Document No: WG21 N4365

Date: 2015-01-29
References: ISO/IEC PDTS 19568
Reply To: Barry Hedquist <beh@peren.com>

INCITS/PL22.16 IR

Responses to National Body Comments
ISO/IEC PDTS 19568

Technical Specification: C++ Extensions for Library Fundamentals

Attached are the Responses to National Body Comments for ISO/IEC PDTS 19568, Technical
Specification — C++ Extensions for Library Fundamentals.

Document numbers referenced in the responses and ballot comments are WG21 documents unless
otherwise stated.

Responses to NB Comments PDTS 19568, Library Fundamentals Date:2015-01-29 Document: SC22 / WG21 N4365 Project: 19568
MB/ Line Clause/ Paragraph/ Type of Comments Proposed change Observations of the
NC! number Subclause Figure/Table comment? secretariat

JP1 3.21 te Current design of apply cannot be used with standard [Introduce make_apply as below: REJECTED - There is no

algorithms. This is not consistent with orthogonality
policy of C++. We propose make_apply function to
make a function object applicable to apply function.

For reference, there is a similar design in Boost Fusion
Library, fused and make_fused(). This experimental
study should be taken into account .

#include <tuple>
#include <utility>

template<typename F, typename Tuple, size_t... I>

auto apply_impl(F&& f, Tuple&& args,
std::index_sequence<l...>)

{

return
std::forward<F>(f)(std::get<I>(std::forward<Tuple>(
args))...);
}

template<typename F, typename Tuple,

typename Indices =
std::make_index_sequence<std::tuple_size<Tuple>
svalue>>

auto apply(F&& f, Tuple&& args)
{

return apply_impl(std::forward<F>(f),
std::forward<Tuple>(args), Indices());

}

template<typename F, typename Tuple, size_t... I>

auto apply_impl(F&& f, const Tuple& args,
std::index_sequence<l...>)

{

return std::forward<F>(f)(std::get<I>(args)...);

template<typename F, typename Tuple,

typename Indices =
std::make_index_ sequence<std::tuple size<Tuple>

consensus to adopt the
proposed change. We invite
a paper on the proposed
changes for future
consideration.

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment:

ge = general

te =technical ed = editorial

Page 1 of 4

Responses to NB Comments PDTS 19568, Library Fundamentals

Date:2015-01-29

Document: SC22 / WG21 N4365

Project: 19568

mMB/
NC!

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment?

Comments

Proposed change

Observations of the
secretariat

svalue>>
auto apply(F&& f, const Tuple& args)
{

return apply_impl(std::forward<F>(f), args,
Indices());

}

template <typename F>
class apply_functor {
Ff;
public:
explicit apply_functor(F&& f)
: f_(std::forward<F>(f)) {}

template <typename Tuple>
auto operator()(Tuple&& args)

{

return apply(std::forward<F>(f_),
std::forward<Tuple>(args));

}

template <typename Tuple>
auto operator()(const Tuple& args)

{
return apply(std::forward<F>(f_), args);

template <typename F>
apply_functor<F> make_apply(F&& f)
{

return apply_functor<F>(std::forward<F>(f));

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment:

ge = general

te =technical ed = editorial

Page 2 of 4

Responses to NB Comments PDTS 19568, Library Fundamentals Date:2015-01-29 Document: SC22 / WG21 N4365 Project: 19568
MB/ Line Clause/ Paragraph/ Type of Comments Proposed change Observations of the
NC! number Subclause Figure/Table comment? secretariat
}
Usage example:
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
int main()
{
std::vector<std::tuple<int, char, std::string>> v = {
{1, 'a', "Alice"},
{2’ Ibl, "Bob"},
{3, 'c’, "Carol"}
h
std::for_each(v.begin(), v.end(),
make_apply([](int a, char b, const std::string& c)
std:cout<<a<<''<<b<<''<<c<<
std::endl;
}
);
}
GB1 6.3.1 pl15 Te The allocator-extended copy constructor for Suggest removing all constructors taking ACCEPTED
std::experimental::any cannot be implemented as allocator_arg_t from std::experimental::any.
specified, so should be removed. Without this
constructor, the value of allocator support in
std::experimental::any is questionable.
GB 2 11.2 Te Conversion should be provided from/to any specific Addition of further conversion functions to support |REJECTED, however the
endianness conversion to and from big-endian and little-endian |clause has been removed,
representations (as a minimum) and may be addressed in a
future revision.

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment:

ge = general

te =technical ed = editorial

Page 3 of 4

Responses to NB Comments PDTS 19568, Library Fundamentals

Date:2015-01-29

Document: SC22 / WG21 N4365

Project: 19568

MB/ Line Clause/ Paragraph/ Type of Comments Proposed change Observations of the
NC! number Subclause Figure/Table comment? secretariat
Fl 2 [any.cons] 15 te Implementation vendors report that the signatures that |Either remove allocator support from any or make it | ACCEPTED - Allocators are
take an any&& or const any& are unimplementable as |use a polymorphic memory resource. removed.
currently specified.
FI 5 [header.net.s te As explained in N4249, using the same names for the |Rename the functions so that they do not clash with | ACCEPTED WITH
ynop] network byte order conversion functions as the existing |the existing practice. MODIFICATION - the clause
posix facilities that may be macros is highly has been removed.
problematic.
Fl 1 [optional.obje |11, 20 te As per https://issues.isocpp.org/show_bug.cqi?id=45, |Change the signatures to return T&& instead of T |ACCEPTED
ct.observe] the rvalue-reference-qualified observers of optional and const T&& instead of T
should not return a value, but an rvalue reference
instead, in order to ease perfect forwarding and to not
cause double-move on emplace to containers. Such a
double-move may end up being a double-copy on
optionals of legacy types.
Fl 4 [string.view.a |19 ed The note is confusing. basic_string::data() returns a Clarify or strike the note. REJECTED - There is no
ccess] pointer to a null-terminated buffer regardless of how consensus to adopt this
and from what the basic_string was constructed. change.
How/when is the buffer returned by string_view::data()
not null-terminated when a string_view has been
constructed from a literal, and how is it typical that
passing data() to a function expecting a null-terminated
char* a mistake?
FI 3 [string.view.c (6 ed “Constructs a basic_string_view referring to the same |Use the same terminology as the standard ACCEPTED - Action to the

ons]

string as str,”, str doesn't refer to a string, and the
wording is inconsistent with similar constructors for
basic_string in the standard proper, where such charT*
are said to “point to an array”. See [string.cons] for
reference.

basic_string specification uses.

Editor.

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment:

ge = general

te =technical

ed = editorial

Page 4 of 4

https://issues.isocpp.org/show_bug.cgi?id=45

