Stroustrup&Sutter Uniform Call Syntax N 4474

Unified Call Syntax: x.f(y) and f(x,y)
Bjarne Stroustrup [bs@ms.com]

Herb Sutter [hsutter@microsoft.com]

Abstract

In Urbana, EWG discussed two proposals for generalizing/unifying the two function call notations x.f(y)
and f(x,y). The papers are

e N4165: Herb Sutter: Unified Call Syntax
e N4174: Bjarne Stroustrup: Call syntax: x.f(y) vs. f(x,y)

Our reading of the discussion is that the papers were seen as promising, but that there were concerns
about compatibility in the case of Bjarne’s paper. There were also a few questions about exactly where
this call unification would be useful.

This note discusses the motivation, considers a few alternatives, and presents a revised proposal. Briefly,
x.f(y) will first look for members of X’s class (as ever) and if no valid call is found will look for functions as
if f(x,y) had been written. Conversely, f(x,y) fist looks for functions (as ever) and if no valid call is found
looks for functions as if x.f(y) had been written. We handle p->f(y) and f(p,y) similarly. This proposal is
backwards compatible (modulo SFINAE trickery, of course).

Motivation

Having two call syntaxes makes it hard to write generic code: which syntax can we assume from a
template argument type? When we start writing concepts, we will either have to support both syntaxes
(verbose, potentially doubling the size of concepts) or make assumptions about how objects of certain
binds of types are to be invoked (and we may be wrong close to 50% of the time).

Today, we already have the problem that many standard-library types are supported by two functions,
such as, begin(x) and x.begin(), and swap(x,y) and x.swap(y). This is an increasing problem.

The problem was solved for operators. An expression a+b may be resolved by a free-standing function
operator(X,X) or a member function X::operator(X).

The problem was solved for range-for by allowing both begin(X) and X::begin() to be found.
The existence of two special-case solutions and a lot of duplicated functions indicate a general need.

Each of the two notations has advantages (e.g., open overload sets for non-members and member
access for members) but to a user the need to know which syntax is provided by a library is a bother.

Stroustrup&Sutter Uniform Call Syntax N 4474

Thus implementation concerns can determine the user interface. We consider that needlessly
constraining.

Concepts make this (well-known and long-standing) problem more acute by formalizing the
requirements of generic components. Consider writing a concept for a container:

template<typename C> concept bool Container =

requires(Ca, Cbh, inti) {

{ a[i] } -> typename C::value_type&; [/ [] must be member
// (says the language
{ a==b}-> bool;]/ operator ==() can be a member or a
// nonmember (says the language)

{ begin(a) } -> typename C::lterator; [/ begin() can be non-member
{ a.begin() } -> typename C::lterator; // begin() can be member
{ a.size() } -> int; // size() must be member
I/ ..

b

Consider c.size(). It must be a member function. This Container concept does not support size(c).
Someone might define a size(X) for a type X, but callers of a template using a Container cannot rely on
size(x) and neither can the implementers of a template function using Containers. This forces the use of
x.size() even if size(x) is defined for X. If X is a type we cannot change, this is a serious problem because
adding a member is an intrusive operation. This is the observation that has pushed STL-inspired libraries
towards the use of free-standing functions.

Consider the two requirements for begin(). We know that if we include <iterator> we can use begin(c)
even for types that has only c.begin(), but the writer of Container cannot assume <iterator> for all uses,
so to allow begin(c) for any type, it must require it for all types.

What | wrote for size() constrains all users to use c.size() and all Container classes to implement a
member size(). That is constraining on both users and implementers, and potentially intrusive on older
container implementations. What | wrote for begin() gives users the freedom of choice between
begin(c) and c.begin() at the cost of forcing every container writer the ensure that both are defined
(somehow). As usual, a user of begin() has to make sure that the appropriate declarations are in scope.
This could be difficult for pre-STL-style containers.

For every function mentioned in a concept, we must either define it twice (as a member and a non-
member) or make a (semi-arbitrary) decision on which syntax is to be used.

Note that this is not a problem with concepts. It has been a problem with templates since day #1. Itis a
problem of what users of a template can assume about the template definition and what a template
implementer can require from users. We have always had concepts, but moving them from comments
to a proper interface specification brings the problem out in the open.

Stroustrup&Sutter Uniform Call Syntax N 4474

Ideals

We consider it ideal if both notations would have the same meaning. Ideally, that meaning would be the
same as what we have for operators and for range-for. That way, there would be only one rule to learn
and only one possible meaning of a concept.

