
Doc No: N4378
Date: 2015-02-08
Authors: John Lakos (jlakos@bloomberg.net)

Nathan Myers (nmyers12@bloomberg.net)
Alexei Zakharov (alexeiz@gmail.com)
Alexander Beels (abeels@bloomberg.net)

Language Support for Contract Assertions (Revision 10)

Abstract

With enough care we can build libraries that are essentially defect-free, but even the
best library may fail catastrophically when misused. Contract validation, the practice
of checking functions' preconditions when and where they are called, helps discover
misuse at compile time or in early testing, speeding development and making
software more robust.

We propose here complete Working Paper text defining simple facilities to help library
developers, application developers, and language implementers cooperate toward our
common goal of delivering efficient programs without defects. Library developers get a
common framework to express the contracts offered by their library functions,
without compromising performance or interface simplicity. Application developers get
the option to specify, without reference to details of the libraries they use, how much
run time to spend on validation, and precisely what to do when a violation is
detected. Implementations get permission and encouragement to infer programmers'
intentions directly from contract assertions, and to use these inferences in all phases
of translation.

We do not pretend this is a comprehensive solution to “the contract validation
problem”, however that may be defined. In particular, this proposal introduces no
new syntax. Very deliberately, nothing here would interfere with a more ambitious
future solution, but it defines necessary parts of any such solution. We expect to see
(and make) proposals that extend the usefulness of contract assertions as defined
here.

This design derives from over a decade of production software development at
Bloomberg LP. A variant implementation is freely available today, along with copious
usage examples baked into production-grade library code, in Bloomberg’s open-
source distribution of the BDE library at https://github.com/bloomberg/bde.

N4378: Language Support for Contract Assertions Page 1 of 16

mailto:nmyers12@bloomberg.net
mailto:jlakos@bloomberg.net
https://github.com/bloomberg/bde
mailto:abeels@bloomberg.net

Contents

Language Support for Contract Assertions (Revision 10)..1
1 Document History...3
2 Introduction..3
3 Background..3
4 Motivation...4

4.1 The Value of Checking...4
4.2 Overhead and Response to Failure..4
4.3 Compiler Hinting...5
4.4 Design Goals...5

5 Scope..6
6 Existing Practice...6
7 Impact on the Standard..6
8 Summary of Proposal for Standardization...6

8.1 Contract Assertions..7
8.2 Assertion Levels..7
8.3 Violation Handling..7

9 Examples..7
9.1 Check a contract precondition only at max and on assertion levels...................7
9.2 Check a contract precondition during computation...8
9.3 Print a message and quit when a contract violation is detected.........................8

10 Discussion..9
11 Formal Wording...10

11.1 Definitions..10
11.2 Contract support [contract]...10

11.2.1 In general [contract.general]..10

11.2.2 Header <experimental/contract_assert> synopsis...................................10

11.2.3 Contract assertion levels [contract.assertion.levels].................................11

11.2.4 Contract assertions [contract.assertions]..12

11.2.5 Contract violation information [contract.violation.info]............................13

11.2.6 Assertion-level flag [contract.flag]..14

11.2.7 Contract violation handler functions [contract.handler]..........................14

12 References...16

N4378: Language Support for Contract Assertions Page 2 of 16

1 Document History

This proposal is based on N4135, based on N4075, based on N3997, based on
N3963.

The changes since N4135 are simplification and clarification in response to
discussion and straw votes in Urbana. This still provides complete WP text defining
run-time and compile-time effects, but drops secondary features and delimits the
goals it attempts.

2 Introduction

Any library may fail catastrophically if misused. We make our libraries as easy to use
and as hard to misuse as is practical, and we catch misuse at compile time wherever
possible. Where we cannot, we are left to depend on runtime contract validation:
actually checking checkable preconditions on function entry. Contractual methods,
including runtime validation, have already delivered impressive gains in quality, cost,
and productivity, but we have found that with small additions they can do much
more.

This proposal offers library developers a concise notation to express contract
preconditions that can be validated at runtime, and offers application developers
simple means to control the runtime consequences of validation, thereby extending
its benefits well beyond previous bounds, and resolving fundamental conflicts
between library performance, interface simplicity, and safety.

