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Abstract

We present a design of a module system for C++, along with rationale
for the design choices. The document focuses on programmer’s view of
modules (both production and consumption) and how to better support mod-
ular programming in the large, componentization, scalable compilation, and
semantics-aware developer tools.
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1 Introduction

The lack of direct language support for componentization of C++ libraries and
programs, combined with increasing use of templates, has led to serious impedi-
ments to compile-time scalability, and programmer productivity. It is the source of
lackluster build performance and poor integration with cloud and distributed build
systems. Furthermore, the heavy-reliance on header file inclusion (i.e. copy-and-
paste from compilers’ perspective) and macros stifle flowering of C++ developer
tools in increasingly semantics-aware development environments.

Responding to mounting requests from application programmers, library de-
velopers, tool builders alike, this report proposes a module system for C++ with a
handful of clearly articulated goals. The proposal is informed by the current state
of the art regarding module systems in contemporary programming languages, past
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suggestions [4, 6], experiments such as Clang’s [2, 5], ongoing implementation in
the Microsoft C++ compiler, and practical constraints specific to C++ ecosystem,
deployment, and use. The design is minimalist; yet, it aims for a handful of funda-
mental goals

1. componentization;

2. isolation from macros;

3. scalable build;

4. support for modern semantics-aware developer tools.

Furthermore, the proposal reduces opportunities for violations of the One Defini-
tion Rule (ODR), and increases practical type-safe linking. An implementation of
these suggestions is ongoing in the Microsoft C++ compiler.

2 The Problems

The primary issue we face when trying to scale compilation of C++ libraries and
programs to billions of lines of code is how C++ programmers author software
components, compose, and consume them.

2.1 The Existing Compilation and Linking Model

C++ inherited its linking model from C’s notion of independent compilation. In
that model, a program is composed of several translation units that are processed
independently of each other. That is, each translation unit is processed with no
knowledge or regard to any other translation units it might be composed with in
an eventual program. This obviously poses inter-translation units communication
and coherence challenges. The communication problem is resolved via the notion
of name linkage: a translation unit can reference, by name, an entity defined in
another translation – provided the entity’s name is external. All that the consum-
ing translation unit needs to do (because it is translated independently and with
no knowledge of that entity’s defining translation unit) is to brandish a “match-
ing” declaration for the referenced entity. The following example illustrates the
concept. Consider the program composed of the translation units 1.cc and 2.cc:
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1.cc (producer of quant)

int quant(int x, int y) {

return x*x + y*y;

}

2.cc (consumer of quant)

extern int quant(int, int);

int main() {

return quant(3, 4);

}

The program is well-formed and the calls to quant (in 2.cc) is resolved to the defini-
tion in translation unit 1.cc. Please note that none of the translation units mentions
anything about each other: 2.cc (the consumer of the definition of quant) does not
say anything about which translation unit is supposed to provide the definition of
quant. In particular, the program composed of the translation units 2.cc and 3.cc,
defined as follows

3.cc (another producer of quant)

#include <stdlib.h>

int quant(int x, int y) {

return abs(x) + abs(y);

}

is also well-formed. This linking model, whereby translation units do not take
explicit dependencies and external names are resolved to whatever provides them,
is the bedrock of both C and C++ linking model. It is effective, but low-level and
brittle. It also underscores the problem of coherency across translation units with
declarations of entities with external linkage; in another words it poses continuing
vexing type-safe linking challenges [1, §7.2c].

2.2 Header Files and Macros

The conventional and most popular C++ software organization practice rests upon
a more than four decades old linking technology (§2.1) and a copy-and-paste disci-
pline. Components communicate via sets of so-called external names designating
externally visible entry points. To minimize risks of errors of various sorts, these
names are typically declared in header files, conventionally placed in backing stor-
age of the hosting environment filesystem. A given component uses a name defined
in another component by including the appropriate header file via the preprocessor
directive #include. This constitutes the basic information sharing protocol between
producers and consumers of entities with external names. However, from the com-
piler’s point of view, the content of the header file is to be textually copied into
the including translation unit. It is a very simple engineering technology that has
served the C and C++ community for over forty years. Yet, over the past seven-
teen years, this source file inclusion model has increasingly revealed itself to be
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ill-suited for modern C++ in large scale programming and modern development
environments.