Unfortunately, this is not possible:

e Range-for uses the prefer x.begin() over begin(x) strategy (6.5.4 The range-based for statement
[stmt.ranged])

e Operator+ uses overload resolution to decide between operator+(x,y) and x.operator+(y)
(13.3.1.2 Operators in expressions [over.match.oper])

Similarly, having only one meaning for both call notations would make it impossible to achieve 100%
backwards compatibility: Currently

o f(x,y) will not find a X::f(Y)
o x.f(Y) will not find a f(X,Y), including lambdas

If we grant precedence to one resolution (e.g., prefer member over free-standing function, as done for
range-for) or if we select based on overload resolution, we can easily construct examples that change
meaning compared to status quo. For example:

struct S {
void f(int);
b

void f(const S&, double);

void f(S& s)
{
s.f(2.0); // overload resolution would call free-standing f()
// status quo will call the member
f(s,2);]/ member-preference would call member
// status quo will call the freestanding f{()
}

Herb’s proposal addresses this problem by generalizing only x.f(y) to call f(x,y) if there is no match for
x.f(y), but not generalizing f(x,y) to find a member function callable as x.f(y). This is “too object-
oriented” for some people (including Bjarne). Many don’t want to have to write x.sqrt() rather than
sqrt(x), e.g., 2.sqrt(), and that’s what we’d all have to do in all generic code and all concepts to get the
full generality that is the primary aim of these proposals. Please don’t underestimate this problem:

e Bjarne received a fair amount of outraged mail from people who thought he had proposed that
(and only that).
e Giving preference to x.f(y) encourages making functions members, thus increasing coupling.

Stroustrup&Sutter Uniform Call Syntax N 4474

e Alambda passed as a template argument must be called using the f(x,y) notation.
Not all opposition to x.f(y) is emotional and aesthetic.

We should “generalize” both f(x,y) and x.f(y) and that the (possibly unachievable) ideal is that they
should have the same meaning.

Alternatives
We see six alternatives:

1. Do nothing. That implies the complication of concepts and the continuing duplication of library
functions.

2. Generalize only x.f(y) (to call f(x,y) if there is no valid resolution for x.f(y) as a member function).
Herb’s original proposal. That would leave us writing x.sqrt() for generality.

3. Generalize only f(x,y) (to call x.f(y) if there is no valid resolution for f(x,y) as a free-standing
function). Nobody is proposing that; we mention it only for completeness. This would leave us
writing draw(obj) for generality.

4. Prefer member functions over free-standing functions for x.f(y) and prefer free-standing
functions over member functions for f(x,y). This is 100% compatible with current rules, but
leaves operator+ as a special case. Also, from the point of view of a concept, x.f(y) and f(x,y) are
not completely equivalent. Gaby mentioned this alternative in EWG in Urbana.

5. Use overload resolution to choose the best match from the set of free-standing and member
functions. This is not 100% compatible with current rule, and leaves range-for as a special case
(but we could possibly fix that).

6. Prefer a member function for both x.f(y) and f(x,y) notations. Bjarne’s original proposal. This is
the least compatible variant.

[6] (two notations and one semantics) is the simplest and solves all problems with concept writing. We
consider it reasonable to prefer member functions because they are the ones supplied by the designer
of a type. It solves the concept writer’s problem. It is not 100% compatible.

[5] (overload resolution) is almost 100% compatible, and arguably the resolution is always better than
what the current rules give. Some people have expressed concern about the potential size of the
overload sets involved, but that’s no different than for operator+, so this many not be a problem.

[4] (two notations with precedence) is backwards compatible, but will make some concept writers list
both alternatives to cope with rare cases.

[3] (only generalize f(x,y)). would de-emphasize the OO notation and make it harder to provide
online/IDE support a la “intellisence.”

[2] (only generalize x.f(y)) is “too O0”, encouraging increased coupling and discouraging lambdas.

[1] (status quo) causes problems for programmers, notably for library writers.

Stroustrup&Sutter Uniform Call Syntax N 4474

Discussion points
If we want 100% compatibility, we must choose [1], [2], [3], or [4]:

e [1] doesn’t solve the problem

e [2] would de-emphasize the functional notation and encourage increased coupling. Concepts
would be written x.f(y).

e [3] would de-emphasize the OO notation. We don’t think anyone likes it as a C++ extension
(even though it may be seen as ideal if we had no compatibility constraints). Concepts would be
written f(x,y).

e [4] would give people a choice of notations. Since the notations would have slightly different
meanings (to preserve compatibility) concepts will have to be written with a (slight) bias
towards one notation or the other.

