
Document No: WG21 N4550

Date: 2015-07-25

References: ISO/IEC PDTS 19217

Reply To: Barry Hedquist <beh@peren.com>

 INCITS/PL22.16 IR

Record of Response: National Body Comments

ISO/IEC PDTS 19217

 Technical Specification: C++ Extensions for Concepts

Attached is WG21 N4550, Record of Response to National Body Comments for ISO/IEC PDTS 19217,

Technical Specification – C++ Extensions for Concepts.

Document numbers referenced in this document are from WG21 unless otherwise stated.

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 13

FI 1 page v ed Page v has an empty "list of figures". Remove the empty list of figures. ACCEPTED

FI 13 ge Insert/delete markers are inconsistently applied. For

example, in 5.1.2, a full paragraph is marked as
inserted, but other such situations are not marked

accordingly.

 ACCEPTED

NL.1 It should be possible to use a concept
where ever auto can be used, constraining
the set of possible types matched.
More specifically, the two examples in
7.1.6.4 on page 13:
C z = 0; // error: constrained-type-specifier
in declaration of z
auto cf() -> C; // error: constrained-type-
specifier declared in return type of cf

should be well formed.

 ACCEPTED

US 1 ge It is unclear to us whether or not proper
implementation experience can be gained
without also specifying concepts for the
standard library along with the core
language facility.

 REJECTED

Adding concepts to the

standard library will be a large

part of the experience used to

test the design presented in

the TS.

US 2 ge We would have liked to have seen the
wording flushed through Core a few more
times before moving it to a PDTS, as Core
was still uncovering significant issues in
each review.

 REJECTED

The specification is good

enough to allow

implementation and the

disadvantages of further delay

outweigh the possible

incremental improvement.

US 3 ge In [dcl.spec.auto][6] allow the two
examples that are disallowed:

C z = 0; // error: constrained-type-specifier

 ACCEPTED

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 13

in declaration of z

auto cf() -> C; // error: constrained-type-
specifier declared in return type of cf

US 4 ge We have a broad concern that the
ambiguity for a reader between a
constrained function template without a
template-introducer and a ‘regular’
function will make the language
unnecessarily difficult to teach, read, and
maintain code. We note that a TS is the
perfect vehicle to have an experiment to
establish if these concerns are real, but
want to exercise caution as we proceed,
and be sure that there is a real feedback
plan in place before considering moving
this feature from a TS and into a future
standard.

 REJECTED

Not a suggestion for change.

An issues list will be

maintained by the project

editor.

US 5 ge There are too many redundant ways to
express the same set of requirements.
While each presents a reasonable use-case
in isolation, the combined effect is
overwhelming.

Review the overlapping syntaxes, and eliminate those
that add least value, or are least frequently used. This
may mean shipping the TS in close to its current form
to obtain such feedback though.

REJECTED

As noted, the TS is the

appropriate vehicle for

determining the validity of this

concern.

US 6 ge We have a broad concern that it is hard to
understand the feature purely from the
specification, especially the subsumption
rules, and equivalence rules to know when
two signatures declare the same function
or are ambiguous equally constrained
overloads, yet there is a lack of readily
available implementations to test our
understanding against. While the feature
set of the TS looks good, we think one more
iteration on the specification would be
useful.

Recast the rules for subsumption as a mini- grammar

(distinct from the C++ grammar) as the English text

appears to be trying to describe a grammar, but less

formally, which leads to a potential lack of precision,

and more confusion for the reader. We are not

highlight specific lack of precision at this time, as we

have not emerged from confusion in time to file

appropriate comments.

REJECTED

There was no consensus for a

change at this time.

FI 2 1.1 p3 ed 1.1p3 talks about C++ 14882:2017, which doesn't Change to "is planned to be included in the next ACCEPTED

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 13

exist, and might not come into existence. revision of the C++ standard".

GB 1 1.1 [scope.intro] Ed "this feature ... is present in ISO/IEC 14882:2017" -
cannot refer to a (proposed) future standard in
this manner.

Elide ", but it is present in ISO/IEC
14882:2017"

ACCEPTED WITH
MODIFICATION

The wording suggested by
FI 2 was adopted.

