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ABI Considerations

ABSTRACT

This document discusses the ABI implications from the SIMD types described in
[N4184] and [N4185]. I investigate strategies to automatically adapt between different
translation units compiled for different microarchitectures of the same architecture.
None of the strategies lead to a solution without surprises. The solutions section
therefore looks at how the default vector type may need to be declared to make
ABI incompatibilities a conscious choice of the user.
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N4395 1 About This Document

1 ABOUT THIS DOCUMENT

This document is derived from a larger document about the Vc library. For the sake
of simplicity I refrained from changing the naming conventions of types/functions in
this paper:

• I want to focus on functionality first. We can “correct” the names later.

• It is easier to find the reference to an existing implementation.

Disclaimer: I did not get everything “right” in the Vc implementation yet. Some
details of the interface definitions I present here do not fully reflect the current
state of the Vc SIMD types.

1.1 shorthands in the document

• 𝒲𝚃: number of scalar values (width) in a SIMD vector of type T (sometimes also
called the number of SIMD lanes)

1.2 scope

This document talks about a quality-of-implementation issue. None of the extra com-
piler features discussed here need to / should be part of the SIMD types specification.
This is an investigation of the implications of a specification along the lines of [N4184]
and may influence some decisions (mainly about the default SIMD types) going for-
ward.

2 ABI INTRODUCTION

An ABI describes machine-, operating system-, and compiler-specific choices that
are not covered by a programming language standard. Some of the issues are func-
tion calling conventions, memory/stack organization, and symbol name mangling.
For example, Matz et al. [4] and Itanium C++ ABI [3] standardize and document the
ABI for Linux. For Windows the ABI is implicitly defined by its development tools. For
all targets, the goal is to have an ABI that allows interoperability. Developers expect
that their choice of compiler (and compiler version) does not have an influence on
the TUs (translation units) that can be linked together correctly. Compiler vendors
and operating system vendors have a great interest in providing this guarantee.
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3 ABI RELEVANT DECISIONS IN VC

The interface choices for Vc have a direct influence on the ABI of the Vc library.

3.1 function parameters

If a Vector<T> is used as a function parameter, there are two principal choices for
implementing the parameter passing in the function call convention:

1. The vector can be passed as a single SIMD register.

2. The vector is pushed onto the stack and thus passed via memory.

Choice 1 is the most efficient choice for the majority of situations. This requires a
trivial copy constructor and destructor in Vector<T> (which recursively requires the
copy constructor and destructor to be trivial for all non-static data members) with
the Linux ABI [4].
If a union of intrinsic type and array of scalar type is used to implement the data

member of Vector<T>, the Linux x86_64 ABI requires different parameter passing,
which is derived from all members of the union. With a trivial copy constructor and
destructor a union with 𝚜𝚒𝚣𝚎𝚘𝚏() = 16 must be passed as two SSE registers or two
general purpose registers, while with 𝚜𝚒𝚣𝚎𝚘𝚏() = 32 the parameter must be passed
via memory [4, §3.2.3]. (According to the rules in Matz et al. [4, §3.2.3] there is a
workaround to achieve parameter passing via SIMD registers: The array inside the
union must be declared with zero entries.)
This shows that, in addition to the interface definition, the concrete implementa-

tion strategy also has an influence on the resulting ABI of the vector types. This
needs to be considered carefully when implementing the library. Consequently, an
implementation should avoid a union based implementation (unless the ABI for the
target system works differently) and rather use a different compiler extension for
explicit aliasing, such as GCC’s may_alias attribute.
The discussion above equally applies to Mask<T> and all derived types, of course.

3.2 linking different translation units

A user can compile two TUs with different compiler flags for the target microarchi-
tecture (for example, so that one is compiled for SSE and the other for AVX). This
most likely happens with one TU in a library and the other in an application. Then Vc
vector or mask types in the interfaces between the TUs are incompatible types. The
most complicated architecture with regard to SIMD differences probably is x86: Very
old systems have no usable SSE support, old systems support SSE, current systems
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AVX or AVX2, and future systems AVX-512. 𝒲𝚃 is different: xmm vs. ymm vs. zmm reg-
isters. Consequently, it appears like a good idea for packagers to not treat x86 as a
single architecture anymore, but several ones. There is great interest in not having
to take that path, though. The following sections will explore the issue in detail.