We propose further to empower implementations to use inferences from the new
annotations in all phases of translation, for better compile-time error detection and
smaller and faster translated code.

This proposal does not pretend to specify a complete solution to the contract
validation problem. In particular, it omits any features that would need new syntax.
It does identify a minimally complete subset of features immediately useful for the
purposes it does address, and that can remain upward-compatible with any further
contributions proposed. Future proposals can build upon facilities defined here.

3 Background

The std::vector member push_back may be called on any vector object, with no risk
to program state. It offers a wide contract; no combination of arguments and well-
defined prior state can evoke undefined behavior. Another member, pop_back, has the
precondition that the vector instance not be empty. It offers a narrow contract; its
effects are undefined unless its precondition is satisfied.

N4378: Language Support for Contract Assertions Page 3 of 16

Any program that may violate such a precondition harbors a defect. Such violations
can sometimes be caught by a compiler that understands the preconditions.
Violations that remain can often be caught by runtime checking. Such checking
always costs extra code space and run time; the costs are often small, but can be
very large. Catching a violation might be worth any expense; yet, where there is no
defect, every cycle and byte spent checking is wasted. This conflict is fundamental,
and cannot be resolved within a library component like std::vector.

It is precisely the undefined effect of a contract violation that gives us latitude to
choose whether to avoid the runtime expense of checks, or to add code to detect a
violation at compile time or at runtime, and act on it. Tools and methods to specify
requirements and to instrument functions in this way have turned out to be powerful
aids to attaining core software engineering goals.

4 Motivation

4.1 The Value of Checking

Library developers prefer to check for bad usage where they can—catching users'
mistakes early prevents bugs and spurious bug reports—but the consequences on
performance and interface complexity often forbid it. Whereas library development
costs can often be amortized over many downstream uses, applications typically
support only their own development, so application-level testing is notoriously
limited. Libraries instrumented to validate usage contracts amplify the effectiveness
of whatever testing is done, anywhere a defect leads to a detectably bad library call.

4.2 Overhead and Response to Failure

Consider an interactive editor, close to release: The developer needs customers to use
the program for real work, to flush out bugs. If runtime validation is enabled in the
libraries the program uses and, upon detecting a violation, the program just aborts,
then customers, who would risk losing hours of valuable work, sensibly refuse to use
it, and the developer learns nothing. Disable checking, and the program crashes
anyway, a little later—or, worse, silently corrupts the customer’s documents. Let the
program instead log the violation, save the customer's data, and restart, and the
libraries' runtime validation has helped to improve the product even during final
preparations for release.

In different circumstances the same program, when it detects a violation, might
better freeze and wait for a debugger to be attached, or abort immediately so a script
can step to the next test. Similarly, during early development, it would best perform
every check possible; in beta testing, do only sanity checks; and when performance
tuning, avoid all checking.

N4378: Language Support for Contract Assertions Page 4 of 16

These are not choices that library writers can reasonably be expected to provide for
as they annotate their code with preconditions to help prevent misuse.

4.3 Compiler Hinting

Assertions' usefulness is not limited to testing. When compilers may infer
programmers' true intent, and the bounds on a program's defined runtime state
space, directly from contract-validation expressions, the benefits may be extended
both backward to more thorough compile-time error checking, and forward to smaller
and faster released code.

In particular, a compiler that determines that a particular call would violate an
expressed precondition could report it as an error, but only if permitted by the
standard. Furthermore, if our compiler identifies a code path that would lead to
such a violation, it may elide code for that path, and perhaps issue a warning.
Finally, a compiler might be able to better optimize code following an expressed
precondition under the assumption that the condition was met. Dead-code elision
can propagate back up the call chain; any path certain to reach the elided code can
itself be elided; likewise, for any that would run only in case of a violation. Eliding
dead code reduces instruction-cache pressure, speeding execution of the live code
that remains.

We cannot expect a compiler to simultaneously optimize code under the assumption
that all preconditions are met, and also emit code to check the preconditions. Nor
can we expect it to choose to do one or the other on its own. These are, necessarily,
conflicting goals that we must decide according to our immediate needs.

