
Document number: P0043
Date: 2015–09–27
To: SC22/WG21 LEWG
Reply to: David Krauss

(david_work at me dot com)
References: N4480

Function wrappers with allocators and noexcept
The Fundamentals TS v.1 introduces a new architecture for function, where it enforces an
allocation scheme on its target objects. Because move assignment reallocates the new value, it
fails to provide a noexcept guarantee. It also may subtly introduce bugs and breakage. The
status quo is more intuitive, in terms of reference and value semantics. The new scheme also
requires parallel type erasure of the allocator, costing memory and performance. This proposal
formalizes the current std::function model with only minor extensions, and introduces a
new, interoperable but allocator-aware class function_container to enforce allocation
guarantees. fundamentals_v1::function fits neatly into its container model. A complete,
high-quality reference implementation is provided.

1. Background 2..
1.1. Containers vs. handles vs. values 2...
1.2. Cost of separate erasure 3..
1.2.1. Size 3
1.2.2. Speed 3
1.2.3. Flexibility 4
1.3. Dangers of reallocation 4..
2. Solution 5..
2.1. std::function 5..
2.2. function_container 7..
2.3. pmr::function_container 7...
2.4. fundamentals_v1::function 8...
2.5. Combination with unique_function 8..
3. Prototype implementation 8..
4. Conclusion 9..
4.1. Future work 9..

���1

1. Background
When boost::function first gained allocator support, it followed the example of other
containers, with a second template argument. Later, the model was changed to follow 1

shared_ptr, using type erasure to bundle self-destruct functionality with the target object, as in
a shared control block. Subsequently, when nested allocators came about, allocator erasure was 2

conceived anew as a separate mechanism, making function the aggregate of an Allocator
erasure and a Callable erasure. This major change is subtly embodied in addition of the 3

constructor function::function(allocator_arg_t, Allocator const &). However,
the assign function, which is incompatible with the newer model, was not removed.
Since C++11, the function interface has thus been self-contradictory. Clang libc++ implements
the new allocator constructor in a degenerate way, so it only performs default construction.
Otherwise it bundles allocators with targets, like Boost and shared_ptr. GCC libstdc++ does
not support allocators at all, omitting the new constructor, assign, and all signatures with
allocator parameters. On the other hand, fundamentals_v1::function treats separate
allocator erasure is an accomplished fact. Its synopsis still declares assign, but the prototype
implementation does not, and the issue is not addressed by the TS or the preceding proposals.
The allocator-erasing constructor and assign are implementation details. On a conceptual level,
the dilemma appears as a continuum of viewpoints: function is like a container, it is not a 4

container (LWG 2501 comments), or it is merely “consistent with historical use of
allocators” (LWG 2370). To this author’s knowledge, there has not been any comparative study
of the costs and benefits of each direction.

1.1. Containers vs. handles vs. values
The critical distinction of “container-like behavior” is keeping the allocator — that is, a reference
to a memory pool — as an immutable element of state separate from the target object. This
allows the function to persistently apply an allocation policy whenever it gets a target.
Such an allocation policy allows careful management of resources. Memory pools may be used
to represent strict quotas. When an object is moved from one container to another, and the
containers belong to different pools, it should be deep-copied to the new pool. Allowing one pool
to depend on another muddles their distinction: The dependent pool bypasses its intended
limitations, and the provider pool may see its quota inexplicably depleted. The only reliable way
to prevent such incoherent allocation is to permanently identify top-level containers with pools.

 http://www.boost.org/doc/libs/1_59_0/doc/html/function/history.html1

 N2308 Adding allocator support to std::function for C++0x, Dotchevski (2007)2

 N2554 The Scoped Allocator Model (Rev 2), Halpern (2008)3

 N3916 Polymorphic Memory Resources - r2, Halpern (2014)4

���2

http://www.boost.org/doc/libs/1_59_0/doc/html/function/history.html
https://github.com/llvm-mirror/libcxx/blob/f1626ad28d17b066f991c354e089f52a0268adbc/include/functional#L1601
https://github.com/gcc-mirror/gcc/blob/ba5cb419c4bca1edeb90000761482428438cc189/libstdc%2B%2B-v3/include/std/functional#L2038
http://www.halpernwightsoftware.com/WG21/polymorphic_allocator.tgz