US 7 1 1.1 1 ge A concepts Technical Specification lacking a concept-
enabled standard library provides little value to either

the C++ community or the committee itself. End users
will see none of the benefits from the introduction of

concepts unless the standard library uses concepts
throughout. Moreover, it means that the Technical

Specification will not serve it’s primary purpose of
building real-world experience with real (non- expert)

programmers, and we will not even have properly
gone through the exercise of trying to use this new

feature to specify our own standard library.

Introduce concepts and constraints for the C++
Standard Library at the same time as the

language feature designed specifically for that
purpose.

REJECTED

Adding concepts to the

standard library will be a large

part of the experience used to

test the design presented in

the TS.

FI 3 1.5 p2 ed typo: "Technical Specification" should have
uppercase letters.

 ACCEPTED

FI 4 1.5 p2 ed "standard feature": This is a TS, so it cannot specify a
standard feature.

 ACCEPTED WITH
MODIFICATION

The wording in question
was replaced with
suggested wording from
WG21 SG10.

FI 5 1.5 p2 ed Rephrase to avoid the one-line table. We only have a

single feature, so no need for extra generality such as
"a new standard feature".

 REJECTED

Having a standardized
format across TSes is
regarded as more
important than avoiding a
table with only one entry.

FI 6 1.6 ed Add a cross-reference to Douglas Gregor's earlier

concepts work, which is assumed to have helped
shaping the approach in N3351.

 REJECTED

No other TSes have
“related work” sections or
non-normative references.

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 13

US 8 5 p12 ed Duplicate ‘the the’ at the end of the example. It may be replaced later through the the explicit
specification of template arguments.

ACCEPTED

CA

12

n/a 5.1.1 Para 12
example

te This example includes the following code:

struct S1 { int n; };
auto∷* p1 = &S1∷n;

Is this intended to be valid as written? It seems like
the ‘auto’ is intended to be a placeholder for the class

name in a pointer-to-member type, but where is the
type of the member? Is there a rule that says that a

single ‘auto’ can simultaneously stand for the class
type, and the member type?

Or was the example perhaps meant to be:

int (auto∷*p1) = &S1∷n;

Replace the line

auto∷* p1 = &S1∷n;

with

int (auto∷*p1) = &S1∷n;

and similarly for other lines in the example
where a placeholder appears in the place of a
class name for a pointer-to-member, without the
type of the member (or a placeholder for it)
appearing anywhere.

ACCEPTED WITH
MODIFICATION

The parentheses in the
suggestion were omitted.

FI 10 5.1.1 p12 te The provisions about "placeholder type" together with
the note are confusing. It seems some of the

provisions are intended to apply only for "auto" and
others to also apply to constrained-type-name.

 ACCEPTED

FI 11 5.1.1 p12 ed (example) There is no S1::c member. ACCEPTED

FI 12 5.1.1 p12 te (example, last line): It's unclear whether the formation
of "D::*" is ill-formed, or the initialization as a whole.

Initializing with nullptr might help.

 ACCEPTED WITH
MODIFICATION

All the variable declarations
should have types.

FI 9 5.1.1 p12 te "The replacement type ... shall be a class or
enumeration type.": It is unclear whether a violation

immediately causes a program to be ill-formed, or
whether the usual rules for deduction failure apply.

Suggestion: "If the replacement type ... is not a
class or enumeration type, type deduction fails."

In any case, this provision should move to the
section about template argument deduction.

REJECTED

The context determines
whether a violation is a
SFINAE failure or a hard
error.

US 9 5.1.1 ed When augmenting an existing grammar term, list the

existing terms as well as the new additions, so that
the context is clear, and it cannot be confused as a

replacement.

Provide a complete grammar (with insert

annotations) for primary-expression

ACCEPTED

US 10 5.1.1 p8 ed When augmenting an existing grammar term, list the
existing terms as well as the new additions, so that

Provide a complete grammar (with insert
annotations) for nested-name-specifier

ACCEPTED

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 5 of 13

the context is clear, and it cannot be confused as a
replacement.

CA6 n/a 5.1.2 Para 5
example

te we state “the generic lambda gl and the function

object fun” have equivalent behaviour, but the lambda
has no return statement while the function does

Change the lambda’s body to:

return a = *b;

ACCEPTED

US 11 5.1.2 p5 ed Rephrasing generic lambdas lost a little detail in its
terseness that should probably be preserved.