As noted, this proposal does not pretend to be a comprehensive solution for all static
error checking and optimization goals. Instead, it offers the closest approach to such
a solution that is possible without introducing new syntax and new object-file
annotations, and without interfering with later additions, as a necessary first step
toward a comprehensive solution.

4.4 Design Goals

In short: Library authors need to easily code contract-validation assertions, concisely
expressing the cost to check them vs. the useful work a function does.

Program authors (i.e., of main) need to be able to choose, when building, how much
runtime contract-validation overhead to accept, and to choose the precise action to
take when a violation occurs.

Implementations need the latitude to use the implications of contract-validation
assertions to identify errors at translation time, and to guide optimization when
runtime validation is not needed.

N4378: Language Support for Contract Assertions Page 5 of 16

It is deliberately not a goal of this design to define features that would require new
syntax. We have carefully avoided interfering with features that may be added later.

5 Scope

This facility is intended for ubiquitous use across all library and application software.

6 Existing Practice

Contractual specifications with runtime enforcement are used in virtually all
computer languages. C++ developers will be familiar with <cassert> and its
limitations.

For more than a decade, Bloomberg’s library infrastructure has successfully
employed the strategy advocated here, across a wide range of applications and
libraries. Copious usage examples are available for public scrutiny [1].

7 Impact on the Standard

For a minimal conforming implementation, this proposal requires no new core
language features, and it introduces no new syntax. Adopting this proposal has no
direct effect on the rest of the standard, although once it is accepted, library
implementers may be asked by customers to instrument their version of the standard
library. Similarly, compiler implementers would be asked to use contract assertions
to help improve static error detection and object-code generation.

We do not propose to change or integrate with logic_error or <cassert>. Users may
choose to install a contract violation handler that throws logic_error where they
deem appropriate, or to replace regular assertions with contract assertions.

8 Summary of Proposal for Standardization

We propose:

 three contract assertion forms for use in library and application code to express
requirements, and to detect and report violations

 compile-time configurable assertion levels to determine which contract
assertions to check at runtime and which to take as given

 a common, configurable contract-violation handler to give application developers
precise control over what happens when a violation is detected anywhere in the
program

N4378: Language Support for Contract Assertions Page 6 of 16

8.1 Contract Assertions

We introduce three source code forms called contract assertions. Each expresses a
contract requirement, analogously to the traditional assert macro. Library
programmers will write disproportionately costly checks using the “max” contract
assertion, checks that do not violate performance requirements using the “on”
assertion, and very inexpensive or critical checks using the “min” assertion.

Thus, besides catching misuse, contract assertions implicitly record the
programmer's assessment of their runtime cost and importance relative to the useful
work the function performs. Furthermore, the contract assertions provide to the
compiler extra information that it may use to detect and report usage errors, and to
produce faster, more compact object code.

8.2 Assertion Levels

Depending on circumstances, you want each assertion to be either verified at runtime
or assumed as given. When compiling a translation unit, you can specify that, of
assertions encountered during translation, none are to be checked at runtime, or
only the “min” assertions, or only the “min” and “on” assertions, or all assertions.
For those assertions not to be checked at runtime, the compiler may assume they are
true and optimize accordingly.

8.3 Violation Handling

Application developers need precise control over what happens when a library detects
a contract violation. In this proposal, the response is to call a contract violation
handler, a function the program author (i.e., of main) may provide, and which may do
anything except return to its caller. Note that details of the argument passed to the
handler are designed to be easily enhanced to integrate with other proposals
accepted.

9 Examples

9.1 Check a contract precondition only at assertion levels “max” and “on”

A strlen-like function, c_string_length, has a precondition that its argument string
must not be null. The form contract_assert checks the precondition at “max” and
“on”, but not “min” or “off” assertion levels:
#include <contract_assert>
#include <cstddef>

namespace lib {
std::size_t c_string_length(char const* string) // O(n)
{
 contract_assert(string != nullptr); // O(1)

N4378: Language Support for Contract Assertions Page 7 of 16

 ...

9.2 Check a contract precondition during computation

The binary_search function below is specified to run in O(log n) time, given a sorted
table to search in. To validate its requirement, as written, would add O(n) time,
violating its performance specification. Partial, incremental checks within the loop
are almost as effective, but take, cumulatively, only O(log n) time.