The header file subterfuge was invented as a device to mitigate the coherency
problem across translation units. When used with care, it gives the illusion that
there is only one “true source” of declaration for a given entity. However, it has
several frequent practical failure points. It commonly leads to inefficient use of
computing resources; it is a fertile source of bugs and griefs, some of which have
been known since the discovery of the preprocessor. The contents of header files
are vulnerable to macros and the basic mechanism of textual inclusion forces a
compiler to process the same declarations over and and over in every translation
unit that includes their header files. For most “C-like” declarations, that is probably
tolerable. However, with modern C++, header files contain lot of executable codes.
The scheme scales very poorly. Furthermore, because the preprocessor is largely
independent of the core language, it is impossible for a tool to understand (even
grammatically) source code in header files without knowing the set of macros and
configurations that a source file including the header file will activate. It is regret-
tably far too easy and far too common to under-appreciate how much macros are
(and have been) stifling development of semantics-aware programming tools and
how much of drag they constitute for C++, compared to alternatives.

2.3 The One Definition Rule

C++ is built around the principle that any entity in a well-formed program is defined
exactly once. Unfortunately, the exact formulation of this rule isn’t that simple,
primarily because of unfortunate but unavoidable consequences of the copy-and-
paste technology implied by the preprocessor directive #include. The outcome is
that the arcane formal rules are variously interpreted by implementers (violation
of the ODR results in undefined behavior), doubt, uncertainty, and sometimes out-
right willful disregard, from library writers and application programmers. Quoting
Bjarne Stroustrup in the EWG reflector message c++std-lib: “Every word in the C
and C++ definitions about ‘ODR’ are there to work around the fact that we cannot
identity the one true definition and have to compare definitions instead.”

Having a single, authoritative place that provides the declaration (and defini-
tion) of an entity reduces the risks of declaration mismatches going undetected,
and improvements to type safe linkage.
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3 Goals and Principles

The design described in these pages aims at supporting sound software engineering
practices for large scale programming (e.g. componentization), scalable uses of
development resources (e.g. build throughput, build frameworks), semantics-aware
development tools (e.g. code analysis), etc.

3.1 The Preprocessor

While many of the problems with the existing copy-and-paste methodology can
be directly tied to the nature of the preprocessor, this proposal suggests neither
its eradication nor improvements of it. Rather, the module system is designed to
co-exist with and to minimize reliance on the preprocessor. We believe that the pre-
processor has been around for far too long and supports far too many creative usage
for its eradication to be realistic in the short term. Past experience suggests that any
improvements to the preprocessor (for modularization) is likely to be judged either
not enough or going too far. We concluded that whatever the problems are with the
preprocessor, any modification at that level to support modularization is likely to
add to them without fundamentally moving the needle in the right direction.

A central tenet of this proposal is that a module system for C++ has to be
an evolution of the conventional compilation model. The immediate consequence
is that it has to inter-operate with the existing source file inclusion model while
solving the significant problems and minimizing those that can’t be completely
solved.

3.2 Componentization and Interface

For effective componentization, we desire direct linguistic support for designating
a collection of related translation units, a module, with well-defined set of entry
points (external names) called the module’s interface. The (complete) interface
should be available to any consumer of the module, and a module can be con-
sumed only through its interface. Usually, a module contains many more entities
than those listed in its exported declarations. Only entities explicitly listed by the
module interface are available for consumption (by name) outside the module. A
translation unit constituent of a module is henceforth called a module unit. A mod-
ule should have a symbolic name expressible in the language, so that it can be used
by importing translation unit (consumer) to establish an explicit symbolic depen-
dency.
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3.3 Scoping Abstraction

One of the primary goals of a module system for C++ is to support structuring
software components at large scale. Consequently, we do not view a module as
a minimal abstraction unit such as a class or a namespace. In fact, it is highly
desirable that a C++ module system, given existing C++ codes and problems, does
not come equipped with new sets of name lookup rules. Indeed, C++ already has at
least seven scoping abstraction mechanisms along with more than half-dozen sets
of complex regulations about name lookup. We should aim at a module system
that does not add to that expansive name interpretation text corpus. We suspect
that a module system not needing new name lookup rules is likely to facilitate
mass-conversion of existing codes to modular form. Surely, if we were to design
C++ from scratch, with no backward compatibility concerns or existing massive
codes to cater to, the design choices would be remarkably different. But we do not
have that luxury.

