one time,
dispensed contiguously, no longer does so, and runtime performance can start to

degrade.
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Physical System Size G = K * S

HETE

K

In order to demonstrate this common phenomenon without involving any local arena
allocators, we created a simple program that acts like a long-running time-
multiplexed system. This system will consist of a std: :vector<Subsystem*>, where
each subsystem is modeled as an std::1ist<int>. The global physical system size,
G, will be defined as the total number of entries in the combined lists. The size of
each subsystem, S, will be the initial number of links per list in each subsystem. The
number of subsystems, K, will therefore be the (integral) ratio G/S. At the start of
the program, each subsystem is new-ed, in-turn, which, when constructed populates
itself with the specified S links. The system is now in its initial state.

This experiment is geared towards identifying opportunities for the use of allocators
(specifically a multipool allocator) before actually plugging one in. To that end, we
want to contrast the runtime performance of subsystems where memory has been
allocated contiguously and where it has been “shuffled” over time to be less so. We
therefore define a parameter, SF, which represents the shuffle factor. Specifying a
shuffle factor of O leaves the system in its initial sate. A shuffle factor of 1 means
that each linked list is visited and popped (from the front), immediately after which a
new value is pushed onto (the back of) some randomly chosen list in the system until
each element in each list has been popped exactly once. A shulffle factor of 2 means
that the process is repeated the same number of times, although there is no longer
any assurance that all of the lists still have the same length (as they did initially).
The larger the shuffle factor, the more discontiguous and random the memory within
each subsystem becomes.

In order to determine the extent to which local memory allocators might be useful
(prior to actually installing them), we wanted to measure the effect on memory access
times within each subsystem as we vary the amount of shuffling. To do that, we will
want to iterate through the linked list in each subsystem some number of times —
accessing each integer datum in turn — before moving to the next subsystem. An
access factor (AF) of 2 denotes two complete passes through a subsystem’s linked list
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before moving to the next one in the vector of subsystems. While we are at it, we will
also want to vary the number subsystems, K, and, inversely, subsystem-size, S, so as
to keep the overall problem-size, G, constant.

Shuffle Effects

5

shllff, 6 10!
e Facto, 7 8 o

1 2 3 4 5 6 7 8
1070 0.077 0.057 0.047 0.123 0.057 0.070 0.011 0.113
1071 0.237 0.268 0.257 0.236 0.275 0.225 0.276 0.283
1072 0.141 0.253 0.240 0.243 0.243 0.336 -0.091 0.323
1073 0.276 0.307 0.251 0.298 0.293 0.285 0.314 0.282
1074 0.444 0.429 0.446 0.401 0.418 0.502 0.468 0.458
10175 0.964 0.930 1.009 0.974 0.967 0.932 0.993 1.048
1076 0.478 1.674 1.741 1.717 1.759 1.760 1.777 1.800
10n7 0.012 0.008 -0.012 0.024 0.012 0.046 0.021 -0.003

The data and graph above illustrates the additional access runtimes (after shuffle
times are subtracted) scaled to a run without shuffling for comparable systems in
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which the shuffle factor (columns) ranges from 1 to 8 and the number of subsystem
sizes (rows) range from 10° to 107. The physical size of each system is the same at
107 (links), and the access factor (AF) is maintained at 10 (i.e., each link of a
subsystem is accessed sequentially10 times before moving to the next subsystem).
This data was obtained using a Lenovo W520 laptop having four CPUs (eight threads)
and 32 Gigabytes of RAM.

As we can see, increasing the shuffle factor at lower values of SF substantially affects
the runtime cost of accessing the data. As the shuffle factor continues to increase,
however, its effect on access runtime quickly reaches a horizontal asymptote, after
which no additional performance desegregation is observed. The adverse effect of
shuffling on memory access times appears to be relatively more pronounced for fewer
larger subsystems (e.g., S = 10°) than for many smaller ones (e.g., S = 103).

