
Tweaks to Streamline Concepts Lite Syntax

Document #: WG21 N4434
Date: 2015-04-10
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Redundant bool 1
3 Single syntax 2
4 Concept evaluation anywhere . . 2

5 Acknowledgments 3
6 Bibliography 3
7 Document history 3

Abstract

This paper proposes three small tweaks to simplify the syntax used by programmers in defining
and using concepts as specified in [N4377].

1 Introduction

[N4377], on track to become a Technical Specification, provides wording to realize the long-awaited
C++ language feature known as concepts. Based on the design proposed in [N3351], this extension
provides the following new major language features:

• two forms of declarations for concepts (function concepts and variable concepts), each intro-
duced by a new keyword, concept;

• a requires-expression, an unevaluated context introduced by a new requires keyword, used
(typically within a concept definition) to express constraints on template arguments;

• a new requires-clause, also introduced by the requires keyword, to express constraints on
template declarations and on function declarations; and

• template-introductions, constrained-parameters, and constrained-type-specifiers as more eco-
nomical syntactic alternatives to requires-clauses.

These features have been implemented by Andrew Sutton (with assistance from his student Braden
Obrzut) on gcc’s c++-concepts branch [http://gcc.gnu.org/svn/gcc/branches/c++-concepts].
We have been extensively experimenting with this implementation. Based on our experience, we
are proposing a few small tweaks in the interest of reducing the effort needed on the part of
programmers to define and use concepts.

2 Redundant bool

Following an introductory concept keyword, the declaration of a variable concept has the same
syntax as the declaration of a variable template, and the declaration of a function concept has the
same syntax as the declaration of a function template. This means that the concept keyword

Copyright c© 2015 by Walter E. Brown. All rights reserved.

1

mailto:webrown.cpp@gmail.com
http://gcc.gnu.org/svn/gcc/branches/c++-concepts

2 N4434: Tweaks to Streamline Concepts Lite Syntax

is always followed by bool, since concepts must always yield a truth value when applied. (See
[dcl.spec.concept]/5.2, 6.1.)

It seems unnecessary for a programmer always to write both concept and bool for each
declared concept. We propose that concept suffice by itself, and that the compiler implicitly
supply bool as each variable concept’s type and as each function concept’s return type.

3 Single syntax

A requires-expression that imposes constraints previously defined in a concept C uses the syntax
requires C<T> when C is a variable concept and uses the syntax requires C<T>() (note the
extra parentheses) when C is a function concept. This requires programmers to be aware, for
each concept, how it is defined. The form of a concept’s definition seems to be an implementation
detail, since any requirements can be coded in either concept form.

We believe that having two forms for concept definition is a historical artifact: At the time the
Concepts Lite proposal was designed, variable templates had not yet been added to the language;
when they were, concept definitions in that form were grafted onto the proposal, supplementing
the existing function style. However, we believe it is unnecessary and a source of confusion to
have both forms. We therefore propose to eliminate function concepts in order to simplify rules
for both implementers and users alike.

For example, excising function concepts will simplify the following special rule for turning
a constrained-parameter into a predicate constraint: “If C is [a] variable concept, then E is the
id-expression TT. Otherwise, C is a function concept and E is the function call TT()” [temp.param,
(10.3), cross-reference elided].

We chose to keep the variable concept style, as it has less syntactic noise (no return; no
argument list, . . .) than function concepts. We also note that the variable concept style is the only
style used in the Concept Design paper [N3351]. Our proposal thus corresponds to the vision of
the intended design.

4 Concept evaluation anywhere

Given a concept C, how can a programmer determine (e.g., for testing purposes) whether a given
argument (say, a type T) satisfies the concept’s constraints? At the moment, this is only possible
by writing C<T> within a requires-clause (or equivalent, such as a constrained-parameter).

To obtain a bool value reflecting whether the argument satisfies the constraint, a programmer
must, in other contexts, write such boilerplate code as the following:

1 template< class T >
2 constexpr bool
3 satisfies_C() { return false; }

5 template< C T > // equivalent to requires C<T> for class T
6 constexpr bool
7 satisfies_C() { return true; }

Then the programmer’s code can invoke satisfies_C<T>() to obtain the desired bool result.

Such circumlocution seems extreme. We therefore propose to allow a concept name plus
appropriate arguments (e.g., the simple C<T>) in any context where a bool value may reasonably

N4434: Tweaks to Streamline Concepts Lite Syntax 3

appear. The general availability of this construct will eliminate any need for its indirect invocation
via such undesirable circumlocution as that shown above.

5 Acknowledgments

We greatly appreciate the thoughtful remarks received from the readers of this paper’s early drafts.
Thank you.

6 Bibliography

[N3351] B. Stroustrup and A. Sutton (eds.): “A Concept Design for the STL.” ISO/IEC JTC1/SC22/
WG21 document N3351 (post-Issaquah mailing), 2012-01-13. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2012/n3351.pdf.

[N4377] Andrew Sutton: “Programming Languages—C++ Extensions for Concepts.” ISO/IEC JTC1/SC22/
WG21 document N4377 (mid-Urbana/Lexena mailing), 2015-02-09. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2015/n4377.pdf.

7 Document history

Version Date Changes

1 2015-04-10 • Published as N4434.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4377.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4377.pdf

	Title
	Contents
	Abstract
	1 Introduction
	2 Redundant bool
	3 Single syntax
	4 Concept evaluation anywhere
	5 Acknowledgments
	6 Bibliography
	7 Document history