3.4 Separation

A key property we require from a module system for C++ is separation: a mod-
ule unit acts semantically as if it is the result of fully processing a translation unit
from translation phases 1 through 7 as formally defined by the C++ standards [3,
Clause 2]. In particular, a module unit should be immune to macros and any prepro-
cessor directives in effect in the translation unit in which it is imported. Conversely,
macros and preprocessor directives in a module unit should have no effect on the
translation units that import it.

Similarly, a declaration in an importing module unit should have no effect –in
general– on the result of overload resolution (or the result of name lookup during
the first phase of processing a template definition) performed in the imported mod-
ule and its module units. That is, module units and modules should be thought of
as “fully backed” translation units.
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A corollary of the separation principle is that the order of consecutive import
declarations should be irrelevant. This enables a C++ implementation to separately
translate individual modules, cache the results, and reuse them; therefore poten-
tially bringing significant build time improvements. This contrasts with the current
source file inclusion model that generally requires re-processing of the same pro-
gram text over and over.

3.5 Composability

Another key primary purpose of a module system is to allow independent com-
ponents to be developed independently (usually by distinct individuals or organi-
zations) and combined seamlessly to build programs. In particular, we want the
ability to compose independent modules that do not export the same symbols in
a program without worrying about possible duplicate definition clashes from their
defining modules (see §4.4.) Therefore, a corollary of the composability require-
ment is that of ownership and visibility of declarations: a module owns declara-
tions it contains, and its non-exported entities have no relationship with entities
from other modules.

Operationally, there are various ways an implementation may achieve this ef-
fect. E.g. decorating an entity’s linkage name with its owning module’s name,
two-level linking namespace, etc. However, we believe that the notion of linkage
should not be elevated above where it belongs, and existing implementations have
access to far more elaborate linkage mechanisms than formally acknowledged and
acknowledgeable by the C++ standards.

3.6 Coexistence with Header File

In an ideal world with modules, the usage of the time-honored header files should
be rare, if not inexistent. However, realistically we must plan for a transitional
path where programs involve components written today in the source-file-inclusion
model, and new module-based components or existing components converted to
use modules. Furthermore, conversion from heavy macro-based header files are
likely to combine parts that are safely modularized with old-style macro interfaces
– until the world has completely moved to pure module systems and the preproces-
sor has vanished from the surface of planet Earth, Solar System.

We acknowledge that the principle of coexistence with source file inclusion
does pose significant constraints and brings complications into the design space,
e.g. with respect to the ODR.
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3.7 Runtime Performance

Moving an existing code to a brave new module world, or writing new codes with
modules, should not in any way degrade its runtime performance characteristics.
In particular, we do not seek a module system requiring a compiler to perform
automatic “boxing” of object representation (exposed in class private members)
–in attempts to reducing re-compilation– via opaque data pointers à la pImpl idiom.

4 Design Choices

The principles and goals just outlined confine us to parts of the module system
design space. We have to make further design decisions. Ideally, it should be easy
to transform an existing program #includeing header files to consume modules,
e.g.:

import std.vector; // #include <vector>
import std.string; // #include <string>
import std.iostream; // #include <iostream>
import std.iterator; // #include <iterator >

int main() {

using namespace std;

vector<string> v = {

"Socrates", "Plato", "Descartes", "Kant", "Bacon"

};

copy(begin(v), end(v), ostream_iterator<string>(cout, "\n"));

}

That is, it should be a matter of mechanical replacement of header files with corre-
sponding module import declarations and nothing else.

4.1 Module Declaration

The first design decision to make is whether it is necessary for a translation unit to
declare itself as a module unit, or if the fact that it is a module unit is the result of
some compiler invocation command line switches or some external configuration
files.

Given that a module unit is expected to possess a strong ownership semantics,
unlike a mere preprocessing unit, it is important that the rules of interpretation are
reflected syntactically as opposed to being guessed from the translation environ-
ment, the build environment, or implementation-defined command line invocation
switches. Consequently, we propose that a module unit be introduced by a decla-
ration:
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module module-name ;

This declaration means that subsequent declarations in the current translation unit
are part of the module nominated by module-name. For simplicity, there can be at
most one module declaration per translation unit. In a previous design, we required
the module declaration to be the first declaration in a module unit; that requirement
wasn’t necessary (as acknowledged at the time). To support gradual transition
from the current compilation model to a world with module we allow toplevel
declarations to preceed the module declaration in a module unit. Such declarations
do not belong to the nominated module. They belong to the global module (§4.7).