Given a sufficient amount of memory shuffle (say, SF = 5), we’d like to determine
more precisely under what specific circumstances a lack of physical locality within
subsystems most adversely affects the relative runtime of accessing memory (and
therefore fairly begs for a local allocator). So far, we can fully characterize our system
with just four parameters (G, S, AF, and SF). Recall from section 5, however, that
locality is defined in terms of three factors: number of instructions (I), size of memory
involved (M), and number of transitions away from the subsystem (T).

In order to model the difference between higher temporal locality (where I/T is
relatively large) and lower temporal locality (where I/T is relatively small), we need to
introduce a fifth parameter called the repeat factor, RF, that governs the number of
times to traverse the vector of subsystems (each time performing the local accesses
as governed by AF). By keeping the product of the local accesses (AF) and the
subsystem iterations (RF) constant, we can observe the relative effects of high versus
low temporal locality for the same number of total accesses.

If we are to make a fair comparison regarding the relative runtime cost of shuffled
memory, we'll need to do the same amount of work shuffling memory either way. We
will therefore hijack the sign of the shuffle factor to imply whether or not the shuffle
occurs before (+) or after (-) the indicated data access pattern. For convenience, we
will also assume that a negative global physical size (G) implies a (positive) binary
exponent for both that value and the subsequent subsystem size (S). Using this
notation, we can concisely characterize arbitrary runs of the program:

* 20 18 64 -3 4:The global physical size (G) is 220. The initial size of each of
the (four) subsystems (S) is 218. On each of the 4 iterations through the
subsystems (RF), each element of each subsystem will be accessed 64 times

(AF). After accessing the data, the entire contents of each subsystem will be
shuffled 3 times (SF).

* 20 18 64 +3 4: Same as above, except that the shuffling of data occurs before
accessing the data.

* 20 18 4 +3 64: Same as above, except that each subsystem’s linked list is
iterated over only four times before moving to the next subsystem, thereby
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reducing temporal locality while keeping the overall number of memory
accesses the same.

* 21 18 4 +3 64: Same as above, except the overall physical size of the problem
has doubled.

* 21 19 4 +3 64: Same as above, except the size of each individual subsystem
has doubled.

* 20 19 4 +5 64: Same as above, except the number of times each subsystem is
shuffled has increased by two.

In order to explore the entire space, we assumed a shulffle factor (SF) of 5 and
examined an increasingly large sequence of physical design spaces, contrasting both
physical and temporal locality. Physical locality was determined by the ratio of
subsystem size to overall system size, while temporal locality was defined by the ratio
of the number of instructions executed within the subsystem to the number of
transitions away from the subsystem over the duration of interest.

When the size of a problem is small, all of it fits in cache, and there is no need for a
memory allocator. Once the problem size exceeds that which can be fully
accommodated by the computer’s cache memory, local memory allocators become
relevant. For physical sizes below 218, there was no observable benefit for using
allocators on the laptop.

The results of two specific runs, the first of size 22! and the second of size 225 follow.
Each of these runs clearly show that, when the temporal locality is high, the greatest
opportunity for effective use of allocators occurs when subsystem size is relatively
large, and quickly tapers off with reduced subsystem size. On the other hand, when
temporal locality is low, the opportunity for significant performance improvement
using local allocators spans a much wider range of subsystem sizes.

The two pictures below are reminiscent of the process of inflating a hot-air balloon:
The low-locality (near) end is fully inflated, while the high-locality (far) end is only
partially so. The greater the area under the curve, the more opportunity there is for a
local allocator to be useful at improving runtime performance.
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270
271
272
273
274
275
276
277
278
279
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721

27-0

0.726
0.900
1.042
1.072
1.011
1.012
1.015
0.998
1.010
1.037
1.069
1.208
1.356
1.360
1.333
1.319
1.448
4.535
5.158
4.219
1.749
0.998

2n-1

0.748
0.924
1.045
1.078
1.032
1.030
1.046
1.017
1.029
1.054
1.099
1.210
1.366
1.381
1.345
1.329
1.463
4.452
5.091
4.145
1.740
0.984

