
N4356 : Relaxed Array Type Declarator
Authors:

Carter Edwards hcedwar@sandia.gov
Christian Trott crtrott@sandia.gov

Related papers:
N4177 Multidimensional bounds, index and array_view, revision 4
N4222 Minimal Additions to the Array View Library for Performance and Interoperability
N4355 Shared Multidimensional Array with Polymorphic Layout

1 Scope
This paper proposes a relaxation of the array type declarator constraint specified in 8.3.4 Arrays,
paragraph 3. This relaxation is proposed to improve clarity, conciseness, and performance of the Shared
Multidimensional Array with Polymorphic Layout proposal, N4355.

2 Current Constraint on Array Declarator
Paragraph 8.3.4.p3 states the following constraint on an array declaratory.

When several “array of” specifications are adjacent, a multidimensional array is created; only
the first of the constant expressions that specify the bounds of the arrays may be omitted.

Thus in a multidimensional array object declarator of the form
 D1 [N0][N1][N2]...
only the first dimension N0 may be omitted. The omitted dimension is either taken from an earlier
declaration or mapped to pointer offset-dereference semantics.

3 Relaxed Constraint for Array Type Declarator
The current array declarator constraint is suitable for explicit declaration of a conventional, built-in array
object. However, this constraint is not necessary in the declaration of a multidimensional array type
that is not explicitly used to declare a conventional, built-in array object. Furthermore, relaxing this
constraint for multidimensional array type declaration will enable clear and concise type specification
for the proposed shared multidimensional array with polymorphic layout (N4355).

3.1 Proposal
The current Paragraph 8.3.4.p3 constraint is relaxed to the following.

When several “array of” specifications are adjacent to form a multidimensional array type
specification only the first of the sequence of array bound constant expressions may be omitted
for types used in the explicit declaration of a multidimensional array; otherwise any or all of the
array bound constant expressions may be omitted.

mailto:hcedwar@sandia.gov
mailto:crtrott@sandia.gov

3.2 Motivation
This change allows a multidimensional array type specification may have the form:

T[N0opt][N1opt][N2opt]...

where T is possibly cv-qualified object type of array members, the count of [N#opt] expressions is the
rank of the multidimensional array, and each N#opt is an optional integral constant expression denoting
an explicitly declared array dimension.

In the shared multidimensional array with polymorphic layout proposal each omitted array bound
(a.k.a., array dimension) implies an array bound that is specified at runtime. This allows a shared
multidimensional array with polymorphic layout to merge explicitly and implicitly specified array bounds
and enables optimization of the array multi-index offset computation when array bounds can be
explicitly specified. The desired syntax for such a library class, proposed in N4355 and referenced here
to elaborate this motivation, is as follows.

std::shared_array< T[N0opt][N1opt][N2opt]... , Layoutopt >

4 Derived Requirements
The array type property queries (20.10.5) std::rank and std::extent implementations must support
multidimensional array type declarations with relaxed array bound constraint. It is expected that an
implementation of the shared multidimensional array with polymorphic layout will utilize these property
queries. The specification of these property queries does not need to be revised. However, the
examples should be extended for clarity.

20.10.5.p2, add

 assert(rank<int[][]>::value == 2);

20.10.5.p3, add

 assert(extent<int[][],1>::value == 0);

	1 Scope
	2 Current Constraint on Array Declarator
	3 Relaxed Constraint for Array Type Declarator
	3.1 Proposal
	3.2 Motivation

	4 Derived Requirements