Rule 1 A translation unit may contain at most one module declaration. The re-
sulting translation unit is referred to as a module unit.

Note: A module can span several module units — all of which must declare the
module they belong to. Like most declarations in C++, it may be necessary to
allow attributes on module declarations.

4.1.1 Module Names and Filenames

Having decided on the necessity to have a module declaration, the next question
is whether the module-name should have any relationship at all with the filename
of the source file containing the module unit. We believe that prescribing any such
relationship will be too rigid, impractical compared to the flexibility offered today
by the source file inclusion model – see examples in §2.1.

We propose a hierarchical naming scheme for the name space of module-name
in support of submodules, see §4.5.

4.2 Module Interface

It is desirable, from composability perspective, that the language has direct support
for expressing a module interface separately from its implementation. This raises
at least two questions:

1. Should a module interface declaration be required in a source file distinct
from the file that contains its implementation?

2. Should both the interface and implementation of a module be contained in a
single source file?

The answers to both questions should be “no”. Requiring a module interface
declaration to be provided in a file distinct from the implementation file, while in
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general sound advice, is too constraining a requirement to accommodate all C++
libraries and programs. It should be possible for a module author to provide a
single source file containing both the module interface and implementations (of
both exported and non-exported entities) have the compiler automatically generate
the appropriate information containing exported declarations.

Similarly, requiring both interface and implementation to be contained in the
same file is too constraining and misses sound engineering practice. Furthermore,
we would like to support the scenario where a single module interface is provided,
but several independent implementations are made available and the selection of
the actual implementation needed to make up a program is left to the user.

4.2.1 Syntax

A module publishes its external entry points through exported declarations of the
form

export toplevel-declaration

or

export { toplevel-declaration-seq }

The braces in this context do not introduce a scope, they are used only for group-
ing purposes. A toplevel-declaration is either an import declaration (see §4.3), a
module-export declaration, or an ordinary declaration. An import declaration states
that all declarations exported by the nominated module are made available (e.g. the
names are available) to the importing translation unit. A module-export declaration
in the exported section means that the names exported by the nominated module
are transitively accessible to any consumer (e.g. importing translation unit) of the
current module.

Rule 2 No export declaration shall mention a non-exported entity, or an entity
with internal linkage or no linkage.

Note: An entity may be declared as exported, and later defined without the exported
keyword. Such an entity is still considered exported; only the properties that were
computed in the export declaration are exported to the module consumers. In par-
ticular, a class that is only declared (but not defined) in an export declaration ap-
pears incomplete to the module’s consumers even if the class is completed later
in the same module unit that declares the interface. Similarly a default argument
not present in the export declaration is not visible to the module’s consumers. See
§4.2.3.
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4.2.2 Ownership

Only names exported from a module can be referenced externally to the module.
Furthermore, non-exported names cannot be source of ODR violation across two
distinct modules; however duplicate definitions in the same module is ill-formed.

alfa.cxx

struct S1 {...};

module Alfa;

struct S2 {...};

export namespace Alfa {

struct S3 {...};

}

bravo.cxx

struct S1 {...};

module Bravo;

struct S2 {...};

export namespace Bravo {

struct S3 {...};

}

In the example above, modules Alfa and Bravo contributes structure S1 to the
global module, and they are subject to the usual ODR constraints. Both of them
define their own structures S2 and S3. Despite both Alfa and Bravo defining structure
S2, it is possible for another module to import both in the same program.

4.2.3 Exported Class Properties

An occasionally vexing rule of standard C++ is that of controls access, not visibil-
ity. E.g. a private member of a class is visible to, but not accessible to non-member
entities. In particular, any change to a private member of a class is likely to trigger
re-processing of any translation unit that depends on that class’s definition even if
the change does not affect the validity of dependent units. It is tempting to solve
that problem with a module system. However, having two distinct sets of rules
(visibility and accessibility) for class members strikes us as undesirable and poten-
tially fertile source of confusion. Furthermore, we want to support mass-migration
of existing codes to modules without programmers having to worry about class
member name lookup rules: if you understand those rules today, then you do not
have to learn new rules when you move to modules and you do not have to worry
about how the classes you consume are provided (via modules or non-modules).