27-2

Problem Size = 2*

0.775
0.955
1.087
1.101
1.062
1.093
1.076
1.067
1.048
1.085
1.117
1.251
1.414
1.430
1.374
1.367
1.484
4.386
5.107
4.162
1.744
0.992

27-3

0.841
1.013
1.146
1.162
1.126
1.151
1.145
1.135
1.129
1.159
1.205
1.324
1.471
1.472
1.461
1.416
1.581
4.566
5.151
4.242
1.745
1.010

274

0.942
1.124
1.265
1.286
1.238
1.266
1.277
1.272
1.272
1.303
1.327
1.486
1.620
1.609
1.625
1.560
1.740
4.571
5.111
4.253
1.746
1.002
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27-5

1.126
1.366
1.498
1.533
1.477
1.503
1.562
1.582
1.550
1.568
1.599
1.729
1.882
1.861
1.844
1.827
2.028
4.574
5.028
4.200
1.763
1.002

27-6

1.529
1.833
1.920
1.959
1.959
1.989
2.080
2.104
2.081
2.112
2.118
2.234
2.367
2.397
2.348
2.365
2.571
4.777
5.023
4.160
1.732
0.998

2n-7

1.921
2.400
2.670
2.792
2.812
2.925
3.074
3.177
3.173
3.206
3.240
3.266
3.417
3.412
3.380
3.368
3.689
5.081
5.078
4.223
1.753
1.006

27-8

2.332
2.779
3.275
3.550
3.738
4.197
4.724
5.008
5.070
5.183
5.182
5.259
5.321
5.308
5.293
5.282
5.299
5.386
5.028
4.167
1.757
1.006
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270
271
272
273
274
275
276
277
278
279
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
21723
2724
2725

27-0

0.760
0.912
1.035
1.072
1.023
1.026
1.020
1.014
1.014
1.064
1.187
1.539
1.743
1.736
1.719
2.003
3.414
6.685
6.628
6.301
6.066
5.644
4.941
4.163
1.163
0.391

27-1

0.795
0.953
1.038
1.090
1.070
1.013
1.081
0.993
1.018
1.084
1.201
1.595
1.782
1.756
1.733
1.931
3.577
6.542
6.550
6.187
6.018
5.613
5.052
4.210
3.122
1.800

27-2

Problem Size = 2%

0.824
0.971
1.086
1.111
1.071
1.078
1.071
1.063
1.066
1.116
1.239
1.557
1.810
1.803
1.806
1.950
3.275
6.882
6.496
6.131
5.804
5.471
4.975
4.160
3.068
0.996

27-3

0.888
1.050
1.155
1.179
1.131
1.156
1.150
1.152
1.124
1.186
1.340
1.631
1.891
1.886
1.888
2.007
3.411
6.572
6.507
6.174
5.823
5.528
4.953
4.167
3.112
0.999
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1.265
1.445
1.569
1.564
1.529
1.513
1.516
1.531
1.541
1.594
1.756
2.065
2.323
2.320
2.314
2.391
3.630
6.508
6.571
6.216
5.930
5.530
4.976
4.168
3.112
1.000

27-6

1.759
2.025
2.075
2.068
2.017
2.006
2.033
2.065
2.083
2.133
2.320
2.613
2.912
2.935
2.980
3.251
4.839
6.417
6.398
5.798
5.816
5.446
5.054
4.142
3.127
1.003

2n-7

2.285
2.773
2.947
2.992
2.964
2.964
3.015
3.032
3.127
3.235
3.441
3.776
4.015
4.106
4.128
4.602
5.891
6.647
6.339
6.110
5.818
5.498
4.874
4.170
3.146
0.993