The closure type for a generic lambda has a
public inline function call operator member

template (14.5.2) that is ...

ACCEPTED

US 12 [expr.prim. req]
(5.1.4)

3 ed Some words seem transposed. Change “to in order” to “in order to”. ACCEPTED

US 13 [expr.prim. req]
(5.1.4)

4 te The following requirement seems overly restrictive, as
it can be fairly easily (but tediously)

be worked around: “A requires-expression shall
appear only within a concept definition (7.1.7), or

within the requires-clause of a template- declaration
(Clause 14) or function declaration

(8.3.5).”

(The tedious workaround for each concept C is to

define an overload set consisting of two function
templates, one unconstrained and returning false, the

other constrained by C and returning true.)

Eliminate the requirement, thereby permitting
other uses for this new kind of expression of

type bool. (For example, requires-expressions
might replace many or all of the Boolean type

traits.)

Additionally, in any context where a bool value is

permitted, allow a concept’s name plus suitable
arguments to denote the truth value of the claim

that “this combination of arguments satisfy this
concept.” (This syntax is currently valid in only

certain contexts such as requires-expressions.)

REJECTED

There was no consensus

for a change at this time,
but an issue will be opened

for future consideration by
WG21’s Evolution Working

Group.

US 14 [expr.prim. req]
(5.1.4)

7 te The following Note seems to specify a normative
requirement rather than a clarification: “[Note: But if

the substitution of template arguments into a
requirement would always result in a substitution

failure, the program is ill-formed; no diagnostic
required (14.7). — end note]”

Strike the Note delimiters, thus elevating this
specification to normative text.

ACCEPTED

US 15 5.1.4.3

14.10.1.7

 te We believe that (generally speaking) the non-
throwing of exceptions is a part of the runtime

contract of a function, not something that should be
advertised in the type system outside a few very

specific cases related to move operations.

As a ‘requires’ expression is always free to invoke the

‘noexcept’ operator to produce a predicate,

Simplify the compound-requirement: term
in

5.1.4.3:

{ expression } noexceptopt trailing-return-

typeopt

REJECTED

There was no consensus

for a change at this time,
but an issue will be opened

for future consideration by
WG21’s Evolution Working

Group.

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 6 of 13

we believe that is sufficient support for exception
constraints in the language, and directly

supporting this additional term in the grammar would
be harmful, encouraging compile-time

contracts taking away an important library
implementer freedom. As the TS is intended to

provide feedback, we believe it would be better to
proceed without this, and see how much demand

arises from using the alternate form, and whether that
alternate form alone is too cumbersome for real world

use.

Strike 14.10.1.7.

US 16 5.1.4.3 te If we retain exception constraints, the optional
noexcept specifier should support the full range of the

noexcept grammar

Amend compound-requirement: :

{ expression } noexceptopt noexcept-

specificationopt trailing-return-typeopt

REJECTED

There was no consensus

for a change at this time,
but an issue will be opened

for future consideration by
WG21’s Evolution Working

Group.

FI 8 5.5.1 p8 ed 5.5.1p8 omits underlining for the grammar changes,

and the introductory sentence does not (but should)
mention constrained-type-name, too.

 ACCEPTED

US 17 7.1 ed When augmenting an existing grammar term, list the

existing terms as well as the new additions, so that
the context is clear, and it cannot be confused as a

replacement.

Provide a complete grammar (with insert

annotations) for decl-specifier

ACCEPTED

CA7 n/a 7.1.6.2 Para 2 te we state “The auto specifier and constrained-type-

specifiers are placeholders for values (type, non-type,
kind)” – should that be “(type, non-type, template)”

instead? same in the table below

 ACCEPTED

FI 7 7.1.6.2 p1 ed 7.1.6.2p1 talks about "Table 10", but then, a "table 2"
follows.

 ACCEPTED

US 18 7.1.6.2 ed When augmenting an existing grammar term, list the
existing terms as well as the new additions, so that

the context is clear, and it cannot be confused as a

Provide a complete grammar (with insert
annotations) for simple-type-specifier

ACCEPTED

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 7 of 13

replacement.