[5] is a technically better solution than [4] in that it will give identical resolutions for both notations and
arguably the technically best solution in all cases. It is what we currently do for operators. If we choose
[5], we should consider changing the rules for range-for to get a uniform rule.

[6] is (we think) a simpler solution for humans to fathom than [4]. It would lead to surprises
(incompatibilities) only for people using the f(x,y) notation. And only for f(x,y) used where x.f(y) would
give a different and inferior solution to f(x,y). Bjarne conjectures that this is very rare, but can’t prove it.

In cases [5] and [6] a compiler could warn if a function that would be invoked under current rules was
not chosen.

A major motivator for Herb (though not for Bjarnee) is to encourage the use of x.f(y) to make
“intellisence” more effective. Herb points out the effectiveness of an IDE making suggestions based on x.
compared to making suggestions based on f(. After x., a compiler can easily made a list of all possible
member names that can appear after the dot. For f(a compiler must look through all active scopes to
make a list of possible fs. To find the full set of alternatives, we need to know the full set of arguments
to see if there are any candidate functions found by ADL. If no f is found after x.f(the compiler must
look into the active scopes for an f (just like after a “plain” f(. In x.f(, x specifies an exact type, whereas in
f(x,, x can be subject to conversions.

Bjarne doesn’t doubt that there is an advantage to “intellisence” nor that the advantage is most
significant when using member functions. However, that also gives a bias towards an asymmetric
notation specialized on the first argument (“the object” is given a very special role). The implied
encouragement to the use of member functions is a concern because it increases coupling. The prefix
functional notation (e.g., f(x,y,z)) and suffix functional notation (e.g., (x,y,z).f) are general, but the infix
object-oriented notation (e.g., x.f(y,z)) as specialized (and special purpose). We could generalize to allow
f(x,y,z) and x.f(y,z) and (x,y).f(z) and (x,y,z).f) to address this (there is an example of that in D&E), but we
don’t propose to go that way; for starters, it would be confusing unless those 4 calls had identical
meaning, but that can be achieved only by choosing an incompatible solution.

Stroustrup&Sutter Uniform Call Syntax N 4474

Should we get multimethods in the future, the x.f(y) notation will start to look even more “special
purpose.” Thus deciding on x.f(y) only would close a promising evolution path.

It has been conjectured that looking into a second scope would slow down compilation. It is not obvious
that this slowdown would be significant (we already do it for operators). For [5] (overload resolution),
the extra lookup would always happen. For [4] and [6] (relying on looking into one scope first), the cost
would only be incurred when no match were found in the preferred scope.

Questions

1. Do anyone have a tool that let us scan a large body of code to see whether the concern over
non-compatible resolution is real? To get a real problem, we would need an x.f(y) and an f(x,y)
and their meaning must be different. Most cases where | see such two functions, then have the
same meaning. To do a perfect job, such a tool would need to be type sensitive and know the
C++ lookup and conversion rules, but maybe a non-perfect approximation could give useful
data.

2. If we consider the compatibility problem significant, is [4] (Prefer member functions over free-
standing functions for x.f(y) and prefer free-standing functions over member functions for
f(x,y).) sufficient for us to write concepts in terms on one call syntax only?

3. If we don’t consider the compatibility problem significant, is [5] (overload resolution) or [6]
(member preference) best?

4. Would it be enough to generalize only x.f(y)?

Our best answers are “we don’t know”, yes, “we are not sure”, and no.

Suggested resolutions

We consider solutions [4] (two notations with precedence), [5] (overload resolution), and [6] (two
notations and one semantics) acceptable. Based on the discussions in Urbana, let us consider [4] as our
initial solution:

Prefer member functions over free-standing functions for x.f(y) and prefer free-standing
functions over member functions for f(x,y). This is 100% compatible with current rules, but
leaves operator+ as a special case. Also, from the point of view of a concept, x.f(y) and f(x,y) are
not completely equivalent. Gaby mentioned this alternative in EWG in Urbana.

This takes the compatibility issues off the table. Let us consider [5] (overload resolution), and [6] (two
notations and one semantics) later if and only if we get evidence that the compatibility problems are
negligible.

Choice of function

With [4] we have to look seriously at whether it solves the problem of supporting template interfaces
(specified in terms of concepts). The meaning of f(x,y) and x.f(y) can differ, but will they — in realistic
examples — differ in ways that will encourage template writers to define two functions in a concept?