27-8

2.700
3.153
3.200
3.400
3.763
4.157
4.456
4.654
4.870
5.141
5.509
5.879
6.199
6.232
6.303
6.424
6.622
6.608
6.326
6.105
5.836
5.378
4.932
4.076
3.095
0.995
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Theory is all well and good, but practice makes perfect. We now provide actual data
obtained from using a small selection of allocator strategies (AS1, AS7, AS9, and
AS13) on the same dedicated machine used in Benchmark I.
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Benchmark Arguments new_delete multipool multipool monotonic (multipool)

type parameter type parameter abstract base abstract base
(AS1) (AS7) (AS9) (AS13)

21425651 6.382s 7.99s (125%) 8.565 (134%) 9.91s (155%)
6.299s 7.89s (125%) 8.64s (137%) 9.82s (156%)
6.408s 7.93s (124%) 8.225 (128%) 9.81s (153%)
21425650 43125 6.055 (140%) 6.50s (151%) 8.01s (186%)
4.296s 6.13s (143%) 6.44s (150%) 7.91s (184%)
4.306s 6.18s (143%) 6.38s (148%) 7.88s (183%)
-214256-51 6.063s 7.62s (126%) 8.57s (141%) 9.62s (159%)
5.885s 7.93s (135%) 8.265 (140%) 9.55s (162%)
6.041s 7.965 (132%) 8.11s (134%) 9.42s (156%)
-214256-50 4.316s 5.955 (138%) 6.24s (144%) 7.98s (185%)
4.357s 5.965 (137%) 6.465 (148%) 7.99s (183%)
4.355s 5.97s (137%) 6.38s (147%) 7.92s (182%)
214151 4.555s 6.07s (133%) 6.59s (145%) 7.98s (175%)
4.502s 6.00s (133%) 6.83s (152%) 8.03s (178%)
4.580s 6.09s (133%) 6.61s (144%) 7.97s (174%)
214150 4.251s 6.08s (143%) 6.23s (147%) 8.02s (189%)
4.246s 5.925 (139%) 6.665 (157%) 7.98s (188%)
4.395s 5.89s (134%) 6.35s (144%) 7.84s (178%)
2141-51 4.398s 6.07s (138%) 6.47s (147%) 8.06s (183%)
4.305s 6.23s (145%) 6.51s (151%) 8.04s (187%)
4.285s 5.94s (139%) 6.355 (148%) 8.04s (188%)
-2141-50 4.247s 5.965 (140%) 6.37s (150%) 7.83s (184%)
4.306s 5.97s (139%) 6.665 (155%) 7.94s (184%)
4.347s 5.90s (136%) 6.45s (148%) 7.865 (181%)
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Benchmark Arguments new_delete multipool multipool monotonic (multipool)

type parameter type parameter abstract base abstract base
(AS1) (AS7) (AS9) (AS13)

211725651 39.577s 4.89s ( 12%) 5.03s ( 13%) 5.00s ( 13%)
37.827s 5.00s ( 13%) 5.09s ( 13%) 4.97s (13%)
40.415s 4.95s ( 12%) 5.04s ( 12%) 4.95s ( 12%)
211725650 0.884s 0.49s ( 55%) 0.57s ( 64%) 0.57s ( 64%)
0.908s 0.48s ( 53%) 0.57s ( 63%) 0.565 ( 62%)
0.855s 0.52s ( 61%) 0.565 ( 66%) 0.57s ( 67%)
211725651 2.875s 3.065 (106%) 3.14s (109%) 2.995 (104%)
2.934s 3.065 (104%) 3.10s (106%) 3.07s (105%)
2.847s 2.98s (105%) 3.07s (108%) 2.98s (105%)
-2117256-50 0.918s 0.51s ( 56%) 0.57s ( 62%) 0.62s ( 68%)
0.954s 0.50s ( 52%) 0.565 ( 59%) 0.565 ( 59%)
0.932s 0.51s ( 55%) 0.57s ( 62%) 0.57s ( 61%)
211715256 62.5265 8.81s ( 14%) 8.61s ( 14%) 8.75s ( 14%)
62.194s 8.43s ( 14%) 8.43s ( 14%) 8.30s ( 13%)
63.505s 8.765 ( 14%) 8.74s ( 14%) 8.28s ( 13%)
2117150 0.880s 0.49s ( 55%) 0.57s ( 64%) 0.565 ( 64%)
0.880s 0.50s ( 57%) 0.59s ( 67%) 0.565 ( 64%)
0.898s 0.48s ( 53%) 0.57s ( 64%) 0.59s ( 66%)
-21171-5256 3.864s 4.61s (119%) 4.73s (122%) 4.75s (123%)
3.875s 4.75s (123%) 4.80s (124%) 4.68s (121%)
3.959s 4.55s (115%) 4.665 (118%) 4.61s (117%)
21171-50 0.900s 0.48s ( 53%) 0.57s ( 63%) 0.57s ( 63%)
0.917s 0.51s ( 56%) 0.54s ( 58%) 0.59s ( 64%)
0.865s 0.48s ( 55%) 0.60s ( 70%) 0.55s ( 64%)