Not every container wants to implement an allocation policy, though. Some containers merely
aggregate views to preexisting, perhaps shared, objects. For example, functions in a callback
registry continue to belong to the registrant. Arguments bound within the function object should
not be reallocated into the registry pool simply because they were bound by value. In this case,
the pointer-like behavior of std::function is appropriate.
Other std::function objects are not retained anywhere in particular, but are simply treated
locally as callable values. When allocation is a forgotten minor detail, reallocation is potentially
most surprising. Since function objects are conventionally passed by value, and local function
reassignment carries no gotchas, reallocation is a potential pitfall.
In summary, three use cases can be distinguished by the relationship of the wrapper to the target:

• Some functions act as persistent containers with a well-defined resource management policy.

• Some work like smart pointers to preallocated resources.

• Some are naively used as local variables, as if they were merely views to a pure value.
Container-like behavior benefits the first case but complicates or harms the latter two.

1.2. Cost of separate erasure
Current function implementations enable allocator erasure to the extent of allowing an object
to clone or destroy itself, using the allocator that created it. This is as simple as having clone
and destroy functions alongside the more familiar invoke. A second erasure, in the form of a
memory_resource *, is needed if the allocator may exist in the absence of any target (or must
persist in the presence of a target stored within the wrapper). This carries costs in terms of
memory, speed, and support for allocator functionality.

1.2.1. Size

The size of current function objects is mostly determined by the standard’s recommendation
that the small target optimization should support a bind object containing a PTMF and an object
pointer ([func.wrap.func.con] N4527 §20.9.12.2.1/10). This typically takes three pointers; add a
pointer to the erasure structure (e.g., vtable), for a total of four machine words. Such is the
memory layout of boost::function.
Adding a pointer to an external memory_resource would ordinarily take one more word, but
fundamentals_v1::function additionally supports classic allocators by transparently
applying resource_adapter. The reference implementation takes ownership of the resulting
object via shared_ptr. This adds the overhead of a control block allocation even when the
argument is an external memory_resource in the first place. The wrapper itself may also grow
by up to two words (50%) to accommodate the shared_ptr.

1.2.2. Speed

experimental::memory_resource is polymorphic, so it incurs indirect function calls.
Whereas binding a new target object currently works without an indirect call, separate erasure
needs one to dispatch an allocate call. The same applies to move-assignment. Whereas these

���3

operations could likely have been inlined, the allocator might instead be hidden behind a
mispredicted branch.
Knowing its own allocator, a target can clone itself using one indirect dispatch. Separate erasure
adds another. When an object is copied or moved to a new pool, it is usually still to an allocator
of the same type, so the operation can be done with no further indirect calls. Separate allocation
adds one dispatch per allocation and deallocation. The prototype implementation uses an
additional dispatch to get the memory resource pointer, before any indirect calls to it.

1.2.3. Flexibility

Allocators are inherently template-oriented, and templates are resistant to type erasure.
fundamentals_v1::function flattens classic allocators into type-erased allocators (N4480
§8.3, §8.7), losing much functionality. Unlike the similar facilities in namespace pmr, which
require the user to apply resource_adaptor for manual flattening, this is applied implicitly
and potentially surprisingly.

• Instead of using rebind to ensure proper alignment and allocation size, resource_adaptor
rounds up the size and strips padding as by std::align.

• Any behavior specific to a particular type is lost because the allocator is rebound to char.

• The allocator object is used to make a copy of itself in a shared_ptr, instead of simply being
embedded in the wrapper or in the same erasure as the target. This may confound allocators
that only expect a certain number of allocations, or a particular order to deallocations, or a
particular size range. (This applies even to stateless allocators. Note that it is specific to
fundamentals_v1::function, and not part of resource_adaptor’s behavior.)