There are several points to notice here. First, using contract_assert_max for the
literal requirement avoids incurring its incommensurate runtime cost in normal
operation. Second, actually expressing the literal requirement, even though we do
not usually expect to execute it, gives the compiler a much simpler expression of
conditions that it may assume while optimizing than it could extract from the other
assertions or the code. Finally, the incremental checks used here could not
practically be placed anywhere other than deeply embedded in the body of the
function:
#include <contract_assert>
#include <algorithm>
#include <cstddef>

bool binary_search(int const* table, std::size_t size, int target) // O(log n)
{
 contract_assert(table != nullptr) // O(1)
 contract_assert_max(std::is_sorted(table, table + size)); // O(n)
 while (size != 0) {
 std::size_t step = size / 2;
 int candidate = table[step];
 contract_assert(table[0] <= candidate); //
 contract_assert(candidate <= table[size – 1)); // O(log n)
 if (candidate < target) {
 table += step + 1;
 size -= step + 1;
 } else if (target < candidate) {
 size = step;
 } else
 return true;
 }
 return false;
}

9.3 Print a message and quit when a contract violation is detected

Here, the binary_search function defined above is made to assert a contract
violation. When the program calls the function in violation of its requirement, it
emits a diagnostic message and terminates:
#include <contract_assert>
#include <iostream>

int main()

N4378: Language Support for Contract Assertions Page 8 of 16

{
 std::set_contract_violation_handler(
 [](std::contract_violation_info const& info) {
 std::cerr << "Detected a contract violation at "
 << info.filename << ":" << info.line_number << ".\n";
 std::abort();
 });

 binary_search(nullptr, 10, 0); // boom
}

10 Discussion

For any organization that develops most of its code in-house, many of the benefits
promised in this proposal may be had by simply copying the design; a minimal
implementation is nearly trivial. If independent library authors were to do the same,
though, their users would face a forest of handler mechanisms, each slightly different
from the other. With a single, common mechanism, instrumenting a library for
contract validation adds value without adding to application developers' burdens.

Contract assertions can do much more than just aid testing; they express,
unambiguously, the intent of the programmer. An implementation permitted by the
standard to treat the contract assertions as definitive can use inferences from them
to improve semantic analysis, error detection, and code generation at all assertion
levels, most particularly those in which check-expressions do not end up expressed in
object code.

Notably, declarative mechanisms could, without compromise, be added as pure
extensions to what is proposed here, re-using most of its machinery. This simple
proposal could be approved, implemented and in production use while details of more
ambitious designs are still being worked out, and would remain useful thereafter,
both directly and as a basis for future work. While syntax might be added to support
annotations outside function bodies, consider the incremental checking seen in
example 9.2 above; it illustrates an important use case that any purely declarative
approach alone would not support.

Support for static analysis tools that would be enabled by expressed preconditions
need not depend on finding assertions in header files. A dedicated static checking
tool might be shown all the sources to a program. Or, a compiler may annotate object
files and library archives with the contract assertions it encounters during
translation. When the language gets module support, modules might be a better
place to keep such details. Header files are not the only possible source of
information for a static-checking tool, and our reasonable desire to keep header-file
declarations uncluttered need not limit the power of such tools.

N4378: Language Support for Contract Assertions Page 9 of 16

Further discussion may be found in reference [2] N4379, “FAQ about Contract
Assertions”.

11 Formal Wording

11.1 Definitions

Add three new definitions to clause 17.3 [definitions]:

17.3.X [defns.contract]

contract

A contract is a behavioral specification, including parameters, requirements, prior
state, and observable behavior, for a function, macro, or template.

17.3.Y [defns.contract.narrow]

narrow contract

A narrow contract is a contract that specifies behavior for, and only for, a precisely
and completely identified proper subset of all possible combinations of arguments
and prior state that are consistent with the language definition. [Note: “Consistent
with...” excludes from the set otherwise invalid programs, such as those passing
misaligned pointers or already-destroyed objects, “null references” (but not null
pointers), and all cases in which program's behavior is already undefined. — end note
] Outside said subset, the behavior is entirely unconstrained, and possibly, but not
necessarily, undefined.