Each of the parameter combinations shown above (first column) was tried three times
(to show variation) using four representative allocation strategies (columns 2-5).

(Note that a monotonic allocator alone is not applicable in this usage scenario due to
its long running, low-utilization nature). We could have subtracted out the
(extraneous) fixed cost of shuffling, but such was not necessary to illustrate the quite
dramatic benefits of employing local memory allocators to alleviate the runtime cost
of memory fragmentation over long-running programs. We have, however, included a
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zero-iteration run (a O in the last column) along with each test scenario for those who
might seek to refine the performance advantages of local memory allocators with
respect to access locality (L) in such circumstances.

9 Benchmark lll: Variation in Utilization

To demonstrate the effect of Utilization, memory was allocated in chunks (of size S)
until a first threshold was reached; the amount of active memory (A) to use. Then, a
chunk was deallocated and another chunk allocated until the desired total amount of
allocated memory (T) was reached. After every allocation, the value at the first byte of
the allocation was incremented. The data collected depicts a large variation in A / T;
the definition of Utilization. Since virtually no other work is done, the Density of this
benchmark’s allocations is extremely high.

The three size parameters T, A, and S are measured in bytes. The results of the
experiment are normalized to the result for AS1. Specifically, the results under AS1
are times in seconds and the values under the other allocators are a percentage of
the AS1 value; lower implies a shorter run time. The measurements were obtained
on a system with six Intel X5670 @ 2.93 GHz and 96 GB of memory installed. While
the system was not dedicated to this task, it was used during off-hours.

Total Allocated Memory (T) = 230

T A S AS1 AS2 |AS3 |ASS |AS7 |AS9 | AS11 | AS13

230 1215 210 0.066s | 115 | 546 |551 56 62 52 60

230 216 210 0.065s | 112 488 [496 |51 60 52 60

230 217 210 0.064s | 113 [492 |500 |53 61 54 63

230 218 210 0.065s | 107 479 |491 52 60 53 60

230 219 210 0.066s | 108 | 550 |554 |53 59 52 59

230 220 210 0.065s | 109 |563 |576 |54 62 54 62

230 220 21 0.033s | 108 1079 | 1086 | 54 61 55 62

230 220 212 0.017s | 109 1994 | 1840 | 55 64 57 65

230 220 213 0.008s | 108 1790 | 1802 | 127 130 1817 | 1843

230 220 214 0.004s | 111 1739 | 1751 | 123 128 1764 | 1781

230 220 215 0.002s | 107 1687 | 1703 | 118 121 1712 | 1717
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Total Allocated Memory (T) = 231

