
N4393 | Noop Constructors and Destructors

Pablo Halpern phalpern@halpernwightsoftware.com

2015-04-10

1 Abstract

This paper proposes a language feature for no-op constructor and destructor invocations, i.e., the ability to
invoke a constructor or destructor without actually causing the state of memory to change. This feature
allows a collection of correctly-configured bits to become an object, and an object to become a collection
of bits without actually executing any code. Use cases and potential syntax for this feature are presented.
This paper does not present precise wording, for which I would seek collaboration from someone in the Core
Working Group if and when the Evolution Working Group approves the idea.

2 Motivation

The use case that inspired this feature was “destructive move”, as proposed in N4158. That paper proposed a
function template, unitialized_destructive_move, that destroyed one object and created another object,
sometimes as a single, indivisible, operation, without invoking the objects’ destructor or constructor. The
proposal was worded in such a way as to give this template a special status in the core language, but
it was considered inelegant that an object’s lifetime would start at the completion of its constructor and
one other way. This led me to search for a generalized way of getting the desired effect without making
destructive_move special in the core language. In the processes, I considered other situations in my career
where I had wanted the ability to skip a constructor or destructor invocation. For example, had this feature
been available in C++0x, the piecewise constructor for pair might have been unnecessary.

3 Description of Proposed feature

The proposal is to use a special token sequence as a sort of “magic cookie” to invoke a constructor or destructor
such that the invocation has no effect on the state of the program, but retains the quality of beginning or
ending the lifetime of an object. To avoid beginning a premature bike-shed discussion on the syntax of this
magic cookie, let’s just call it __COOKIE__. Later in this paper, I list a number of combinations of tokens
that could unambiguously work for __COOKIE__. The important thing is that, whatever __COOKIE__ is, it is
not an expression.

If __COOKIE__ is passed as the sole argument to a constructor, then that constructor invocation has no effect
on the state of the program. However, after the invocation, the lifetime of the object, and its base class
and member subobjects, is deemed to have begun, just as if a real constructor had been invoked. Similarly,
passing __COOKIE__ to a destructor (yes, a destructor call with arguments!) would have no effect on the
state of program, but the lifetime of the object, and its base class and member subobjects, is deemed to have
ended.

1

mailto:phalpern@halpernwightsoftware.com
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n4158.pdf


A class cannot declare __COOKIE__ constructors or destructors – they are automatically available in every
type. An invocation of a __COOKIE__ constructor or destructor does not require overload resolution, since no
function is actually being called.

An invocation of a __COOKIE__ constructor on an object of class type with virtual functions, virtual base
classes, or subobjects with virtual functions or virtual base classes is ill formed. The reason for this restriction
is described below in Future directions, Establishing compiler-managed invariants, along with a possible way
to lift the restriction.

An invocation of a __COOKIE__ constructor or destructor is valid before or after the invocation of a real
constructor or destructor, respectively, and is idempotent with other, __COOKIE__ invocations on the same
object. ([basic.life] paragraph 4 already allows us to call constructors on live objects.) It is the responsibility
of the caller to ensure that the bytes that make up an object constructed using the __COOKIE__ constructor
are valid; setting the bytes to a valid pattern can be done either before or after the noop constructor is
invoked.

4 Use cases

4.1 Destructive Move

Destructive move is the motivating use case for the noop constructor and destructor feature. Assume an
implementation of std::list that has a heap-allocated sentinel node. The move constructor is not noexcept
because it must allocate a sentinel node for the moved-from list in order to avoid the “emptier than empty”
condition. However the destructive move operation can be noexcept because there is no moved-from object
left behind. The trick is to move the list without calling the move constructor. The implementation of
uninitialized_destructive_move for such a list might look like this:

template <class T, class A>
void uninitialized_destructive_move(std::list<T,A> *from,

std::list<T,A> *to) noexcept
{

// Preconditions: `from` points to a valid list object;
// `to` points to uninitialized memory.

typedef std::list<T,A> list_t;

// Bless the new list
new (to) list_t(__COOKIE__);

// Move data members over. Note that no new sentinel node is allocated.
to->m_begin = from->m_begin;
to->m_end = from->m_end;
new (&to->m_allocator) A(std::move(from->m_allocator));

// Unbless the old list
from->m_begin = from->m_end = nullptr_t; // unnecessary, but safe
from->~list_t(__COOKIE__);

// Postconditions: `from` points to uninitialized memory;
// `to` points to a valid list object

}

N4393 2 Pablo Halpern



4.2 Trivial Destructive Move

If the allocator is trivially movable and trivially destructible, the destructive move operation above can be
simplified to an invocation of memcpy:

template <class T, class A>
std::enable_if<is_trivially_destructive_movable_v<A>, void>
uninitialized_destructive_move(std::list<T,A> *from,

std::list<T,A> *to) noexcept
{

typedef std::list<T,A> list_t;
std::memcpy(to, from, sizeof(list_t));
new (to) list_t(__COOKIE__);
from->~list_t(__COOKIE__);

}

This idiom would work for the vast majority of value classes, even those that (like list) are not trivially
movable and destructible. The idiom is generalized in N4158 for all “trivially destructive movable” types.

