
Wording for Modules

Gabriel Dos Reis

Document number: N4466
Date: 2015-04-13

Working group: EWG
Reply to: gdr@microsoft.com

Abstract

This documents provides formal wording for a module system for C++. This
document is to be read in conjunction with document N4465 “A Module C++
for C++”.

1 New Keywords

Add these two keywords to Table 3 in paragraph 2.11/1:

module import

2 Modules as Entities

Modify paragraph 3/3 as follows:

An entity is a value, object, reference, function, enumerator, type,
class member, bit-field, template, template specialization, namespace,
module, parameter pack, or this.

Modify paragraph 3/4 as follows:

A name is a use of an identifier (2.10), operator-function-id (13.5),
literal-operator-id (13.5.8), conversion-function-id (12.3.2), or template-
id (14.2), or module-name that denotes an entity or label (6.6.4, 6.1).

Add a sixth bullet to paragraph 3/8 as follows:

– they are module-name composed of the same character sequence.

Append the following phrase to paragraph 3.1/2:

, or a module-declaration, or an import-declaration, or a module-exportation.

1

gdr@microsoft.com


2.1 ODR: Owning Module is Part of an Entity’s Identity

Add a seventh bullet to 3.2/6 as follows:

– each definition of D shall appear in the purview of the same mod-
ule

The purpose of this requirement is to implement module ownership of declarations.
Add a new paragraph 3.3.2/13 as follows:

The point of declaration of a module is immediately after the keyword
module in a module-declaration.

2.2 Program and Linkage

Change the definition of translation-unit in paragraph 3.5/1 to:

translation-unit:
toplevel-declaration-seqopt

toplevel-declaration:
module-exportation
module-importation
export-declaration
exported-fragment-group
fragment

module-declaration:
module module-name ;

module-exportation:
export module-declaration

module-importation:
import module-name ;

export-declaration:
export declaration

exported-fragment-group:
export { fragment-seq }

fragment:

N4466 – 2 – C++ Modules



module-declaration
declaration

module-name:
identifier
module-name . identifier

3 Exported Functions

3.1 Constexpr and inline functions

Add a new paragraph 7.1.2/7 as follows:

An exported inline function shall be defined in the same translation
unit containing its export declaration. An exported inline function
has the same address in each translation unit importing its owning
module.

Add a new paragraph 7.1.5/10 as follows:

An exported constexpr function shall be defined in the same transla-
tion unit containing its export declaration.

4 Module Declaration

Add a new section 7.7 titled “Modules” as follows:

1 A translation-unit shall contain at most one module-declaration as a
toplevel-declaration. A module unit is a translation-unit that contains
exactly one module-declaration. Such translation unit is said to be
part of the module designated by the module-name.

2 A module is a collection of module units, at most one which contains
export-declarations or exported-fragment-groups. That distinguished
module unit is called the module interface unit. Any other module
unit is called a module implementation unit.

3 A declaration D of an entity (other than a module) is said to be in the
purview of a module M if that declaration appears in a module unit,
and after the module-declaration designating M. The module M is said
to be the owning module of D.

4 A module-declaration establishes the ownership of the module desig-
nated by the module-name over all namespace-scope declarations that
follow the module-declaration.

5 The global module is the collection of all declarations not in the purview
of any named module.

N4466 – 3 – C++ Modules



Add a new subsection 7.7.1 titled “Export declaration”:

1 The interface of a module M is the set of all export-declarations under
the purview of M. An export-declaration shall declare at least one entity.
The names of all entities in the interface of a module are visible to any
translation unit importing that module.

2 The name introduced by an export-declaration shall have an external
linkage. If that declaration introduces an entity with a type, then
that type shall have an external linkage. If the export-declaration
introduces a function template or a variable template then the type
of the corresponding current instantiation shall contain only types
with external linkage. If the export-declaration introduces a template
alias then the aliased type shall have external linkage. If the export-
declaration defines a class template, then all non-internal members of
the corresponding current instantiation shall contain only types with
external linkage.

3 In a exported-fragment-group, each fragment is processed as if it was
a declaration lexically preceded by the keyword export.

4 If an export-declaration introduces a namespace-definition, then each
member of the corresponding namespace-body is implicitly exported
and subject to the rules of export declarations. Only non-namespace
members are owned by modules.

Add a new subsection 7.7.2 titled “Import declaration”:

1 An import-declaration makes visible the names of all entities in the
interface of the nominated module. The semantics of those entities
are as if the module interface containing their declaration has been
processed from translation phase 1 through 7. [Note: The entities are
not redeclared in the translation unit containing the import-declaration.
Only their names are made visible. –end note.]

Add a new subsection 7.7.3 titled “Module exportation”:

1 Normally, a module interface unit (for a module M) containing an
import-declaration does not make the imported names transitively vis-
ible to translation units importing the module M. A module-exportation
nominating a module M’ in the purview of a module M makes all ex-
ported names of M’ visible to any translation unit importing M.

5 Templates

TBD.

N4466 – 4 – C++ Modules


	New Keywords
	Modules as Entities
	ODR: Owning Module is Part of an Entity's Identity
	Program and Linkage

	Exported Functions
	Constexpr and inline functions

	Module Declaration
	Templates