T A S AS1 AS2 |AS3 |AS5 |AS7 |AS9 |AS11 |AS13
231 215 210 0.130s | 115 |644 |558 |55 60 54 62
231 216 210 0.132s | 110 |565 |551 53 59 53 60
231 217 210 0.128s | 110 |587 |637 |52 61 52 60
231 218 210 0.128s | 113 | 712 |706 |53 61 54 61
231 219 210 0.129s | 110 | 698 |698 |54 62 54 61
231 220 210 0.132s | 108 |680 |682 |63 61 54 61
231 220 211 0.067s | 108 | 1039 | 1040 | 53 60 53 60
231 220 212 0.034s | 107 |2208 | 2015 | 53 62 52 61
231 220 213 0.017s | 106 |1710 | 1713 |119 |124 |1716 |1751
231 220 214 0.008s | 110 | 1728 | 1739 | 123 |126 | 1762 |1772
231 220 215 0.004s | 107 | 1753 | 1761 | 122 127 | 1772 | 1794
Total Allocated Memory (T) = 232
T A S AS1 AS2 |AS3 |AS5 |AS7 |AS9 |AS11 |AS13
232 215 210 0.261s | 109 | fail fail 53 59 52 60
232 216 210 0.259s | 115 | fail fail 52 60 53 61
232 217 210 0.270s | 111 | fail fail 50 57 50 58
232 218 210 0.258s | 109 | fail fail 53 60 53 60
232 219 210 0.258s | 109 | fail fail 54 61 54 61
232 220 210 0.257s | 109 | fail fail 54 62 54 62
232 220 211 0.133s | 107 | fail fail 54 61 54 61
232 220 212 0.067s | 108 | fail fail 53 62 55 63
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232 220 213 0.033s | 108 | fail fail 122 129 | fail fail
232 220 214 0.017s | 111 fail fail 124 127 | fail fail
232 220 215 0.008s | 107 | fail fail 122 127 | fail fail
Total Allocated Memory (T) = 233
T A S AS1 AS2 |AS3 |AS5 |AS7 |AS9 |AS11 |AS13
233 215 210 0.517s | 108 | fail fail 54 60 54 61
233 216 210 0.513s | 110 | fail fail 54 61 53 61
233 217 210 0.512s | 111 | fail fail 53 61 53 61
233 218 210 0.523s | 110 | fail fail 52 60 52 60
233 219 210 0.532s | 109 | fail fail 52 60 52 60
233 220 210 0.518s | 108 | fail fail 54 61 53 61
233 220 211 0.263s | 108 | fail fail 54 61 56 63
233 220 212 0.135s | 107 | fail fail 53 62 53 61
233 220 213 0.068s | 107 | fail fail 120 | 126 |fail fail
233 220 214 0.034s | 108 | fail fail 122 125 | fail fail
233 220 215 0.017s | 113 | fail fail 126 | 133 | fail fail
Total Allocated Memory (T) = 234

T A S AS1 AS2 |AS3 |AS5 |AS7 |AS9 |AS11 |AS13
234 215 210 1.035s | 108 | fail fail 55 61 55 62
234 216 210 1.024s | 111 | fail fail 53 60 53 61
234 217 210 1.034s | 111 | fail fail 53 61 53 61
234 218 210 1.027s | 112 | fail fail 53 61 54 61
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234 219 210 1.048s | 110 | fail fail 53 61 53 60
234 220 210 1.073s | 107 | fail fail 52 59 52 59
234 220 211 0.523s | 109 | fail fail 55 61 56 63
234 220 212 0.273s | 108 | fail fail 52 61 53 60
234 220 213 0.132s | 111 | fail fail 125 | 130 |fail fail
234 220 214 0.066s | 109 | fail fail 124 | 131 |fail fail
234 220 215 0.033s | 110 | fail fail 125 | 130 |fail fail
Total Allocated Memory (T) = 235

T A S AS1 AS2 |AS3 |AS5 |AS7 |AS9 |AS11 |AS13
235 215 210 2.098s | 110 | fail fail 53 59 53 60
235 216 210 2.022s | 111 | fail fail 54 63 55 62
235 217 210 2.064s | 110 | fail fail 53 60 53 60
235 218 210 2.055s | 109 | fail fail 54 61 54 61
235 219 210 2.148s | 108 | fail fail 52 59 55 62
235 220 210 2.083s | 115 | fail fail 54 61 53 61
235 220 211 1.065s | 107 | fail fail 54 61 55 62
235 220 212 0.549s | 104 | fail fail 52 61 54 62
235 220 213 0.263s | 108 | fail fail 124 | 128 | fail fail
235 220 214 0.133s| 111 | fail fail 123 | 127 | fail fail
235 220 215 0.068s | 109 | fail fail 122 127 | fail fail