• Fancy pointers are replaced by native pointers.

• Instead of using construct and destroy, it applies default behavior.

• The propagate_on_container_* and select_on_container_copy_construction
traits are replaced by the defaults.

Custom allocators may be sensitive to the exact types of objects being allocated and their
lifetimes. The resource_adaptor compatibility layer is more of a stopgap to allow general-
purpose allocators to be migrated to the memory_resource model, and less a pillar of support
for high-performance, application-specific allocators.

1.3. Dangers of reallocation
In addition to the overheads surveyed in the preceding section, uniform use of container
allocation semantics may lead to errors and vulnerabilities. Contrary to the intent of better-
organizing allocation, functions written without container semantics in mind, but only value- or
smart-pointer semantics, may end up scrambling resources among pools and storing resources in
the global free store (which is free of quotas) instead of the intended pool.
For example, map<string, fundamentals_v1::function<void()>>::operator[], a
typical dispatch table structure, will default-construct functions when adding entries. A default-
constructed function carries a sticky association with the global free store. So, using this method

���4

to add an entry will remove its target from any memory pool, whereas std::function and
boost::function preserve allocation. Instead, insert must be called, and erase before any
subsequent reassignments.
Swapping fundamentals_v1::functions (or other containers) with different allocators has
undefined behavior. It may lead to an assertion or a resource paired with an allocator that cannot
release it. Unlike the previous example, allocators are preserved when inserting functions into a
priority_queue<pair<int, fundamentals_v1::function<void()>>>, such as may 5

be found in a task scheduler. If two tasks come from clients with different memory pools, the
first swap operation to touch them will terminate the program. To fix this, the structure must be
rewritten to store the functions in a node-based container, which may add overhead.
Such problems may also occur in ordinary functions or classes besides sequence containers,
which happen to assign to function as a value type without considering allocation.

2. Solution
The proposed solution has two parts: a new function_container class template, and
improvements to std::function that allow it to be interoperable, i.e. to share type-erased
target objects between corresponding function and function_container specializations.
This write-up is based on the cxx_function library, which is intended as a reference 6

implementation and released freely under the MIT license. The library also implements other
features which are covered in other proposals. Nevertheless, it is more efficient than its libstdc++
or libc++ counterparts.

2.1. std::function

This proposal refines the allocator semantics of function within the intersection of the
standards and the implementation practice, which is to say:

• An implementation such as libstdc++ or libc++ can adopt this specification without breaking
their users’ code.

• The changes may be applied retroactively to C++11 and C++14 modes while still conforming
to those standards.

The status quo since N2308 is based on the allocation scheme provided by shared_pointer
via allocate_shared. From this basis, shared ownership was removed, and cloning was
added. In terms of ownership and allocation semantics, function essentially fits into the
category of smart pointers.
Functionality is extended beyond the status quo in the direction of comprehensive support for
allocation functionality via allocator_traits. The changes are summarized below.
1. Restore the noexcept guarantee to the move assignment operator.

 Assume that a comparator is provided to sort by the int values. Such a structure can be adjusted to 5

prevent overflow issues.

 https://github.com/potswa/cxx_function. Scroll to #allocators for more information.6

���5

https://github.com/potswa/cxx_function
https://github.com/potswa/cxx_function#allocators
https://github.com/potswa/cxx_function

2. Deprecate the constructor function(allocator_arg_t, const A& a), and require it
to be equivalent to the default constructor.

3. Specify that member functions without an allocator_arg_t parameter, which take a new
target object, behave as if allocator_arg_t was passed with a default allocator.

4. Require the target object lifetime to be managed by the allocator_traits::construct
and destroy functions. Do not require a copy of the allocator object to be kept if destroy
behaves equivalently to the default allocator_traits implementation.

5. Remove the std::uses_allocator<std::function<Sig>, A> partial specialization
to consistently avoid reallocation. (This is a nominally a breaking change, but neither libc++
nor libstdc++, at least, implement the feature: libc++ does not specialize uses_allocator
and libstdc++ lacks the constructors to make it meaningful.)