17.3.Z [defns.contract.wide]

wide contract

A wide contract is a contract that specifies well-defined behavior for all possible
combinations of arguments and prior program states permitted by the language.

11.2 Contract support [contract]

11.2.1 In general [contract.general]

The header <experimental/contract_assert> declares functions and types to
manage contract violation handlers.

The following subclauses describe the contract-assertion forms, assertion-level flags,
contract violation handlers, and the names defined in
<experimental/contract_assert>.

11.2.2 Header <experimental/contract_assert> synopsis
 namespace std {

N4378: Language Support for Contract Assertions Page 10 of 16

inline namespace experimental {
inline namespace fundamentals_v2 {

// [contract.assertions] types
enum class contract_assertion_level { min, on, max };

// [contract.violation.info] struct contract_violation_info
struct contract_violation_info;

// [contract.handler.types] handler types
using contract_violation_handler = void (*)(contract_violation_info const& info);

// [contract.handler.manipulation] handler manipulation
contract_violation_handler
set_contract_violation_handler(contract_violation_handler handler) noexcept;

contract_violation_handler
get_contract_violation_handler() noexcept;

// [contract.handler.invocation] handler invocation
[[noreturn]] void
handle_contract_violation(contract_violation_info const& info);

}}} // namespaces

11.2.3 Contract assertion levels [contract.assertion.levels]

A translation unit may be translated at any of the four assertion levels described in
Table 1. Implementations shall provide a means, as part of initiating translation on
each translation unit and outside of the program text, that any of the assertion levels
listed in Table 1 may be selected.

Table 1

Assertion
level

Description

off No contract preconditions are checked

min Only contract_assert_min assertions are checked

on Only contract_assert_min and contract_assert_on assertions
are checked

max All contract assertions are checked

Each successive assertion level listed in Table 1 is said to be stronger than the
preceding level or levels. The final three are called validating assertion levels.

If no assertion level is specifically selected at translation initiation, then an
implementation-specified choice of level is used. [Note: Implementations are

N4378: Language Support for Contract Assertions Page 11 of 16

encouraged to use the “on” level by default, by analogy to <cassert> and NDEBUG. —
end note]

11.2.4 Contract assertions [contract.assertions]

Three contract assertion forms are defined:
contract_assert_min(check_expression)
contract_assert_on(check_expression)
contract_assert_max(check_expression)

and one alias:
contract_assert(check_expression)

The alias is an abbreviation for contract_assert_on.

Table 2

Contract Assertions Assertion
level

value

contract_assert_min(check_expression) min min

contract_assert_on(check_expression) on on

contract_assert_max(check_expression) max max

Each contract assertion form corresponds to an assertion level, and to one value of
the enumeration contract_assertion_level, as defined in Table 2. A contract
assertion is active only where translation is performed at its level or a stronger level.

A contract assertion is a void expression, treated syntactically as identical to a
function call with one function argument designated here as check_expression. The
check_expression shall be an expression convertible to bool in the context where the
contract assertion appears. If evaluating bool(check-expression) in the context
where the contract assertion appears would result in side effects [intro.execution]
during or as a consequence of said evaluation, the contract assertion is ill-formed (no
diagnostic required). [Note: Implementations are encouraged to report an error if
side effects of evaluating check_expression are detectable at translation time. — end
note] When a contract assertion is evaluated, its effect is determined as follows:

— If the contract assertion is not active, then if evaluating bool(check-expression)
in the context where the contract assertion appears either would yield false, or
would not yield a value, then the effect of evaluating the contract assertion itself is
undefined; otherwise, the contract assertion has no effect. [Note: Implementations
are encouraged to use the implications of contract assertion check-expressions to

N4378: Language Support for Contract Assertions Page 12 of 16

help analyze and optimize programs, and to report predictable violations and side
effects of evaluation as errors. — end note]

— If the contract assertion is active, the effect of evaluating it is identically that of
evaluating bool(check-expression) in the context where the contract assertion
appears, except that if said evaluation would yield false, a contract violation is
detected [contract.handler.violation], and handle_contract_violation is called
immediately, passing as its argument a contract_violation_info object initialized as
specified in Table 3.

