Type Property Queries (rev 4)

Document Number: N4428
Revises: N4113
Date: 2015-04-08
Project: Programming Language C++ - SG7 Reflection
Reply-To: Andrew Tomazos <zos@google.com>,
Christian Kaeser <christiankaeser87@gmail.com>

Summary

We propose the addition of two class templates to the C++ Metaprogramming and Type Traits
Standard Library - std::class traitsand std::enum traits - that will enable basic
reflection of classes, unions and enumerations - without core language changes.

Further, to show how these two new class templates integrate into a long-term vision for C++
reflection - we layout a tentative roadmap for a future new core language operator reflectid
that will build upon these two traits. We show that this roadmap addresses previous concerns
regarding both access control and namespace reflection.

This proposal revises N4113 in accordance with SG7 feedback from Urbana. (N4113 revises
N4027 with feedback from Rapperswil, N4027 revises N3815 with feedback from Issequah).

To represent compile-time text we use std::string_literal from N4121. N4121 has passed SG7
(Rapperswil) and EWG (Urbana), and is due to be looked at by LEWG (Lenexa).

Synopsis
We propose the addition of the following two class templates to <type_traits>:

namespace std
{
template<typename E>
struct enum traits {
struct enumerators {
static constexpr size t size;
template<size t I>
struct get {
static constexpr string literal identifier;

static constexpr E value;

template<class C>

mailto:zos@google.com

struct class_traits {
struct base classes {
static constexpr size t size;
template<size t I>
struct get {
typedef /* */ type;
static constexpr bool is virtual;
}i
bi

struct class members {
static constexpr size t size;
template<size t I>
struct get {
static constexpr string literal name;
static constexpr /* */ pointer;
bi
}i
struct nested types {
static constexpr size t size;
template<size t I>
struct get {
static constexpr string literal identifier;
typedef /* */ type;
bi

i

Specification

std: :enum_traits<E>

Requires: std::is_enum<E>

Provides information about the enumeration type E.
std: :enum_traits<E>::enumerators

Provides information about the enumerator list of E.
std: :enum_traits<E>::enumerators::size

The number of enumerators in the enumerator list of E.

std::enum_traits<E>::enumerators: :get<I>
Requires: I >= 0 && I < size

Provides information about the I’'th (zero-indexed) enumerator in the enumerator
list of E, in declared order.

std: :enum_traits<E>::enumerators::get<I>::identifier

A std::string literal (N4121) holding the identifier of the enumerator. The
identifier is encoded in UTF-8 format, with any UCNs decoded.

std::enum_traits<E>::enumerators::get<I>::value

A value of type E, that is the value of the enumerator.
std::class_traits<C>

Requires: std::is class<C> || std::is_union<C>

Requires: C does not contain a member of reference type or a bit field.
Requires: C is not a lambda type.

Provides information about the class or union type C.

std::class_traits<C>::base_classes

Provides information about the direct public base classes of C, as they appear
in the base-clause after pack expansion.

std::class_traits<C>::base_ classes::size

The number of public base classes in the base-clause of C, or 0 if C does not
have a base-clause.

std::class_traits<C>::base_ classes::get<I>
Requires: I >= 0 && I < size

Provides information about the I’th (zero-based) public base class of C, in
declared order.

std::class_traits<C>::base_ classes::get<I>::type
The type of the base class.
std::class_traits<C>::base classes::get<I>::is virtual

True i1ff the base class is virtual.

std: :class_traits<C>::class_members

Provides information about some public class members of C. The included
members are functions or objects that have a direct simple declaration in the
definition of C, and are not member templates or instantiations thereof.

(Note: Members that are implicitly generated are not shown and members imported
with a using declaration, or inherited are not shown. Constructors and

destructors are not shown.)
std::class_traits<C>::class members::size

The number of public members of C that satisfy the criteria given above, or 0
if none.

std::class_traits<C>::class_members: :get<I>
Requires: I >= 0 && I < size

Provides information about the I’th (zero-indexed) public member of C that

satisfies the above criteria, in declared order.
std::class_traits<C>::class members: :get<I>::name

A std::string literal that holds the name of the member. If the name is an
identifier, then it shall hold the UTF-8 encoded text of that identifier, with
any UCNs decoded. If the name is a operator-function-id, then the text
“operator” appended with a space character and then the canonical non-terminal
of the operator (“operator +”, “operator newl[]”, “operator <<=", etc). If the
member is unnamed, the empty string. Otherwise, the text is
implementation-defined.

std::class_traits<C>::class_members: :get<I>::pointer

The result of the expression &C::m applied to the member. That is, a
pointer-to-member for a non-static member, or a pointer for a static member.
Anonymous unions are reflected as a single subobject of union type. (Note: The
subobjects of the union are not visible in the class members of the enclosing
class type, they are visible by recursion on the type of the union subobject.)

std::class_traits<C>::nested_types

Provides information about some direct public nested types of C. Each nested
type shall be one that is declared with a name in the class definition of C.
The reflected nested types can be introduced by an alias declaration, a typedef
member declaration, or from a member declaration with a class specifier, enum
specifier or an elaborated-type-specifier. (Note: Unnamed classes and unions

can be reached through class members instead, by deducing the type of the data
members of the enclosing class type.)

std::class_traits<C>::nested_types::size
The number of public nested types of C meeting the above criteria.
std::class_traits<C>::nested_types: :get<I>

Provides information about the I’th (zero-indexed) public nested type of C that
satisfies the above criteria, in declared order.

std::class_traits<C>::nested_types::get<I>::identifier

A std::string literal holding the identifier of the nested type. The
identifier is encoded in UTF-8 format, with any UCNs decoded.

std::class_traits<C>::nested_ types::get<I>::type

The type of the nested type.