US 19 7.1.6.2 Table 2 ed Table 2 should be numbered the same as the table it
updates, to avoid confusion.

Renumber Table 2 as Table 10 ACCEPTED

US 20 7.1.6.2 Table 2 ed When updating an existing table, display sufficient of
the existing contents to provide context, as well as

the new additions, so that the edit cannot be
confused as a replacement.

Add several of the surrounding rows of Table 2
(10 in C++14), or reprint the whole table with the

mark-up grammar highlighting the new row.

ACCEPTED

GB 2 7.1.6.4
[dcl.spec.auto]

P6 Ed There is an incorrect example:

void (auto::*)(auto) p1 = &Size<0>::f;

Additionally the comment refers to p and not p1 (and
the new example comment also refers to p, not p2)

Correct to:

void (auto::* p1)(auto) = &Size<0>::f;

And make the variable name in the two
comments match the example

ACCEPTED

US 21 7.1.6.4 ed The ‘and’ in the first sentence could confusingly bind
two ways.

Given:

The auto and decltype(auto) type-specifier s and

constrained-type-specifier s designate

rewrite as:

The constrained-type-specifier s and the auto
and decltype(auto) type-specifier s designate

ACCEPTED

US 22 [dcl.spec. auto]

(7.1.6.4)

above 1 ed The phrase “the meaning of constrained-type-

specifiers are described” seems grammatically
incorrect.

Replace “are” by “is”. ACCEPTED

CA8 n/a 7.1.6.4.2 Para 1
example

te the declaration of “C3” is missing the “concept bool” Change the declaration of C3 to:

template <template<typename> class X>
concept bool C3 = false;

ACCEPTED

FI 14 7.1.7 p1 te It seems unfortunate that concepts cannot be

declared as members of class templates. This
seemingly makes it impossible to define concepts for

constraining multiple template parameter packs (if
concepts as static member functions were possible,

 REJECTED

There was no consensus
for a change at this time,
but an issue will be opened
for later consideration by

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 8 of 13

one could provide e.g. two packs so that the class
template gets the first pack and the member function

template gets the second. That can’t be done with a
namespace-scope concept because multiple packs in

function templates require deduction, and concepts
don’t take arguments that could be deduced.). As an

example, practical needs for such constraining arise
in standard library implementations, when

constraining the variadic converting constructors of
std::tuple.

WG21’s Evolution Working
Group.

US 23 7.1.7 te Using ‘concept’ as a decl-specifer, rather than

forming a first class entity like a type or template,
makes the feature appear more complex than it

needs to be. Concepts would be simpler (for user
and [we believe] the specification) if there was

only one kind, rather than both function and variable
syntax; the 'bool' keyword would become redundant

and the set of restrictions on concepts based on them
being functions or variables would disappear.

We will provide a paper in time for the Lenexa

pre- meeting mailing proposing a grammar that
would give all concepts the form:

template <typename T>

concept C = predicate;

where ‘predicate’ is a compile-time evaluated

Boolean expression.

REJECTED

There was no consensus
for a change at this time,

but an issue will be opened
for future consideration by

WG21’s Evolution Working
Group.

US 24 [dcl.spec. concept]
(7.1.7)

1, 5, 6 te The syntactic distinction between a function concept
and a variable concept seems to serve no useful

purpose. A single concept syntax seems sufficient,
and especially so once redundant elements are

removed.

Merge the two concept forms into one,
streamlining the syntax by eliminating at least

the following redundant elements: explicit bool
(see comment below), explicit return, and the

always- empty parentheses constituting the
function parameter list.

REJECTED

There was no consensus

for a change at this time,
but an issue will be opened

for future consideration by
WG21’s Evolution Working

Group.

US 25 [dcl.spec. concept]
(7.1.7)

5.2, 6.1 te Since a concept’s type always must be bool, there
seems little reason to require the source code to say

so explicitly. Typing concept should be sufficient
without also typing bool immediately afterward.

Allow the compiler to supply bool (a) as the
implicit return type for a function concept and (b)

as the implicit type for a variable concept.
(Note: this comment is implicitly accepted if the

previous comment is accepted.)

REJECTED

There was no consensus

for a change at this time,
but an issue will be opened

for future consideration by
WG21’s Evolution Working

Group.