That being said, we believe the visibility vs. accessibility issue is a problem that
should be solved by an orthogonal language construct, irrespectively of whether a
class is defined in a module interface declaration or in an ordinary translation unit.
There are proposals (e.g. “uniform call syntax”) independently of modules that
also need the existing rule to be revisited.

Rule 3 In general, any property of a class (e.g. completeness) that is computed in
the export declaration part of a module is made available to importing modules as
is.
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That is if a class is declared (but not defined) in the interface of a module, then
it is seen as an incomplete type by any importing module, even it is defined later in
the declaring module in a non-export declaration.

4.2.4 Should There Be an Interface Section at All? How Many?

It is sensible to imagine a design where a module interface is inferred or collected
from definitions that have special marker (e.g. export), instead of requiring that the
interface be declared at one place. A major downside of that design is that for an
import declaration to be useful (e.g. to effectively consume the module’s interface),
its entirety needs to be produced in a sort of preprocessing phase by some tools that
would scan all modules units making up the module. Therefore, it appears that any
perceived theoretical benefit is outweighed by that practical implication.

4.2.5 Should a Module Interface Be Closed?

For practical reasons similar to those exposed in §4.2.4, we require a module in-
terface to be declared “once for all” at a unique place. This does not preclude
extensions of a module. Indeed submodules (see §4.5) can be used to extend mod-
ules through composition and/or module-export declaration of submodules.

4.2.6 Alternate Syntax for Module Interface

Several suggestions have been made as alternatives to the currently proposed syn-
tax. In particular, it was observed that if the interface section should immediately
follow a module declaration, then both could be combined into a single declaration.
That is, instead of writing

module M;

export {

int f(int);

double g(double, int);

}

one could simply write

module M {

int f(int);

double g(double, int);

}

we considered this but eventually rejected this notation since it is too close to
classes and namespaces (seen as good by some) but is deceptive in that modules do
not introduce any scope of their own – see §3.3. That syntax was also part of the
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oiginal module suggestion by Daveed Vandevoorde, but met resistance [6, §5.11.2].
Furthermore, export declarations and non-export declarations can be freely mixed.

We also avoided reusing the access spcifiers public, private to delimit visibility
boundaries in a module.

4.3 Import Declaration

A translation unit makes uses of names exported by other modules through import
declarations:

import module-name ;

An import declaration can appear only at the global scope. It has the effect of mak-
ing available to the importing translation unit all names exported from the nomi-
nated module. Any class completely defined along with all its members are made
visible to the importing module. An incomplete class declaration in the export of a
module (even if later completed in that module unit) is exported as incomplete.

Note: An alternate syntax for module importation that avoids a third keyword
could be

using module module-name ;

but the semantics of transitive exports might not be obvious from the notation.

4.4 Visibility and Ownership

Consider the following two translation units:

m1.cc

module M1;

export int f(int, int);

// not exported, local to M1
int g(int x) {

return x * x;

}

// definition of f exported by M1
int f(int x, int y) {

return g(x) + g(y);

}

m2.cc

module M2;

export bool g(int, int);

import std.math;

// not exported, local to M2
int f(int x, int y) {

return x + y;

}

// definition of g exported by M2
int g(int x, int y) {

return f(abs(x), abs(y));

}

where module M1 defines and exports a symbol f(int,int), defines but does not ex-
port symbol g(int); conversely, module M2 defines and exports symbol g(int,int)
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defines but does not export symbol f(int,int). It is possible to build a program
out of M1 and M2

main.cc

import M1;

import M2;

int main() {

return f(3,4) + g(3,4);

}

without ODR violation because each non-exported symbol is owned by the con-
taining module.

4.5 Submodules

It is frequent for a component to consist of several relatively independent subcom-
ponents. For example, the standard library is made out of a few components: core
runtime support (part of any freestanding implementation), the container and algo-
rithm library (commonly referred to as the STL), the mighty IO streams library, etc.
Furthermore each of these components may be subdivided into smaller subcompo-
nents. For example, the container library may be divided into sequence containers,
associative containers, unordered containers, etc.

We propose a hierarchical naming of modules as a mechanism to support sub-
modules, and extensions of modules by submodules. A submodule is in every
aspect a module in its own right. As such, it has an interface and constituent
module units, and may itself contain submodules. For example, a module named
std.vector is considered a submodule of a module named std. The one distinctive
property of a submodule is that its name is only accessible to modules that have
access to its parent, provided it is explicitly exported by the parent module.