The most striking result is that some of the tests failed to run to completion; the
system’s memory was exhausted. Clearly, when we choose an allocator, the need for
re-use of deallocated memory is a critical factor.
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The results for the largest three S values in all the tables expose the effect of an
implementation detail of the used multipool. Allocations larger than a certain size
(212 bytes as per code inspection) will be passed directly to the underlying allocator.
As such, for S > 212, there is noticeable performance degradation for the multipool
allocators and the creation of failure scenarios for AS11 and AS13.

10 Benchmark IV: Variation in Contention

In this experiment, a set of threads was created and used to repeatedly allocate and
deallocate a chunk of memory. To emphasize the cost of Contention, every function
called by a thread had an instance of an allocator. For the default global allocator,
AS1, and the new/delete allocator, AS2, all of the threads will contended for the same
allocator. For the other allocators, each thread had access to its own private
allocator; hence, there is no contention except for when these allocators must make a
request to their backing allocators. After every allocation the value at the first byte of
the memory was incremented. Note that the Allocation Density of this experiment is
extremely high.

The size parameter (S) is measured in bytes. The other parameters for this
experiment are the number of iterations (N) and the number of threads (W). The
results of the experiment are normalized to the result for AS1. Specifically, the
results under AS1 are times in seconds and the values under the other allocators are
a percentage of the AS1 value; lower implies a shorter run time. The measurements
were obtained on a system with six Intel X5670 @ 2.93 GHz and 96 GB of memory
installed. While the system was not dedicated to this task, it was used during off-
hours.

Number of Iterations (N) = 215, Size of Allocation (S) = 26

N S Y AS1 AS2 | AS3 |ASS |AS7 |AS9 | AS11 | AS13
215 26 1 0.017s | 106 |51 53 43 44 43 43
215 26 2 0.023s | 104 |65 68 53 46 44 44
215 26 3 0.025s | 102 |76 75 56 58 53 53
215 26 4 0.026s | 104 | 86 87 56 61 55 62
215 26 5 0.028s | 106 | 90 85 56 69 59 66
215 26 6 0.033s | 94 84 87 58 62 58 61
215 26 7 0.031s | 108 | 87 87 61 65 65 69
215 26 8 0.036s | 103 101 99 57 62 57 60
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Number of Iterations (N) = 215, Size of Allocation (S) = 27