For the following rules, treat any function_container parameter as if it were an ordinary
function. When used as the source operand in construction or assignment, the persistent
allocator of a function_container is ignored and only the target object is considered.
6. Specify that the copy constructor and copy assignment operator use a copy of the allocator

which originally created the target object.
7. For adopting a target object from one wrapper to another, specify that when an Allocator

parameter appears with a target object parameter of the wrapper type, and the parameter’s
target object is managed by an allocator:

• If the type of the new allocator and the type of the allocator used to create the target, both
rebound by rebind_alloc<char>, are the same type, and those two allocators compare
equal, and the target object parameter was not passed by lvalue reference, then the target
object shall be transferred to the destination wrapper and no exception shall be thrown.

• Otherwise, if the first condition is met (same allocator type after rebind), a new target
object is created. The allocator used is the value of the Allocator parameter, converted first
to rebind_alloc<char>, and converted again to the type of the allocator used to create
the original target. The object is copy- or move-initialized from the original target. If an
exception is thrown, the source object is left unchanged, and (for an assignment operation)
the destination wrapper receives a value of nullptr. This implies that a target’s throwing
move constructor will be ignored in favor of its copy constructor.

• Otherwise, if the allocator parameter is incompatible with the allocator used to create the
original target, an exception of type allocator_mismatch_error is thrown.

If N4543 A polymorphic wrapper for all Callable objects is accepted, its in-place construction
functions receive an additional guarantee:
8. If the in-place construction type tag specifies the same type as the wrapper, then a temporary

is constructed according to the in-place argument list, and the wrapper is move-constructed
from that temporary.  
However, if there are several allocators of the same type in the same parameter list, the
implementation is free to skip move operations and construct the target into the final
destination pool.

���6

2.2. function_container

A persistent allocator may be added to a function by aggregating them both together, as the
above refinements are sufficient to implement the allocator-aware container interface
([container.requirements.general] N4527 §23.2.1/16). The function_container
implementation simply wraps std::function while ensuring that the encapsulated allocator is
passed to every std::function member that can accept it, and applying the allocator
propagation traits as usual. Member functions that conflict with this goal, namely assign, and
given N4543, allocate_assign, are not exposed in its interface. The constructor accepting no
target, but only an allocator, works and it is not deprecated. However, allocator parameters are of
the given allocator type. Any allocator type erasure is up to the allocator itself.
The move assignment operator maps to assign on the encapsulated wrapper and may cause
reallocation. This behavior, and its noexcept guarantee, depend on is_always_equal and
propagate_on_container_move_assignment, as in other allocator-aware containers.
Assignment from std::function may throw allocator_mismatch_error and never
respects POCMA or POCCA. Move-assignment to std::function is noexcept, as specified
in the preceding section.
Being an allocator-aware container, it implements allocator_type and get_allocator
members. Thus it supports uses-allocator construction and scoped_allocator_adaptor. The
embedded allocator is rebound by rebind_alloc<char>, similarly to a node-based container
rebinding to the node type, except that rebinding occurs again upon each type erasure operation.
When the erasure contains an allocator object, it coexists with the persistent one in the wrapper.
Allocation and construction are specified (see above) to be done by the allocator object within
the target object erasure. After each operation, the state of the the erasure’s allocator is copied
back to the container, to give the impression that the container’s allocator object is doing the
work. In any case, the two allocators always compare equal, and their values never change
according to the equality operator.
For compatibility with overloaded function, with a list of signatures, the allocator is added at the
beginning of the template parameter list.

template< typename alloc, typename signature > // This proposal alone.
class function_container;

template< typename alloc, typename ... signatures > // With P0045.
class function_container;

2.3. pmr::function_container

A polymorphic memory resource may be combined with function_container using
polymorphic_allocator. This provides uniformity between function and the other
polymorphic allocation facilities.

���7

namespace pmr {
template< typename sig >
using function_container = function_container

< polymorphic_allocator< char >, sig >;
}

The name pmr::function_container is chosen over pmr::function, to reflect its
behavior. Like the other pmr aliases, this binds and removes the allocator template parameter.