A submodule can serve as cluster of translation units sharing implementation-
detail information (within a module) that is not meant to be accessible to outside
consumers of the parent module.

4.6 Aggregation

The current design supports expression of components that are essentially aggre-
gates of other components. Here is an example of standard sequence containers
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component:
Standard sequence container module

module std.sequence;

export {

module std.vector;

module std.list;

module std.array;

module std.deque;

module std.forward_list;

module std.queue;

module std.stack;

}

Note that module aggregates are different from submodules in that there is no
relationship between the name of a module aggregate and modules it exports. The
two notions are not mutually exclusive. For example, the module std.sequence as
shown above is both a submodule of std and an aggregate module.

4.7 Global Module

To unify the existing compilation model with the proposed module system, we
postulate the existence of a global module containing all declarations that do not
appear inside any module (the case for all C++ programs and libraries in the pre-
module era.) Only names with external linkage from the global module are acces-
sible across translation units.

4.8 Module Ownership and ODR

As concluded in §3.5, a module has ownership of all declarations it contains. So,
just about how much ownership is it?

Does a module definition implicitly establish a namespace? No, a module def-
inition does not establish any namespace; and no particular syntax is needed to
access a name made visible by an import declaration. All exported symbols be-
long to the namespace in which they are declared. In particular, the definition of a
namespace can span several modules. In the following example,
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parsing.cxx

module Syntax;

export namespace Calc {

class Ast {

// ...
};

}

vm.cxx

module Evaluator;

import Syntax;

// use Ast from module Syntax
namespace Calc {

int eval(const Calc::Ast*);

}

the name Calc in the modules Syntax and Evaluator refers to the same namespace.
The parameter type of the function eval involves the type Calc::Ast defined and
exported by module Syntax.

Note: It is not possible for a translation unit to provide a declaration for an entity
that it does not own. That is, a translation unit cannot use “extern” declaration
to claim a matching declaration for an entity (with external linkage) declared in
a different module unit. This restriction does not apply to entities in the global
module (§4.7).

4.9 Constexpr and Inline Functions

We propose no fundamental change to the rules governing constexpr or inline func-
tions. Any exported constexpr or inline function must be defined in the module unit
providing the interface of the owning module. The definition itself need not be ex-
ported.

4.10 Templates

Standard C++’s compilation model of templates relies on copy-and-paste of their
definitions in each translation unit that needs their instantiations. With the module
ownership principle, each exported declaration of a template is made available to
importing translation units. As ever the two-phase name lookup applies whether a
template definition is exported or not.

4.10.1 Definitions

Definitions for templates listed in a module interface are subject to constraints
similar to those for inline functions. Furthermore, a class template that is only
declared (but not defined) in an export declaration is seen as an incomplete class
template by importing translation units.
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4.10.2 Explicit Instantiations

An explicit instantiation is exported when it appears in an export declaration. The
semantics is that the definition resulting from that instantiation is globally available
to all importing translation units. For example, given the module

vec.cpp

module Vector;

export {

template<typename T> struct Vec {

// ...
};

// Explicit instantiation for commonly used specialization
template struct Vec<int>;

}

the definition of the class Vec<int> is exported to any translation unit that imports
Vector. This provides a mechanism for template authors to “pre-compute” common
instantiations and share them across translation unit. Notice that this has effects
similar to a C++11-style extern declaration of a specialization combined with an
explicit instantiation in an appropriate translation unit.

Conversely, any explicit instantiation not in an export declaration is not ex-
ported; therefore the resulting definition is local to the containing translation unit.
If a specialization is requested in another translation unit, that would otherwise
match the non-exported instantiation, the usual rules for template specializations
applies as well as the ODR.

4.10.3 Implicit instantiations

Any implicit specialization of a non-exported template is local to the requesting
translation unit. For specializations of exported templates, we distinguish two
cases:

1. the template argument lists (whether explicitly specified or deduced) refer
only exported entities: the resulting instantiation is exported, and considered
available to all importing modules. For all practical purposes, builtin types
are considered exported.