N S W AS1 AS2 |AS3 |AS5 |AS7 |AS9 |AS11 |AS13
215 27 1 0.022s | 107 |72 75 33 33 33 33
215 27 2 0.036s | 96 65 63 33 33 33 29
215 27 3 0.035s | 101 |83 80 39 35 35 41
215 27 4 0.037s | 96 91 96 43 44 48 42
215 27 5 0.040s | 107 | 120 |119 |45 47 46 47
215 27 6 0.042s | 98 104 | 109 |49 47 48 48
215 27 7 0.045s | 98 112 112 |44 46 45 45
215 27 8 0.051s | 101 121 121 |41 40 43 42
Number of Iterations (N) = 215, Size of Allocation (S) = 28
N S W AS1 AS2 |AS3 |AS5 |AS7 |AS9 |AS11 |AS13
215 28 1 0.025s | 100 |95 95 30 30 30 30
215 28 2 0.035s | 99 121 122 | 34 34 33 37
215 28 3 0.036s | 102 148 | 149 |45 45 40 44
215 28 4 0.038s | 98 160 |162 |44 47 43 44
215 28 5 0.043s | 97 165 | 166 |45 44 44 40
215 28 6 0.041s | 103 |204 |202 |49 53 48 49
215 28 7 0.042s | 99 224 | 221 |47 48 48 51
215 28 8 0.051s | 100 |210 |211 |46 45 45 47
Number of Iterations (N) = 216, Size of Allocation (S) = 28
N S W AS1 AS2 |AS3 |AS5 |AS7 |AS9 |AS11 |AS13
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216 28 1 0.050s | 89 125 | 124 |29 29 29 30
216 28 2 0.056s | 102 152 154 | 40 41 40 42
216 28 3 0.056s | 101 186 | 173 |44 48 40 42
216 28 4 0.059s | 105 | 231 |228 |46 45 42 47
216 28 5 0.069s | 102 |206 |207 |40 42 42 40
216 28 6 0.071s | 92 231 [228 |43 42 39 44
216 28 7 0.077s | 97 237 |238 |43 37 40 40
216 28 8 0.081s | 99 280 (286 |39 40 38 43
Number of Iterations (N) = 217, Size of Allocation (S) = 28
N S W AS1 AS2 |AS3 |AS5 |AS7 |AS9 |AS11 |AS13
217 28 1 0.086s | 102 136 | 136 |34 34 34 34
217 28 2 0.099s | 101 178 | 178 |38 44 38 43
217 28 3 0.101s | 106 | 188 |185 |38 38 37 41
217 28 4 0.104s | 103 |213 |249 |37 40 38 44
217 28 5 0.114s | 101 |245 |251 |38 39 39 42
217 28 6 0.114s | 95 274 | 271 |41 43 39 42
217 28 7 0.143s | 98 246 | 255 |33 34 34 34
217 28 8 0.138s | 95 302 |315 |37 36 37 42
Number of Iterations (N) = 218, Size of Allocation (S) = 28
N S W AS1 AS2 |AS3 |AS5 |AS7 |AS9 |AS11 |AS13
218 28 1 0.171s | 102 158 | 159 |34 34 34 34
218 28 2 0.193s | 97 164 | 155 |35 36 35 36
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218 28 3 0.198s | 95 191 | 223 |34 35 34 34
218 28 4 0.205s | 93 265 | 227 |35 35 35 35
218 28 5 0.209s | 108 | 264 |278 |35 36 36 40
218 28 6 0.201s | 104 |300 |300 |39 38 36 44
218 28 7 0.239s | 105 |289 |301 37 38 37 39
218 28 8 0.250s | 102 |328 |332 |34 36 34 41

Number of Iterations (N) = 219, Size of Allocation (S) = 28

N S Y AS1 AS2 | AS3 |ASS |AS7 |AS9 |AS11 | AS13
219 28 1 0.344s | 100 156 158 |34 34 34 34
219 28 2 0.375s | 97 198 198 |33 34 34 34
219 28 3 0.362s | 101 245 229 |35 36 35 36
219 28 4 0.373s | 102 | 257 |258 |35 35 35 35
219 28 5 0.380s | 101 269 265 |35 35 35 37
219 28 6 0.382s | 102 |337 |344 |36 37 39 38
219 28 7 0.443s | 95 356 |326 |36 38 36 41
219 28 8 0.478s | 95 353 |335 |32 33 34 37

Since modern default global allocators were designed with threading as a concern,
the results are not jaw-dropping. The benchmarks demonstrate, again, the relative
efficiency of the allocators; the default global allocator must pay a premium to handle
multiple threads concurrently. Interestingly, the monotonic allocators performed
more and more poorly as the total amount of memory allocated memory increased
(likely due to a dearth of physical locality within the sequential buffer itself).

11 Conclusion

Object-level control over memory allocation is intrinsic to C++, and must always be so
if this language hopes to retain its supremacy as the high-level “systems” language it

has always aspired to be. Supporting object-specific memory allocation is admittedly
an added burden — exacerbated by an initially poor model — which is finally being
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addressed by N3916: Polymorphic Memory Resources. Any future incarnation of STL
should incorporate the lessons elucidated here.
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