Future Roadmap

As a first point of extension, we note that additional members can be added by
a future proposal to either std::class traits or std::enum traits, without
breaking changes. For example, we are considering proposing additional list
members such as std::class traits<C>::constructors and
std::class_traits<C>::member templates in a future proposal. Also, we could
add other kinds of members other than these compile-time list style members.

As a second point of extension, in any of these list-style members we could, in
a future proposal, add new members. For example, we are considering a
std::class_traits<C>::class members::get<I>::specifiers member to reflect the
members specifiers.

The third and major point of extension we mention here is a core language
operator called reflectid. We offer a rough possible specification here and
show how it unifies and encloses std::class traits<C> and std::enum traits<kE> -
and also how it addresses previous discussions about both Access Control and
Namespace Reflection.

The result of the construct reflectid(X) is a type, in a similar fashion to
decltype(e). It can be used wherever a type may be used. The argument to
reflectid identifies an entity, and the type that results is the “reflection”
of that entity.

For an enumeration type E, reflectid(E) is equivalent to std::enum traits<E>.

In cases where C is a class type, and reflectid(C) appears in an unrelated
context to C, then reflectid(C) is equivalent to std::class traits<C>. That
is, it only reflects public members. If reflectid(C) appears in a context that
has protected access, it reflects public and protected members. If it appears
in a context that has private access, it reflects public, protected and private

members.

There could additionally be ways to “break in” to a class, but we think there
will be insufficient consensus on such a feature to get passed. In any event
it is clear that reflectid will at least support public reflection of classes
and enumerations, and under such use it will be implemented by mapping to
std::class_traits<C> and std::enum traits<kE>.

In cases where N is a namespace, reflectid(N) will generate a reflection of the
members of the namespace declared before the appearance of reflectid(N). This
shows us why we need a core language operator and not a std::reflect template.
First, namespace template parameters do not exist, and, even if they did, the
reflection of a namespace is dependant on the position in the translation unit,

so two occurrences of reflectid(N) will not result in the same type.

In cases where Tmpl is a template, reflectid(Tmpl) would provide a reflection
of the template. Again, we need a core language operator, because a template

and a class (for example), differ in template parameter kind.

Likewise for other entities.

Example Use Cases

We show a couple of basic things you can do with these traits here:

template<typename E> string EnumToString(E e); // generic enum-to-string
template<typename E> E StringToEnum(string s); // generic string-to-enum
template<typename E> std::set<E> AllEnums; // generic get set of all enums in
enumerator

template<class S> DumpStruct<S>(); // outputs members of any struct by

wW., W

iterating over members and printing member name, and then cout the member

value.

enum Color { red, blue, green };

color cl = red;

string sl = EnumToString(cl); // s == “red”

string s2 = “red”;

color c2 = StringToEnum(s2); // c2 == red

for (color c¢ : AllEnums<Color>)

AN AN

cout << EnumToString(c) << , “; // prints: red, blue green

struct Rec { string name; Color favorite color; Date birthday; }

Person person = { “tom”, blue, Date(12,8,1982) };

DumpStruct<Person> () ;

// prints:
// name: tom
// favorite color: blue

// birthday: 12/8/1982

In general, by enumerating the names (as strings), types and pointer-to-members
of the members of classes and enumerations - one can walk the subobject lattice
and implement a large number of use cases. This can be done at both run-time,
and, with standard C++14 constexpr programming, at compile-time.

FAQ
Is this implemented?
Yes. The cosmetic changes in this proposal have not been applied but the bulk

of the implementation is at
https://github.com/ChristianKaeser/clang-reflection. The implementation

involves a handful of intrinsics that inspect the AST on instantiation of the
traits, much the same as the existing type traits library works.

Does this have wording?

Yes. A detailed wording was given in a previous proposal, it has not been
updated for the cosmetic changes here. Our intention is to update the wording
based on the Specification section if SG7 passes std::class traits and
std::enum traits at Lenexa.

Why the size/index interface?

This was discussed in N4113 under “Size / Index Interface”. An alternative was
considered involving passing template template parameters, but it turned out to
be impractical and inconsistent with the standard library, that makes no use of
template template parameters as yet. Like std::tuple, std::get and similar
components, the proposed “compile-time lists” are rolled up with pack expansion
of std::index sequences.

https://github.com/ChristianKaeser/clang-reflection

What about access control?

This proposal includes reflection of public members, on which there is
consensus. We also reveal a possible roadmap for future proposals under
“Future Roadmap” that may include access-checked private member reflection.
This proposal is forward compatible with any of the options discussed
previously regarding access control.

What about use cases?

The previous revisions of this paper go through a number of use cases. There
is also a paper called “has member function” by Andrew Tomazos at:

https://googlegroups.com/a/isocpp.org/group/reflection/attach/78a90edd12996432

has member functionDemoForN4027.pdf?part=0.1

That shows a worked example of how to build, step-by-step, upon the proposed
traits to implement high-level reflection library features.

The general use cases for reflection are outlined in N3814.

Some use cases enabled by this proposal include converting enums to and from
strings, serializing/deserializing/dumping aggregate types, exposing public
interfaces of classes through RMI or to scripting languages/configs, supporting
memberwise operations, and many more.

https://googlegroups.com/a/isocpp.org/group/reflection/attach/78a90edd12996432/has_member_functionDemoForN4027.pdf?part=0.1
https://googlegroups.com/a/isocpp.org/group/reflection/attach/78a90edd12996432/has_member_functionDemoForN4027.pdf?part=0.1