2. at least one entities referenced in the template argument list is non-exported.
By necessity, the request and the referenced entity must belong to the current
translation unit. The resulting definition is non-exported and is local to the
containing translation unit.
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In each case, ODR is in effect. The rules are designed to allow maximum sharing
of template instantiations and to increase consistency of definitions generated from
templates, across translation units.

4.10.4 Template explicit specializations

A template explicit specialization is morally an ordinary declaration, except for the
fact that it shares the same name pattern as specializations of its primary template.
As such it can be exported if its primary template is exported and its template ar-
gument list involves only exported entities. Conversely, an explicit specialization
of an exported may be declared non-exported. In that case, the declaration (and
definition) is local to that module unit, and is unrelated to any other specializa-
tion that might be implicitly generated or explicitly defined non-exported in other
translation units. For example, in the program

vec-def.cpp

module Vector;

export {

template<typename T> struct Vec; // incomplete
template<> struct Vec<int> { ... }; // complete

}

// Completed Vec<double>, but definition not exported
template<> struct Vec<double> { .... };

vec-use.cpp

import Vector;

int main() {

Vec<int> v1 { ... }; // OK
Vec<double> v2 { ... }; // ERROR: incomplete type
}

the class Vec<int> is exported as a complete type, so its use in the definition of
the variable v1 is fine. On the other hand, the type expression Vec<double> in vec-
use.cpp refers to an implicit instantiation that of Vec, which is an incomplete type.

4.11 The Preprocessor

It is not possible for a module to export a macro, nor is it possible for a macro in an
importing module to affect the imported module. Components that need to export
macros should continue to use header files, with module-based subcomponents for
the parts that are well behaved. For example, an existing library that provides
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interfaces controlled by a preprocessor macro symbol UNICODE can modularize its
constituents and continue to provide a traditional header file-based solution as fol-
lows:

Header file C.h

#ifndef C_INCLUDED

#define C_INCLUDED

#ifdef UNICODE

import C.Unicode;

#else

import C.Ansi;

#endif // C INCLUDED

4.11.1 Macro-heavy header files

This proposal does not address the problem of macro-heavy header file. Such
header files tend to be provided, in majority, by C-style system headers. We will
note that often they contain fairly modularizable sub-components that are easily
provided by submodule interfaces. Consequently, they can still use module inter-
faces for subcomponents while controlling their availability via macro guards in
header files.

Can a module unit include a header file? Absolutely yes! Remember that the
effect of file inclusion via #include is that of textual copy-and-paste, not modular
declaration. Furthermore, any macro defined in that header file is in effect (until
subject to an #undef directive). However, what is not possible is for the macros
defined in that module to have any effect on any translation unit that imports it.

We anticipate that header files will continue to serve their purpose of delivering
macro definitions even when they contain module imports that bring into scope
modularized components.

4.12 Separate Compilation vs. On Demand

Since modules act semantically as a collection of self-contained translation units
that have been semantically analyzed from translation phase 1 through 7, it is legit-
imate –from practical programming point of view– to ask whether a module nom-
inated in an import declaration is required to have been separately processed prior
to the module requiring it, or whether such module is analyzed on the fly or on de-
mand. For all practical purposes, the answer is likely to be implementation-defined
(to allow various existing practice), but our preference is for separate translation.
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4.13 Mutually importing modules

With the source file inclusion model, the #include graph dependency must be
acyclic. However, classes –and in general, most abstraction facilities– in real world
programs don’t necessarily maintain acyclic use relationship. When that happens,
the cycle is typically “broken” by a forward declaration usually contained in one
of the (sub)components. In a module world that situation needs scrunity. For sim-
plicity of the analysis, let’s assume that two modules M1 and M2 use each other.

4.13.1 Both Modules Use Each Other Only in Implementation

This situation is easy, and in fact is not really an cyclic dependency. Indeed, since
module interface artefacts are separated by the compiler from module unit imple-
mentations, the acyclicity of use graph is still maintained.

4.13.2 One (But Not Both) Uses the Other at the Interface Level

Again, this situation is simple since acyclicity is maintained at the interface specfi-
cation level and an obvious ordering suggests itself. This situation is common and
naturally supported by the proposal.

4.13.3 Both Use Each Other at the Interface Level

This situation is much rarer; the interfaces of M1 and M2 should be considered log-
ically as part of a single larger module and treated as such, even though it is con-
venient from the programmer’s perspective to physically split the entities in two
distinct source files. Nevertheless, it is possible for the programmer to set up a
(delicate) processing order for the compiler to translate the interface parts of both
modules, and then consume them independently.