4 PROBLEM

The Vector<T> type is defined as a target-dependent type, which, similarly to int1,
uses the most efficient register size on the target system. For SIMD registers this
implies that the number of values 𝒲𝚃 stored in a Vector<T> object can be differ-
ent between different microarchitectures of the same architecture. The SIMD Types
interface [N4184] at least ensures that the types Vector<T> are different if the regis-
ter sizes differ. Therefore, the use of Vector<T> is safeguarded against incompatible
linking, which would result in spurious runtime errors.
For the following discussion, consider an Intel Haswell system, which implements

the x86_64 architecture and AVX2 SIMD registers & operations as a part of its mi-
croarchitecture (for simplicity, ignore the MMX instruction set). Then,

• with AVX2 𝒲𝚏𝚕𝚘𝚊𝚝 = 8 and 𝒲𝚒𝚗𝚝 = 8,

• with AVX 𝒲𝚏𝚕𝚘𝚊𝚝 = 8 and 𝒲𝚒𝚗𝚝 = 4,

• with SSE 𝒲𝚏𝚕𝚘𝚊𝚝 = 4 and 𝒲𝚒𝚗𝚝 = 4, and

• without using SIMD functionality 𝒲𝚏𝚕𝚘𝚊𝚝 = 1 and 𝒲𝚒𝚗𝚝 = 1 (the Scalar imple-
mentation mentioned in [N4184]).

The Vector<T> incompatibility between different SIMD instruction sets implies that
a TU built for Intel SandyBridge differs in ABI to a TU built for Haswell. This breaks with
the guarantee compiler vendors would like to retain: the ABI for a given architecture
should stay stable. With the current Vector<T> proposal, implemented on top of
SIMD intrinsics, the ABI would only be stable within microarchitectures.
One could argue that it is technically correct that some microarchitectures (those

with differing SIMD widths) of the same architecture are partially incompatible, and
thus the ABI could/should reflect this. On the other hand, it is very desirable that such
incompatibilities are either hidden from (or consciously enabled by) the user. Thus, if
it is at all possible to have the compiler automatically adapt between the microarchi-
tectural differences, then implementors should invest in getting the Vector<T> ABI
right from the outset.

1 “Plain ints have the natural size suggested by the architecture of the execution environment” [2,
§3.9.1 p2]
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4.1 fixed 𝑤𝚝 in interfaces is not the solution

A common idea for solve the above issue, is to request that the SIMD type uses a
user-defined width (cf. Fog [1] and Wang et al. [5]). Then the type would use the same
𝒲𝚃 on any target and the types would be equal in different TUs.
There are two issues with this:

1. There is no guarantee that the specific 𝒲𝚃 can be implemented efficiently on
all target systems. Consider, for example, the common choice of 𝒲𝚏𝚕𝚘𝚊𝚝 = 4
compiled for an Intel Xeon Phi. The type would have to be implemented with a
512-bit SIMD register where 75% of the values are masked off. On a target with-
out SIMD support, four scalar registers would have to be used, which increases
register pressure.2

2. Even though the types are equal, the specific parameter passing implementa-
tion might be different. Consider a vec<float, 8> type translated for either
AVX or SSE. Then the function

void f(vec<float, 8>)
would use ymm0 with AVX and xmm0 and xmm1 with SSE to pass the function
parameter from the caller to the function. Thus, if this were the preferred so-
lution for implementors, vector types would have to be passed via the stack
for function parameter passing (cf. Section 3.1). In addition, the in-memory rep-
resentation and alignment requirements for the different microarchitectures
must be defined in such a way that they work correctly on all systems.

From my experience, and in order to enable full scaling to different SIMD targets,
I prefer a solution where a fixed 𝒲𝚃 is only chosen because it is dictated by the
algorithm, not because of technical complications with ABI compatibility.

4.2 derived types

A class that is derived from Vector<T> or a class that has a non-static Vector<T>
member will not have a different type in different TUs which are compiled for different
SIMD widths. Thus, the linkage safety built into Vector<T> does not work for any
derived types. Furthermore, this suggests that a solution that transparently adapts
the ABI differences must be rather invasive.
The compiler would have to compile Scalar, SSE, AVX, and AVX2 (to stay with the

x86_64 example) variants of all derived types and functions that use these types.