4.3 Swizzle to disk

A noop constructor is useful any time the bits that compose an object are arranged outside of the object’s
constructor. A carefully-designed data structure (containing no absolute pointers) can be written straight to
disk and read back again:

// Type that uses relative pointers and is designed for storage on disk
class record { ... };

record *my_record = ...;
...
file.write(my_record, sizeof(record));
...

record *my_record2 = static_cast<record*>(operator new(sizeof(record)));
file.read(my_record2, sizeof(record));
new (my_record2) record(__COOKIE__);

Note that record cannot have virtual functions or virtual base classes. However, see Future directions, below,
for a possible enhancement that would allow swizzling and memcpy of a broader range of types.

4.4 Choosing a constructor at run time

Sometimes it is necessary to choose a constructor at runtime, passing arguments of different types or different
number of arguments depending on some condition:

struct Y {
Y(float) noexcept;
Y(int, float) noexcept;
...

};

N4393 3 Pablo Halpern



struct X {
Y m_y;
...
X(float a, int b);

};

X::X(float a, int b) : m_y(__COOKIE__) {
// Choose one of two constructors for m_y
if (b > 0)

new (&m_y) Y(b, a); // Invoke Y(int, float)
else

new (&m_y) Y(a); // Invoke Y(float)
...

}

5 Dangers

It should be obvious to anybody reading this paper that both the no-op constructor and no-op destructor are
extremely dangerous operations. One could easily write code that uses an object that has not been initialized
or which has already been destroyed. If the no-op destructor is used on a variable with static or automatic
lifetime, the real destructor will still be called.

The dangers of these constructs are not, however, any worse than the current dangers of calling a destructor
manually (x.~T()), allocating an object using malloc without calling the constructor, or (deliberately)
overwriting an object using memcpy. Just like these other programming techniques, proper application should
typically be left to expert programmers writing reusable libraries (including standard library components
such as uninitialized_destructive_move).

A related concern is that more care must be taken to ensure exception safety. Beginning an object’s lifetime
artificially by means of a no-op constructor does not change whether or not its destructor is invoked during
exception unwinding. If the destructor runs, we risk attempting to destroy an incompletely-constructed
object. If the destructor does not run, we risk leaking resources from the incompletely-constructed object.
This problem not unlike that of a constructor, which must clean up a partially-constructed object if an
exception is thrown. Indeed, the function that calls a no-op constructor is a pseudo-constructor and needs to
ensure either that class invariants hold or that the object is unwound (possibly calling the no-op destructor)
in the event of an exception or early return.

6 Alternatives for __COOKIE__

There are an infinite number of existing tokens or token sequences that could be used for __COOKIE__ in the
language definition. I will list a few here, and leave it up to your imagination to come up with better ones.
In looking at the aesthetics of each example, think of it in the context of declaring a variable x. For example,
if __COOKIE__ were =0, then a variable declaration with a no-op constructor would look like X x(=0).

Some possibilities are:

=0
=delete
=void
%
/
^

N4393 4 Pablo Halpern



;
.
?
<0>
<void>
~ (requires look-ahead)
! (requires look-ahead)
delete (requires look-ahead)
=noop (context-sensitive keyword)

Humorous suggestion: A number of emoticons would also work. :-)

7 Alternatives considered

7.1 Special Case for uninitialized_destructive_move

N4158 had weasel words that allowed uninitialized_destructive_move to start and end the lifetimes of
its arguments without articulating a language mechanism.

Pros:

• Library-only change for all known compilers. However, tools that track object lifetime would need to
hook all specializations of uninitialized_destructive_move.

Cons:

• Special-case weasel words are not elegant.
• Does not support other use cases besides destructive move.

7.2 Function templates bless/unbless

Instead of adding a magic cookie, we could add two magic function templates:

namespace std {
template <class T> T* bless(void* obj) noexcept;
template <class T> void unbless(T* obj) noexcept;

}

The bless function would begin the lifetime of an object without invoking its constructor. The unbless
function would end the lifetime of an object without invoking its destructor.

Pros:

• Trivial no-op functions with no compiler changes on most implementations. However, tools that track
object lifetime would need to hook all specializations of bless and unbless.

• General-purpose functions can be used for use cases other than destructive move, such as swizzling
from disk.

Cons:

N4393 5 Pablo Halpern



• Changes the rule that an object’s life begins at the end of its constructor invocation to a less elegant
rule that an object’s life begins at the end of its constructor invocation or on return from std::bless. A
similar change would be needed for the destructor/std::unbless.

