
Document No: WG21 N4396
Date: 2015-03-16
References: ISO/IEC PDTS 19568, SC22/5019
Reply To: Barry Hedquist <beh@peren.com>
 INCITS/PL22.16 IR

National Body Comments

ISO/IEC PDTS 19841

 C++ Extensions for Transactional Memory

This document contains the Result of Voting and National Body Comments for ISO/IEC PDTS 19841,
C++ Extensions for Transactional Memory.

Document numbers referenced herein SC22/WG21 documents unless otherwise stated.

Template for comments and secretariat observations Date:2015-03-12 Document: SC22/N 5019 Project: PDTS 19841 WG21/N4396

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 4

JP 1 ge We are concerned that there could be a
performance degradation even in an environment
lacking of transactional memory feature by
adopting this technical specification, e.g. making
some standard libraries like <math.h>
transactional safe.
It is the reason for our disapproval. If we can
reasonably confirm that there's no degradation,
we will change our position to approval.

Please make us sure there’s no degradation.

US 1 te Memory ordering requirements of transactions are
problematically strict. Even empty or purely local
transactions have observable synchronization
effects and can usually not be removed by an
optimizing compiler. This introduces a
performance penalty when transactional library
code is reused in a clearly thread-local context.

Consider weakening ordering requirements to allow
such optimizations.

CA 1 N/A N/A N/A ge Request to add a Feature Test Macro
__cpp_transactional_memory based on
http://isocpp.org/std/standing-documents/sd-6-
sg10-feature-test-recommendations

The value of the macro will be the year and month
of the release of the TS. It does not need any
experimental or TS tag.

CA 3 N/A 4.3
[conv.func]

Para 1 ge Make helper functions in 20.2 transaction-safe.
Here is an example where std::move is not
transaction-safe

template <class T>
 void safe_swap(T &a, T &b) transaction_safe
 {
 atomic_commit
 {
 using std::move;
 T temp = move(a); // Note that std::move is
not transaction-safe according to draft, but it
should be
 a = move(b);
 b = move(temp);

Add std::move and other utilities in 20.2 to be
transaction_safe.

http://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
http://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations

Template for comments and secretariat observations Date:2015-03-12 Document: SC22/N 5019 Project: PDTS 19841 WG21/N4396

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 4

 }
 }

template <class T>
 void apply(T &a, T &b, void f(T&,&T))
 {
 f(a,b); // Ok
 assert(f == safe_swap<int>); // result
unspecified according to 5.10, paragraph 2, right?
 }

int main()
{
 int x = 2, y = 3;
 apply(x, y, safe_swap<int>); // Ok even though
transaction_safe is lost
}

CA 2 N/A 5.2.2
[expr.call]

Para 1 te This addition states:
A call to a virtual function that is evaluated
 within a synchronized (6.9 [stmt.sync]) or atomic
block (6.10 [stmt.tx]) results in undefined behavior
if the virtual function is declared
transaction_safe_noinherit and the final overrider
is not declared transaction_safe.
It is Undefined Behavior if you call into a virtual
function declared as tx_safe_noinherit but it is not
tx_safe in the final overrider. This ensures that the
dynamic call is safe, no matter what the dynamic
object is since tx_safe_noinherit gives no such
 guarantee.

 Our concern is this is excessive for a
synchronized block because these can call

Please fix for synchronized block so that it is not
part of this requirement. Suggested wording:
A call to a virtual function that is evaluated within
a synchronized (6.9 [stmt.sync]) or an atomic block
(6.10 [stmt.tx]) results in undefined behavior if the
virtual function is declared
transaction_safe_noinherit and the final overrider is
not declared transaction_safe.

Template for comments and secretariat observations Date:2015-03-12 Document: SC22/N 5019 Project: PDTS 19841 WG21/N4396

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the IS 6 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 4

O 316

tx_unsafe functions.

FI 1 8 4 te It seems that the applicability of
transaction_safe_noinherit is likely going to be
wider in the future than just in virtual functions. If
that wider applicability appears, new keywords
need to be added. Generalizing the name
transaction_safe_noinherit would possibly avoid
that problem.

Rename transaction_safe_noinherit to
transaction_safe_dynamic. Transaction safety of
calls to such functions is ultimately a runtime
property, hence _dynamic seems like a suitable
suffix.

JP 2 8.4.4 1 te A function-local static variable initialization should
be transactional-unsafe. The initialization in an
atomic execution needs to be synchronized with
non-atomic executions.

Add "a function-local static variable initialization" in
the list of conditions for a transactional-unsafe
statement .

CA 4 n/a 8.4.4
[dcl.fct.def.t
x]

After Para
1, bullet 5

ge In the first sequence of dash bullets (--) indicating
transaction-unsafe expressions, the fifth one
states «an implicit call of a non-virtual function
that is not transaction_safe». I wonder why the
«implicit» call is being explicitly (sorry for the pun!
:)) specified, as it seems to me that an explicit
call to a non-virtual function would yield the same
consequences. Unless I'm missing out on
something, an implicit call could be something
like:

struct B
{
 int f(); // not transaction_safe, not virtual
 virtual ~B() = default;
};

struct D : B
{
 int g()
 {

This seems a possible confusion for other user,
please clarify.