2 With luck this might just be the right loop-unrolling to achieve good performance, but it is the wrong
mechanism to achieve this effect.
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The symbols would need additional information about the SIMD target as part of the
name mangling.
Automatic adaption (such as a call from an AVX TU to an SSE TU) between derived

types will be a problem, though. Consider that TU1 creates an object of a derived type
D. A call to a member function, which is not declared inline and instead was compiled
for a different SIMD width in TU2 now would require a transparent conversion of the
object from one SIMD width to a different SIMD width. There cannot be a generic
strategy to perform such a conversion without breaking the semantics guaranteed
to the implementation of D.

4.3 serial semantics

Consider an ABI adaption strategy that splits a function call from TU1 with a Vec-
tor<T> argument with 𝒲(1)

𝚃 to multiple function calls to the function compiled with
𝒲(2)

𝚃 = 𝒲(1)
𝚃

𝑁 in TU2. This approach exposes non-serial semantics. This manifests, for
instance, if two functions are intended to be called in serial succession, communicat-
ing via a global (or thread-local) variable.3 If the adaption from an AVX2 TU to an SSE
TU is done via calling the SSE function twice with the low and high parts of the vector
argument, then the first function will be called twice, before the second function is
called twice.
Consider the example in Listing 1. The developer expected serial semantics in func-

tion h. Instead, f is called twice, before g is called twice. Therefore, the conclusion is
that adapting between different SIMD widths cannot be done via splitting a function
call into multiple function calls.

4.4 largest common simd width

Consider a compiler implementation that identifies types that depend on 𝒲𝚃 and
automatically compiles these symbols for all possible 𝒲𝚃 the target supports (ex-
tending the mangling rules accordingly). Then, when the TUs are linked to a single
executable, the linker can detect whether for some symbols some 𝒲𝚃 translations
are missing. In this case it can drop these 𝒲𝚃 symbols. The same could be done by
the loader when the program is dynamically linked, right before executing the pro-
gram. The largest remaining 𝒲𝚃 symbols can then be used to execute the program.
This solution should work as long as no dynamically loaded libraries are used (e.g.

Plug-ins). Because, if an incompatible library (i.e. one that does not have the symbols
for the currently executing 𝒲𝚃) is loaded, the program cannot switch back down to

3 This is probably a bad design, but that does not invalidate the problem.
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1 // a.cc (SSE2 : float_v::size() == 4):
2 static float_v globalData;
3 void f(float_v x) { globalData = x; }
4 float_v g() { return globalData; }
5

6 // b.cc (AVX2 : float_v::size() == 8):
7 float_v h(float_v x) {
8 f(x); // calls f(x[0...3]) and f(x[4...7])
9 // now globalData is either x[0...3] or x[4...7], depending on the order of

10 // calls to f above
11 return g(); // calls concatenate(g(), g())
12 }
13

14 int main() {
15 cout << h(float_v::IndexesFromZero()); // {0 1 2 3 4 5 6 7}
16 return 0;
17 }
18

19 // prints:
20 // 0 1 2 3 0 1 2 3
21 // or:
22 // 4 5 6 7 4 5 6 7

Listing 1: Impure functions break the adaption strategy of using multiple calls to TUs
with shorter SIMD width.

a smaller 𝒲𝚃. Thus, at least the ABI compatibility with dynamically loaded symbols
cannot be guaranteed by this approach.

4.5 simd-enabled functions

The SIMD-enabled functions described in [N3831] provide the semantic restriction
which works around the issue described in Section 4.3. The code in Listing 1 would still
produce the same result, but because of the semantic restriction for the functions f
and g the undefined behavior would be expected.
On the other hand, a member function of a class with members of vector type

that accesses such members will still not be automatically adaptable between dif-
ferent TUs. Consider Listing 2. The call to D::f on line 21 will pass a this pointer
to an object storing two float_v objects with 𝒲𝚏𝚕𝚘𝚊𝚝 = 8 placed next to each other
in memory. The function D::f, on the other hand, (line 10) expects two float_v
objects with 𝒲𝚏𝚕𝚘𝚊𝚝 = 4 consecutively in memory (Figure 1). In order to adapt such
differences between TUs automatically, the adaptor code would have to create two
temporary objects of type D (with the ABI in a.cc), copy the data, call the function
D::f twice, copy the resulting temporary objects back into the original object and
return. But such a strategy breaks with the call to next->f(). Non-vector members
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1 typedef Vector<float, Target::Widest> float_v;
2 struct D {
3 float_v x, y;
4 unique_ptr<D> next;
5 D() : x(float_v::IndexesFromZero()), y(0) {}
6 void f() [[simd]];
7 };
8