US 26 8.3.5 p1/2 ed The extra line-breaks confuse the grammar as if it Reflow the text, moving more terms up to the

first line, so that the whole term clearly presents

ACCEPTED

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 9 of 13

had an alternate production. on just two lines.

US 27 [dcl.fct] (8.3.5) end of 21 ed/te The last part of the specification “… where T is the
template parameter invented for head and U is the

template parameter invented for U …“ seems
erroneous.

Replace “invented for U” by “invented for tail”. ACCEPTED

CA9 n/a 14.1 Para 10
example

te should the comment “associates C1<T>…” read
“associates C1<T> && …”?

 ACCEPTED WITH
MODIFICATION

Necessary parentheses
were added.

US 28 14.1 p1 ed When augmenting an existing grammar term, list the

existing terms as well as the new additions, so that
the context is clear, and it cannot be confused as a

replacement.

Provide a complete grammar (with insert

annotations) for template-parameter

ACCEPTED

US 29 14.1 p1 te constrained-parameter allows parameter pack with

default argument, and it is it not clear what that
should mean.

constrained-parameter:

qualified-concept-name ...opt identifieropt
default-template-argumentopt

qualified-concept-name identifieropt default-
template-argumentopt

ACCEPTED WITH

MODIFICATION

The suggested grammar is

ambiguous and has been
disambiguated.

US 30 [temp.param

] (14.1)

bullet (10.3) ed There seems to be an article missing in the phrase “If
C is variable concept …”

Insert the article “a” before “variable”. ACCEPTED

GB 3 14.6.4 [temp.friend] P10 Ed Three examples missing a return type:

template<C1 T> g0(T);

template<C1 T> g1(T);

template<C2 T> g2(T);

Add void return type to each example ACCEPTED

US 31 14.10.1 p2 ed Duplicate word ‘the the’ after the note. Determining if a constraint is satisfied entails the
the substitution of template arguments into that

constraint

ACCEPTED

CA1 N/A 14.10.1.1 Para 2
example

General there is a «fail()» function concept that seems unused
for the example, and is not mentioned in the
accompanying text; was that voluntary?

 ACCEPTED

US 32 14.10.1.1 p2 ed P and Q are defined with two different meanings in
the same numbered paragraph. Substitute different

A conjunction PA is equivalent to another
conjunction QB if and only if the left operands of

ACCEPTED

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 10 of 13

letters for one of the uses PA and QB are equivalent and the right
operands of PA and QB are equivalent.

US 33 14.10.1.1 P3 ed P and Q are defined with two different meanings in
the same numbered paragraph. Substitute different

letters for one of the uses

A disjunction PA is equivalent to another

disjunction QB if and only if the left operands of
PA and QB are equivalent and the right
operands of PA and QB are equivalent.

ACCEPTED

CA2 N/A 14.10.1.2 Para 1
example

Technical we have

template <typename T>

 concept bool C = sizeof(T) == 4 && !true;

The associated comment states: «requires

predicate constraints sizeof(T)==4 and !t».

The «!t» is what is confusing here, in my

opinion, as there is no occurrence of «t» in

the concept C. Was «t» supposed to be

«true» or is there a variable missing?

 ACCEPTED

US 34 14.10.1.2 p2 ed Example has a typo of ‘!t’ instead of ‘!true’

in the first line of commented code.
// sizeof(T) == 4 and !true ACCEPTED

US 35 14.10.1.3 p1 ed Duplicate ‘the the’ at the end of the

example.
The type argument int satisfies this constraint
because the the expression ++t is valid after

substituting int for T.

ACCEPTED

CA3 N/A 14.10.1.5 Para 1
example

ge more a suggestion than a comment: would a

convertible-to-type example like the

following be appropriate?

template <typename T> concept bool D =

 requires (T a) {

 { a } -> int; //

 REJECTED

The intent of the wording
was that determining
whether the constraint is
satisfied was done in the
context in which it appears,
not in a context-
independent way as

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 11 of 13

std::is_convertible<T,int>::value ?

 };

It could be here or in 14.10.1.6, but I get the

feeling it would follow the a==b example

nicely. There is something similar in the

middle of the page, with concept C2, but it

is more involved and contributes something

else to reader comprehension.

suggested. This approach
causes problems with
partial ordering, however,
so an issue against the TS
will be opened for further
consideration at a later
date.