Table 3

Member Value

level the assertion level value corresponding to the contract assertion

expression_text a MBCS containing the phase 3 [lex.phases] source text of the
argument to the contract assertion, with white space treated as
described in [cpp.stringize]

filename the value that __FILE__ would have at the position in the
translation unit where the contract assertion appears

line_number the value that __LINE__ would have at the position in the
translation unit where the contract assertion appears

[Note: A constructor may avoid violating preconditions of subobject constructors by
evaluating their arguments only after enforcing its own preconditions, e.g. in a
comma expression. More elaborate validation might be delegated to the constructor of
an initial empty base class. — end note]

11.2.5 Contract violation information [contract.violation.info]
struct contract_violation_info
{
 contract_assert_level level;
 char const* expression_text;
 char const* filename;
 unsigned long line_number;
 // ...
};

The argument to handle_contract_violation. The implementation, and future
standards, may define and initialize additional members.

N4378: Language Support for Contract Assertions Page 13 of 16

11.2.6 Assertion-level flag [contract.flag]

An assertion-level flag is a preprocessor symbol that is defined when translation is
performed at its corresponding assertion level, as related in Table 4, or any stronger
level. The effect of #define or #undef applied to any assertion-level flag is undefined.
When an assertion-level flag is defined, its value is 1. [Note: These flags might be
used to stub out a helper function that is used only in check-expressions, or to gate
unit-test cases. — end note]

Table 4

Assertion Level Assertion-Level flag

min contract_assertion_level_min

on contract_assertion_level_on

max contract_assertion_level_max

11.2.7 Contract violation handler functions [contract.handler]

11.2.7.1 Contract violation handler types [contract.handler.types]

using contract_violation_handler = void (*)(contract_violation_info const& info);

The type of a contract violation handler function to be called when a contract
violation is detected.

11.2.7.2 [Modifying Clause 17] Handler functions
[handler.functions]

1 The C++ Library Fundamentals Technical Specification provides default
versions of the following handler function types (Clause 18 [language.support]):

—— unexpected_handler

—— terminate_handler

—— contract_violation_handler

2 A C++ program may install different handler functions during execution by
supplying a pointer to a function defined in the program or the library as an
argument to (respectively):

—— set_new_handler

—— set_unexpected

—— set_terminate

—— set_contract_violation_handler

N4378: Language Support for Contract Assertions Page 14 of 16

3 A C++ program can get the pointer to a current handler function by calling one
of the following functions (respectively):

— get_new_handler

— get_unexpected

— get_terminate

— get_contract_violation_handler

11.2.7.3 Contract violation handler manipulation
[contract.handler.manipulation]

contract_violation_handler
set_contract_violation_handler(contract_violation_handler handler) noexcept;

Remark: The function indicated by handler shall not return normally to the
caller, nor itself detect a contract violation. [Note: It may throw an exception.
— end note]

Effects: Establishes its argument as the current contract-violation handler.
Passing a null pointer value re-establishes the default version of the contract
violation handler.

Returns: The value passed to the most recent previous call, or the default
handler the first time that set_contract_violation_handler is called.

contract_violation_handler
get_contract_violation_handler() noexcept;

Returns: The value passed as the argument to the most recent call to the
function set_contract_violation or, if that function has not yet been called,
the default contract-violation handler. [Note: If the result is null, it indicates
the default handler. – end note]

11.2.7.4 Contract violation handler invocation
[contract.handler.invocation]

[[noreturn]] void
handle_contract_violation(contract_violation_info const& info);

Remark: Called immediately by the implementation when any contract
assertion detects a contract violation. [Note: It may also be called directly by a
program. – end note]

Effects: Calls the the currently established contract-violation handler, or the
default contract-violation handler if set_contract_violation_handler has not
yet been called.

Default behavior: The implementation’s default contract-violation handler calls
std::abort().

N4378: Language Support for Contract Assertions Page 15 of 16

12 References

[1] The Bloomberg BDE Library open source distribution,
https://github.com/bloomberg/bde

[2] N4379: FAQ about Contract Assertions

N4378: Language Support for Contract Assertions Page 16 of 16

https://github.com/bloomberg/bde
https://github.com/bloomberg/bde