• Does not allow suppressing normal constructor invocation for automatic, static, and member variables
and base class subobjects. Hence does not support use cases like the “Choosing a constructor at run
time” use case, above.

7.3 Special version of operator new

It was suggested that the expression, new(addr, __COOKIE__) T, should have the effect of beginning the
lifetime of the T object at addr. An alternative syntax would be new(addr) __COOKIE__ T.

Pros:

• Probably requires slightly fewer changes to the standard than the proposal presented in this paper.
• Supports the destructive move and swizzling use cases.
• The second version of the syntax could be extended to work with all overloads of operator new. For

example T* p = new __COOKIE__ T; would allocate space appropriate for a T object but not construct
it, exactly like T* p = new T(__COOKIE__); does in the current proposal.

Cons

• It is not clear now no-op destruction would be described. The operator delete(void*,
__COOKIE__) corresponding to operator new(size_t, __COOKIE__) would normally be used only
for exception handling (for an exception that could never occur).

• It is a bit strange to put this behavior on operator new, which is concerned primarily with memory
allocation, not construction. Of course, the constructor is normally called the invocation of operator
new, but construction details are normally in the constructor, not in operator new.

• Does not allow suppressing normal constructor invocation for automatic, static, and member variables
and base class subobjects. Hence does not support use cases like the “Choosing a constructor at run
time” use case, above.

8 Impact on the standard

This document does not contain formal wording, pending approval for the concept by the EWG. Formal
wording will require collaboration with a member of the CWG. Nevertheless, we can expect wording changes
will be necessary in the section on object lifetime [basic.life] and may be necessary in the sections for postfix
expressions [expr.post], and unary expressions [expr.unary]. Although noop constructors and destructors are
not user-defined, there is possibly some impact on the section for special member functions [special]. It is
unlikely that there would be any impact on the wording around access to volatile objects [intro.execution],
but only a core review would establish this for sure.

9 Future directions

9.1 Establishing compiler-managed invariants

During object construction, a program establishes two types of invariants: those that are managed by the
author of the class, and those that are managed by the compiler. The latter category comprises the setting of
vtbl pointers and virtual-base pointers. For a class that has no virtual functions and no virtual base classes,

N4393 6 Pablo Halpern



the class author can use a no-op constructor to construct a valid object by setting the member variables of the
class (including base-class member variables) to valid values. This is not (in general) possible for classes that
have virtual functions or virtual base classes because the job of establishing some of the invariants is given to
the compiler. A possible enhancement, therefore, would be to have a the __COOKIE__ constructor establish
the compiler-managed invariants of the class (and those of its data member and base-class subobjects) while
leaving the user-managed aspects of the class alone. If this enhancement were adopted, it would be desirable
to use a different __COOKIE__ so that the user who is expecting a true no-op doesn’t get surprised.

9.2 Suppressing automatic destruction

Although the __COOKIE__ constructor suppresses automatic constructor invocation for objects of any storage
duration, this proposal does not provide a mechanism for suppressing the implicit destructor invocations
for automatic, static, and member variables and base class subobjects. Such a feature might be desirable,
especially for member and base class subobjects, which might need to be destroyed within the body of the class
destructor, e.g., to obtain an unorthodox order of destruction. Local variables, too, might occasionally need
to be destroyed in other than reverse order of construction, or it might be desirable to suppress destruction
during exception unwinding in certain cases.

The ability to suppress automatic destruction could be seen as a natural extension of this proposal, but it
would add significantly more core language changes and it is not central to the goal of providing a way to
begin or end the lifetime of an object without invoking its constructor or destructor.

10 Implementation Concerns

We have no experience implementing this proposal. We do have experience faking it for some use cases
(including uninitialized_destructive_move).

Nevertheless, it should be easy to implement in a compiler – just recognize the magic cookie and replace
constructor or destructor invocation by a no-op. Tools that track object lifetime would treat the special calls
like normal constructor or destructor calls with implicit construction or destruction of subobjects.

11 Acknowledgments

Thanks to Alisdair Merideth, Mike Henry Verschell, John Lakos, Mike Giroux, and Hyman Rosen for reviewing
drafts of this paper and helping me clarify some concerns.

12 References

N4158 Destructive Move, Pablo Halpern, 2014-10-12

N4393 7 Pablo Halpern

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n4158.pdf

	Abstract
	Motivation
	Description of Proposed feature
	Use cases
	Destructive Move
	Trivial Destructive Move
	Swizzle to disk
	Choosing a constructor at run time

	Dangers
	Alternatives for __COOKIE__
	Alternatives considered
	Special Case for uninitialized_destructive_move
	Function templates bless/unbless
	Special version of operator new

	Impact on the standard
	Future directions
	Establishing compiler-managed invariants
	Suppressing automatic destruction

	Implementation Concerns
	Acknowledgments
	References