US 36 [temp.constr

.conv] (14.10.1.5)

1 te This paragraph introduces implicit

conversion constraints to specify (via the

trailing-return-type notation ->) that a

constraint is satisfied iff an expression E is

convertible to a type T. It would be very

useful to have similar constraints that are

satisfied iff decltype(E) is exactly the type

T.

Introduce new notation (e.g., E => T) to denote
a constraint that is satisfied iff the expression E
has precisely the type T. Here is a practical
example of the utility of such a feature:

template <typename T>

concept bool CopyAssignable =

requires (T a, T b) {

{ a = b } => T const&;

};

REJECTED

There was no consensus

for a change at this time,
but an issue will be opened

for future consideration by
WG21’s Evolution Working

Group.

US 37 [temp.constr

.decl] (14.10.2)

2 just before
bullet (2.1)

ed There seems to be an extraneous word in

“The ordering of operands in the that

conjunction is:”.

Strike one of the words in “the that”. ACCEPTED

US 38 14.10.1.5 p2 ed Duplicate ‘the the’. … using the rules in 14.6.6.1 to compare
expressions, and the the types of P and Q are

equivalent …

ACCEPTED

CA4 n/a 14.10.1.6 Para 2
example

te I don't think g((int*)nullptr); is an error, as

g() is an unconstrained template in this

example (unless I missed something). Did

the author mean to declare g() as follows?

 ACCEPTED

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 12 of 13

template <typename T>

 requires C2<T>

 void g(T);

or as follows?

template <C2 T>

 void g(T);

or as follows?

C2{T} void g(T);

GB 4 14.10.1.6
[temp.constr.deduct]

P2 Ed There is no constraint in the example:

template<typename T>

void g(T);

Add a constraint ACCEPTED

GB 5 14.10.2
[temp.constr.decl]

P3.4 Ed The text refers to " Note that the normalized

constraints of #2 includes two atomic constraints:
sizeof(char) == 1 and 1 == 2."

This is incorrect.

Change the example or the note to match each
other.

ACCEPTED WITH
MODIFICATION

The referenced text was
deleted.

CA 10

n/a 14.10.3 Para 5 te The definition of “at least as constrained” is:

“A declaration D1 is at least as constrained as
another declaration D2 when D1 is more constrained

than D2, and D2 is not more constrained than D1.”

Doesn’t this definition make two declarations with

equivalent constraints not be “at least as constrained”
as each other?

For example:

 void foo(C c); // D1

Replace paragraph 5 with the following
paragraphs:

Two declarations D1 and D2 are equally
constrained if

- D1 and D2 are both unconstrained; or

- D1 and D2 are both constrained, D1’s
associated constraints subsume those
of D2, and D2’s associated constraints
subsume those of D1

ACCEPTED WITH
MODIFICATION

ISO/IEC PDTS 19217, NB comments and secretariat observations Date:2015-07-25 Document: SC22/WG21 N4550 Project: ISO/IEC PDTS 19217

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 13 of 13

 void foo(C c); // D2

Here, D1 is not “more constrained than” D2, so

according to this definition, it’s not “at least as
constrained as” D2, either – but don’t we want it to

be?

A declaration D1 is at least constrained as
another declaration D2 if

- D1 is more constrained than D2; or

- D1 and D2 are equally constrained

CA 11

n/a 14.10.4 Para 3, bullet
3.3

te Are there any situations where bullet 3.3 applies? It
seems that bullets 3.1 and 3.2 already exhaust the

cases listed in paragraph 1 above.

 ACCEPTED WITH
MODIFICATION

The text was changed to
make explicit that template-
ids must be fully resolved in
constraint-expressions
when they name a concept.

CA5 N/A 14.10.4 Para 4.3 te at the bottom of the example, functions q1() and q2()
have to satisfy concept Q (with a variadic number of

parameters in one case and with a single parameter
in the other). I do not see concept Q in that example.

An oversight?

 ACCEPTED

US 39 [temp.constr

.resolve] (14.10.4)

bullet (3.2) ed The phrase “a sequence wildcards” seems to be

missing a word.

Insert “of” before “wildcards”. ACCEPTED