Template for comments and secretariat observations Date:2015-03-12 Document: SC22/N 5019
WG21/N4396 Project: PDTS 19841

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 4

 return f() + // implicit call?
 this->f() + // explicit call?
 B::f(); // explicit call?
 }
};

Result of voting

Ballot Information

Ballot reference ISO/IEC PDTS 19841

Ballot type CD

Ballot title C++ Extensions for Transactional Memory

Opening date 2014-12-10

Closing date 2015-03-10

Note Please submit your vote by the due date
indicated.

Member responses:

Votes cast (18) Austria (ASI)
Canada (SCC)
China (SAC)
Denmark (DS)
Finland (SFS)
Germany (DIN)
Italy (UNI)
Japan (JISC)
Kazakhstan (KAZMEMST)
Korea, Republic of (KATS)
Netherlands (NEN)
Portugal (IPQ)
Russian Federation (GOST R)
Spain (AENOR)
Switzerland (SNV)
Ukraine (DTR)
United Kingdom (BSI)
United States (ANSI)

Comments submitted (0)

Votes not cast (0)

Questions:

Q.1 "Do you agree with approval of the CD text?"

Q.2 "If you approve the CD text with comments, would you please indicate which type ?
(General, Technical or Editorial)"

Q.3 "If you disappove the draft, would you please indicate if you accept to change your
vote to Approval if the reasons and appropriate changes will be accepted?"

Votes by members Q.1 Q.2 Q.3

Austria (ASI) Abstention Ignore Ignore

Canada (SCC) Approval with
comments

All Ignore

China (SAC) Approval as
presented

Ignore Ignore

Denmark (DS) Abstention Ignore Ignore

Finland (SFS) Approval with
comments

Technical Ignore

Germany (DIN) Approval as
presented

Ignore Ignore

Italy (UNI) Approval as
presented

Ignore Ignore

Japan (JISC) Disapproval of
the draft

Ignore Yes

Kazakhstan
(KAZMEMST)

Abstention Ignore Ignore

Korea, Republic of
(KATS)

Approval as
presented

General Ignore

Netherlands (NEN) Approval as
presented

Ignore Ignore

Portugal (IPQ) Abstention Ignore Ignore

Russian Federation
(GOST R)

Approval as
presented

Ignore Ignore

Spain (AENOR) Approval as
presented

Ignore Ignore

Switzerland (SNV) Approval as
presented

Ignore Ignore

Ukraine (DTR) Approval as
presented

Ignore Ignore

United Kingdom (BSI) Approval as
presented

Ignore Ignore

United States (ANSI) Approval with
comments

Technical Ignore

Answers to Q.1: "Do you agree with approval of the CD text?"

10 x Approval as
presented

China (SAC)
Germany (DIN)
Italy (UNI)
Korea, Republic of (KATS)
Netherlands (NEN)
Russian Federation (GOST R)
Spain (AENOR)
Switzerland (SNV)
Ukraine (DTR)
United Kingdom (BSI)

3 x Approval with
comments

Canada (SCC)
Finland (SFS)
United States (ANSI)

1 x Disapproval of the
draft

Japan (JISC)

4 x Abstention Austria (ASI)
Denmark (DS)
Kazakhstan (KAZMEMST)
Portugal (IPQ)

Answers to Q.2: "If you approve the CD text with comments, would you please indicate
which type ? (General, Technical or Editorial)"

1 x General Korea, Republic of (KATS)

2 x Technical Finland (SFS)
United States (ANSI)

0 x Editorial

1 x All Canada (SCC)

14 x Ignore Austria (ASI)
China (SAC)
Denmark (DS)
Germany (DIN)
Italy (UNI)
Japan (JISC)
Kazakhstan (KAZMEMST)
Netherlands (NEN)
Portugal (IPQ)
Russian Federation (GOST R)
Spain (AENOR)
Switzerland (SNV)
Ukraine (DTR)
United Kingdom (BSI)

Answers to Q.3: "If you disappove the draft, would you please indicate if you accept to
change your vote to Approval if the reasons and appropriate changes will be accepted?"

1 x Yes Japan (JISC)

0 x No

17 x Ignore Austria (ASI)
Canada (SCC)
China (SAC)
Denmark (DS)
Finland (SFS)
Germany (DIN)
Italy (UNI)
Kazakhstan (KAZMEMST)
Korea, Republic of (KATS)
Netherlands (NEN)
Portugal (IPQ)
Russian Federation (GOST R)
Spain (AENOR)
Switzerland (SNV)
Ukraine (DTR)
United Kingdom (BSI)

United States (ANSI)

Comments from Voters

Member: Comment: Date:

Canada (SCC) Comment File 2015-02-11
19:38:20

CommentFiles/ISO_IEC PDTS 19841_SCC.doc

Finland (SFS) Comment File 2015-03-11
08:11:01

CommentFiles/ISO_IEC PDTS 19841_SFS.doc

Japan (JISC) Comment File 2015-03-10
03:05:27

CommentFiles/ISO_IEC PDTS 19841_JISC.doc

United States (ANSI) Comment File 2015-02-02
18:00:31

CommentFiles/ISO_IEC PDTS 19841_ANSI.doc

Comments from Commenters

Member: Comment: Date:

CommentFiles/ISO_IEC PDTS 19841_SCC.doc
CommentFiles/ISO_IEC PDTS 19841_SFS.doc
CommentFiles/ISO_IEC PDTS 19841_JISC.doc
CommentFiles/ISO_IEC PDTS 19841_ANSI.doc

	N 5019 Summary of Voting ONLY ISO IEC PDTS 19841.pdf
	index
	N 5019 - Summary of Voting ISO-IEC PDTS 19841