6

Stroustrup&Sutter Uniform Call Syntax N 4474

Consider a general form of the problem:

struct S1 {
int f(int);
b

struct S2 {

int f(double);
b

int f(S1,double);
int f(S2,int);

void use(S1 s1, S2 s2)

{
$1.f(2.8); /[prefer member: truncate
f(s1,2.8);]/ prefer nonmember
s1.f(2);]/ prefer member
f(s1,2);]/ prefer nonmember: promote to double
s2.f(2.8);]/ prefer member
(s2,2.8);]/ prefer nonmember: truncate
s2.f(2); /[prefer member: promote to double
(s2,2);]/ prefer nonmember
}

This is obviously the exact behavior we have today. Hopefully, the truncations will yield warnings. The
difference given uniform call syntax is simply that if we removed a member or a nonmember f(), the
example would still compile and the meaning would be that of the now one and only f().

struct S1 {
int f(int);
b

struct S2 {
// int f(double);

b

// int f(S1,double);
int f(S2,int);

void use(S1 s1, S2 s2)

{
$1.f(2.8); // truncate
f(s1,2.8); // truncate
s1.f(2);

Stroustrup&Sutter Uniform Call Syntax N 4474

f(s1,2);

s2.f(2.8); // truncate

f(s2,2.8); // truncate

s2.f(2); // promote to double
f(s2,2); // promote to double

}

Again, we can hope for warnings against the truncations. So far, so good. We gained a bit of flexibility at
no real cost. But how about templates? Consider:

struct S1 {
int f(int);

b

struct S2 {
int f(double);
b

int f(S1,double);
int f(S2,int);

template<typename T>
void use(T t)

{
t.f(2.8); /[prefer member
f(t,2.8); /[prefer nonmember
t.f(2); /[prefer member
f(t,2); /[prefer nonmember
}

use(S1{}); // exactly as S1 before
use(S2{}); /[exactly as S2 before

There are three ways the constrain T in use(T):

e Favor members
e Favor nonmembers
e Explicitly cater for both

By commenting out a line or not, we can choose an alternative:

template<typename F> concept bool Fmem =
requires(F a, int i, double d) {
{f(a,d); } -> int; // begin() can be non-member
{a.f(i); } -> int; // begin() can be member
b

Stroustrup&Sutter Uniform Call Syntax N 4474

Picking one line (constraint) or the other will be sufficient for the realistic examples we can think of. If
you feel otherwise, push for one of the less compatible alternatives: [5] (overload resolution) or [6] (two
notations and one semantics).

Inaccessible and uncallable members
What if a call x.f(y) finds a members that cannot be called? Consider:

class X {
private:

void f(int);
public:

intg;

b

void f(X&,double);
void g(X&,double);

void use(X& x)

{
x.f(2.9); // calls ::f(double) or error?

x.g(2.9); // calls ::g(double) or error?
}

Equivalent examples can be constructed for uncallable global names hiding perfectly valid member
functions (or callable objects). The solution is the same in both cases: Consider failure to find a function
to call and finding something that cannot be called equivalent. In that case, try the other notation. In
particular, the two calls in the example are valid.

Pointers
Calls using pointers can be handled in a way similar to the way object are handled

e For p->f(y), see if p->f(y) is valid and if so do that call; otherwise if f(p,y) is valid do that call.
e Forf(p,y), see if f(p,y) is valid and if so do that call; otherwise if p->f(y) is valid do that call.

The main design choice here is whether to accept a “smart pointer” (an object of a class with -> defined)
as a pointer. We propose to accept “smart pointers” — they are common and useful, so they should not
become second class citizens.

If a p->f(y) call fails, we look at p to see whether it is a pointer or of a class with an operator->(). If so we
try f(p,y). Similarly, if a f(p,y) fails, we look at p to see whether it is a pointer or of a class with an
operator->(). If so we try p->f(y).

This implies a bit of extra work for the compiler, but only in the case where a call currently fails.

Stroustrup&Sutter Uniform Call Syntax N 4474

Wording

The intent of the wording is:

o For x.f(y), see if x.f(y) is valid and if so do that call; otherwise, if f(x,y) is valid, do that call.

e For p->f(y), see if p->f(y) is valid and if so do that call; otherwise, if f(p,y) is valid, do that call.

o For f(x,y), see if f(x,y) is valid and if so do that call; otherwise if -> is defined for x, try x->f(y),
otherwise try x.f(y).

10

	Unified Call Syntax: x.f(y) and f(x,y)
	Bjarne Stroustrup [bs@ms.com]
	Herb Sutter [hsutter@microsoft.com]

	Abstract
	Motivation
	Ideals
	Alternatives
	Discussion points
	Questions
	Suggested resolutions
	Choice of function
	Inaccessible and uncallable members

	Pointers
	Wording