5 Visibility and Parsing

5.1 Visibility vs. Accessibility

C++, as it exists, today make a distinction between visibility and accessibility of
names. Almost by definition, names are always visible even if they have restrictive
access specifiers. This implies that an exported class is forced to expose every and
each of its members, even if some of those members are meaningful only to entities
that are within the boundary of the owning module. This is most unfortunate and
stands in the way of realizing one of the key benefits of modules: componentization
at scale. Therefore we suggest a visibility: internal. This specifier can be used in
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combination with existing access specifiers to limit the visibility of class members.
A class member with internal visibility specifier means that it is visible to module
members, but not outside the owning module boundary.

5.2 Parsing

The C++ grammar requires that, in most parsing contexts, names be unambigu-
ously categorized into type-names, template-names, namespace-names, etc. for
further correct parsing progress. This requirement (resulting from grammar ambi-
guities) is most unfortunate as it stands in the way of reducing reliance on header
files for forward declarations. Componentization, as suppored by modules, offers
a unique opportunity to reduce the conceptual need for forward declarations, and
therefore the need for header files within module boundaries. We believe this is an
important problem to solve in order to achieve effective componentization at scale.

6 Tools Support

The abstract operational model of a module is that it contains everything that is
ever to be known about its constituents module units. In particular, we envision
that a high quality implementation will provide library interfaces for querying the
elaborated forms of declarations, hosting environmental values, including transla-
tion command line switches, target machines, optional source form, binary form,
etc. Ideally, a module would provide all that is necessary for a code analysis tool.

A library interface to internal representation of modules will be the subject of
a separate proposal.

7 Build Systems

We acknowledge that most build systems work on file stamps. We aim for a mod-
ule system that does not disturb that invariant. Ideally, modules should continue
to work smoothly with existing build systems. For that reason, we have placed
restrictions on where exported constexpr functions, exported inline functions, and
exported template definitions should be located in module definitions.

8 Migration

The module system suggested in this proposal supports bottom up componentiza-
tion of libraries, and everywhere consumption of modules in libraries and appli-
cation programs. In another words, a non-modularized component can consume a
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module. However unprincipled header file inclusion in a module component may
prove problematic.

Tools support will be key to a successful migration of the C++ planet to a mod-
ule world. For example, a tool for detecting macro definition and usage dependen-
cies in a translation unit will be useful. A tool for detecting multiple declarations of
the same entity across source files will be needed to assist in gradual migration of
existing source codes. Similarly, a tool turning an existing header file into an initial
module interface (when configuration parameters are fixed) is valuable in top-down
conversion scenarios when (manual) bottom-up conversion is not appropriate.
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Loı̈c Joly, Leif Kornstädt, Aaron Lahman, Artur Laksberg, Sridhar Madhugiri,
Reuben Olinsky, Dale Rogerson, Cleiton Santoia, Richard Smith, Jim Springfield,
Bjarne Stroustrup, Herb Sutter.

References

[1] Margaret E. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Man-
ual. Addison-Wesley, 1990.

[2] Douglas Gregor. Modules. http://llvm.org/devmtg/2012-11/

Gregor-Modules.pdf, November 2012.

[3] International Organization for Standards. International Standard ISO/IEC
14882. Programming Languages — C++, 4th edition, 2014.

[4] Bjarne Stroustrup. #scope: A simple scope mechanism for the C/C++ prepro-
cessor. Technical Report N1614=04-0054, ISO/IEC JTC1/SC22/WG21, April
2004.

[5] Clang Team. Clang 3.5 Documentation: Modules. http://clang.llvm.
org/docs/Modules.html, 2014.

[6] Daveed Vandevoorde. Module in C++. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2012/n3347.pdf, December 2012. N3347=12-
0037.

N4465 – 22 – C++ Modules

http://llvm.org/devmtg/2012-11/Gregor-Modules.pdf
http://llvm.org/devmtg/2012-11/Gregor-Modules.pdf
http://clang.llvm.org/docs/Modules.html
http://clang.llvm.org/docs/Modules.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3347.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3347.pdf

	Introduction
	The Problems
	Goals and Principles
	Design Choices
	Visibility and Parsing
	Tools Support
	Build Systems
	Migration