9 // a.cc (widest float_v::size() == 4):
10 void D::f() [[simd]] {
11 y = (y + 1) * x;
12 if (next) {
13 next->f();
14 }
15 }
16

17 // b.cc (widest float_v::size() == 8):
18 int main() {
19 D d;
20 d.next.reset(new D);
21 d.f();
22 }

Listing 2: Member functions as SIMD-enabled functions?

x0
x1
x2
x3
x4
x5
x6
x7

y0
y1
y2
y3
y4
y5
y6
y7

x0
x1
x2
x3

y0
y1
y2
y3

x4
x5
x6
x7

y4
y5
y6
y7

Figure 1: Memory layout differences depending on ABI. The memory layout of d in
the caller is shown on the left. However, the function D::f expects the
memory layout as shown on the right.
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cannot be transformed generically and the next pointer would therefore point to an
untransformed object.
Effectively, the strength of vector types (namely target-optimized data structures)

inhibits the creation of automatic ABI adaption between TUs with different 𝒲𝚃.

5 SOLUTION SPACE

In order to enable compilers to keep ABI compatibility for the complete x86_64
architecture, the solution needs to …

1. …make ABI breakage of derived types impossible (or obvious to the user). (cf.
Section 4.2)

2. …keep one function call as one function call. (cf. Section 4.3)

3. …not require a specific 𝒲𝚃 from dynamically loadable libraries. (cf. Section 4.4)

5.1 drop the default vector type

After extensive consideration and some prototyping I have not found an idea to
transparently solve the issue while keeping a default vector type with varying 𝒲𝚃
for different microarchitectures. At this point the only solution I can conceive is a
vector type that does not have a default 𝒲𝚃, or at least not one that follows the
microarchitecture.
Feedback on [N4184] suggested to use a policy type to select the Vector imple-

mentation instead of namespaces. Therefore, the following discussion refers to the
following class template (with possible tag types and a portable default for x86_64):

namespace Vc {
namespace Target {

struct Scalar {}; // always present
struct Sse2 {}; // x86(_64) specific
struct Avx {}; // x86(_64) specific
struct Avx2 {}; // x86(_64) specific
typedef target_dependent Widest; // always present

}
template <typename T, typename Impl = Target::Sse2> class Vector;

}

The user who wants to have a different default behavior can do something along
the lines of:
template <typename T> using Vector = Vc::Vector<T, Vc::Target::Avx>;
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Or, to get the behavior described in [N4184]:
template <typename T> using Vector = Vc::Vector<T, Vc::Target::Widest>;

With this declaration of the default, the ABI can be stable for the complete x86_-
64 architecture until the user selects a specific microarchitectural subset (such as
Target::Avx) explicitly. Thus, ABI incompatibilities will only occur after a (at least to
a certain degree) conscious choice of the user. And at the same time it requires a
minimal amount of code to get the behavior described in [N4184], which can be very
useful for controlled environments, such as homogeneous cluster systems and some
in-house software.

5.2 improving multi-𝑤𝚝 support

I believe it should be possible for compilers to improve deployment to targets with
different 𝒲𝚃 for different microarchitectures. This would follow along the lines de-
scribed in Section 4.4. While this does not fully solve the ABI compatibility issue of 𝒲𝚃
depending on the microarchitecture, it still enables a considerably simpler vehicle for
binary distribution. Dynamically loaded libraries (Plug-ins) would require extra care
by developers, but otherwise applications could transparently use the best available
SIMD instruction set without additional work by application developers.

6 CONCLUSION & INTENDED FEEDBACK

This paper has shown that there is still unclear direction how to define a portable
vector type which enables compiler vendors to make a target architecture ABI-com-
patible throughout all SIMD variants. The requirements of C++ users certainly differ
on this point and there will probably be no clear one-fits-all answer. This issue needs
more experience and work in real-world use to come to a final conclusion.
Regarding the default vector width I am looking for feedback how to proceed. It

appears like Section 5.1 is the only solution, at the expense of dropping the best-
width vector type in favor of a more conservative choice. Did I miss an important
idea or will this be the way forward?
Regarding the multi-𝒲𝚃 support, I am convinced that the compiler can alleviate

some of the current pain we have with differences between microarchitectures. I
know that multi-targeting is a goal for others as well. Therefore, I would be very
interested to learn of anything that could be done from the language side or in the
definition of the SIMD types to enable a better solution.
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