2.4. fundamentals_v1::function

If desired, function_container may also be used as the basis of a conforming, and optimal,
implementation of fundamentals_v1::function. The key is a new allocator class enclosing
a shared_ptr<memory_resource> instead of a raw pointer. It could not purely be a
function_container specialization due to the get_memory_resource member.

2.5. Combination with unique_function
N4543 orthogonally proposes a polymorphic call wrapper unique_function, not requiring
target copyability or movability. Applying allocator semantics to unique_function produces
unique_function_container and pmr::unique_function. Non-copyable targets cannot
be transferred to copyable wrappers, so this proliferation is unavoidable.
Reallocation requires a copy constructor or a noexcept move constructor (see above, §2.1/6.2)
but it never occurs if is_always_equal is true_type. Targets are checked for suitability
against these constraints, and any constructor, assignment operator, or assign overload is
removed by SFINAE when a target is unsuitable.
unique_function_container is actually likely to be more commonly appropriate than
function_container, because most carefully-allocated targets are not supposed to be copied.

3. Prototype implementation
The cxx_function implementation adds allocation flexibility with no compromises. It performs on
par with libstdc++ and libc++ in the public CxxFunctionBenchmark, but it uses wrapper storage 7

space more efficiently and applies optimizations more generally in the presence of allocators
(which are not benchmarked).
Each erased type is described by a global tuple of values (target typeid, allocator typeid)
and function pointers (destroy, destructive-move, clone, call). When a function is trivial, its
pointer is set to nullptr, allowing the wrapper to avoid an indirect call. The default allocator
(and others with is_always_equal and no fancy pointers) allow trivial destructive-move. In
most cases, the function move constructor simply calls memcpy.

 https://github.com/jamboree/CxxFunctionBenchmark/, no relation to cxx_function.7

���8

https://github.com/potswa/cxx_function
https://github.com/jamboree/CxxFunctionBenchmark/

Its internal organization isn’t perfect: function_container should be implemented by
wrapping a function subobject, but the library derives them both from a common base class.
This is an artifact of its evolution, and it is fixable.

4. Conclusion
The allocation policy of std::function is an obscure topic, but it does matter in practice. It
has come up on StackOverflow and (at least indirectly) on std-proposals: There are users who 8

have encountered the limits of current implementations. It is an important consideration for
programs that are miserly with memory or CPU cycles, and intensive on closure semantics.
Without function_container, the standard library still contains useful tools to face the
challenge of taming target object allocation, particularly given the proposed refinements to
std::function. However, complete and optimal allocator support involves countless nuances,
and interoperability with ordinary, value-semantic std::function is impossible without
standard library support. It is essential to standardize function_container, at least in a TS.
std::function is a “vocabulary type;” function_container will never be. They are
analogous in obscurity to std::string and std::basic_string: most users will remain
blissfully unaware the latter. Interoperability is provided though, so unlike allocator-aware STL
containers, encountering function_container is not an unpleasant surprise. A typical user
only needs to know that it assigns to and from std::function. The potential for harm is low.

4.1. Future work
The same principles can be applied to other value-handle classes, such as std::any and the
likes of std::unique_ptr. Users should be able to allocate an object in one pool and then
assign it to another pool without manually comparing the two pools.
The dichotomy of container-like and value-like handles is the only way to have an intuitive,
reference-semantic move assignment operator simultaneously with the allocation safety of
scoped_allocator_adaptor. This is a promising future direction.
It may be possible to factor function_container into a class template such as
erasure_container_adaptor, capable of working with any or user-defined classes. Only an
attempt at implementation would tell.

 catch std::function allocations at compile time, How can I create a std::function with a custom 8

allocator?, Does std::function support a custom allocator?, … constructor with custom allocator but no
other args?, etc.

���9

http://stackoverflow.com/q/32254417/153285
http://stackoverflow.com/q/21094052/153285
http://stackoverflow.com/q/21160184/153285
http://stackoverflow.com/q/32596021/153285

