
Minimal Additions to the Array View Library for Performance and

Interoperability

Document number: N4222
Date: 2014-10-09
Project: Programming Language C++, Library Evolution Working Group
Reply-to: Rutger ter Borg, rutger@terborg.net, Jesse Perla, jesse.perla@ubc.ca

1 Introduction

This paper proposes a set of small additions and changes to the array_view library, initially proposed
in N3851. The primary goal is to provide a minimal set of changes to fulfill the needs of the scientific
computing community, and to future-proof the design to ensure further performance, semantic, and
interoperability enhancements are possible. Summarizing the suggested changes:

• Support for column vs. row major style storage–through a template parameter, enabling future
additions with more flexible storage control for contiguous data.

• Support for operator()(...) for access to enable easier porting of existing code, and provide future
optimizations and slicing.

• Ensure that the semantics of operator[] slices and any iterators are independent of storage order-
ing. This feature could lead to the only major design consideration: merging the array_view and
strided_array_view into a single array_view class.

• Access to internal pointers, such as the data in strided_array_view to enable creation of adapters
and rough testing of aliasing.

• Support RandomAccessContainer and other range-supported concepts, especially for the 1-D spe-
cialization.

2 Motivation and Scope

The majority of computational libraries either implement their own classes for vectors, matrices, and
multi-arrays, with varying degrees of efficiency and expressiveness, or give up and implement with raw
C pointers. The creation of expression template libraries for in C++ has made the semantics close to
mathematics and domain-specific languages like Matlab, but at the cost of even more fragmentation. The
array_view library is a very good start on solving this mess by providing a standardized way to access
and adapt these various formats relying on contiguous data.

In order to be accepted by the scientific community, array_view needs to (1) provide maximum
performance–including the encapsulation of available static information, (2) enable easy adaptation of
existing objects, and (3) provide a straightforward path to porting code and functions to use the objects
in the library.

Rather than provide a list of “nice to haves”, this paper is intended to suggest immediate changes
that would be very hard to change later.

1



3 Impact on the Standard

All proposed changes would be entirely implemented within array_view and associated classes.

4 Design Decisions

For performance, most gains come from organizing data to ensure maximum cache locality, and ensuring
that static information and constexpr operations are available wherever possible. This ties directly into
how multi-dimensional data is stored vs. accessed, and is algorithm-dependent.

Keep in mind throughout this document the separation between the semantics of a “row”, “column”,
etc. from how the data is actually stored in contiguous memory. A fundamental test of the library is
that the user can write code for one storage ordering, and when they flip the storage ordering it generates
the same results–albeit performance will be slower or faster depending on how well the ordering of data
matches the ideal storage ordering for the algorithm to achieve cache locality.

4.1 Storage Ordering

The term row vs. column major, http://en.wikipedia.org/wiki/Row-major_order, is often used for
multi-dimensional data even if it comes from matrices. For 2D data, only row or column is ordering is
possible, while arbitrary storage ordering could be considered for more than 2 dimensions. While this
document is written with the terms row_major vs. column_major, more general terminology such as
index_major vs. index_minor or big_index vs. little_index are perfectly reasonable.

For interoperability and performance, a large number of scientific libraries are written with column-
major data and nearly every major container used for numerical analysis has a storage option. This is
especially true when calling high performance libraries written in Fortran, but also when interfacing with
Matlab through MEX C/C++ extensions, Python (sometimes), OpenGL, and R. Several C++ libraries
also use column-major directly, such as Trilinos.1

Independently from questions of interoperability, storage ordering is also a first-order concern for
performance. Consider an algorithm that takes an inner product of an enormous matrix, A, with an
enormous vector, x. Whether the direction of this inner product is x ·A or A · x changes how you would
want A stored in memory. With the 2nd variation, column-major ordering of the data ensures that SIMD
parallelization and cache locality are possible, while pointer arithmetic with row-major ordering would
jump all over the matrix and potentially perform orders of magnitude slower.

The primary design choices here are between dynamic vs. static ordering, and between row/ column
major vs. arbitrary ordering. While some implementations such as boost::multi_array allows a runtime
specification for the ordering, there do not seem to be essential use cases for this behavior that are common
enough to warrant the complexity and lack of compile-time information. Beyond having no additional
runtime storage, static ordering choices allow for a static_assert on the storage type to ensure that
users don’t pass the wrong data type (e.g. AMP doesn’t need to support column-major). Moreover, tag
dispatching enables optimized algorithms based on the particular ordering in a generic library.

While there are use cases for arbitrary storage ordering in physics and chemistry, these can be added
later if the ordering is left fairly general as a template parameter.

Finally, it is essential that the storage ordering choice has no effect on the semantics of any of the
operations. For example, if myarray[1] returns the first “row” of a 2 dimensional array, from the
users perspective, they are given just given a view representing the “row”. The storage order simply
changes the internal strides and pointer-arithmetic. This would also apply to any iterators, and the
view.section(...) function.

1For example, see a discussion with SerialDenseMatrix in http://trilinos.sandia.gov/Trilinos10.12Tutorial.pdf.
The default Fortran-style ordering can be found in many libraries in the optimization and scientific computing community.

2

http://en.wikipedia.org/wiki/Row-major_order
http://trilinos.sandia.gov/Trilinos10.12Tutorial.pdf


4.2 Operator ()

While C (and some C++ libraries) use operator[] for data access, the single argument isn’t ideal for
generic C++ code. And it seems unlikely that a breaking change to a variadic operator[] is going to
happen in the near future.

Chaining together the template instantiations and lines of code for a[i][j][k] to eliminate any
performance penalty in a release build is an impressive achievement, but is it necessary to just to avoid
using the a(i,j,k) notation? One alternative to chaining is passing in a structure a[index<3>(i,j,k)],
and is occasionally useful though not very natural. On the other hand, if i, j, and/or k is a static index,
then overloads of a(i,j,k) may provide significant performance increase using constexpr access, but this
would be could be more difficult for the compiler (possible?) with the chained operator[] or by passing in
an index. Finally, from experience with boost::multi_array, the template errors generated from chained
operator[] or [index<3>(i,j,k)] style access are extremely difficult to decipher, and concepts-lite may
not help very much as a failure could happen well down the instantiation chain. Consider the alternative
with concepts-lite and the overload described in Section 5.2.

Because of these complexities, many other libraries have been built to provide access with the operator(),
such as Eigen, boost::ublas, COIN-OR densematrix, and many others.2 This is also important as one of
the goals of array_view is to enable easy porting of code, and without operator(), a complete re-write
of functions is required for anything using Eigen, ublas, etc., significantly increasing the cost of moving
to this library. Of course, the same argument can be made for supporting operator[] to enable porting
C-style code, which is why both should be supported.

With overloading, operator() also allows efficient creation of slicing without the useful but cumber-
some .section() notation where you need to query the size of each dimension. For example, in something
like matlab, one can write myarray(2,:, 3:4) meaning fix the 1st dimension to the 2nd index, take ev-
erything in the 2nd dimension, and only return the 3rd and 4th index of the 3rd dimension. This sort of
behavior is done in boost::multi_array by passing in a complicated and error-prone boost::indices

object to operator[].3 With variadic operator(), this code could be converted to something like
myarray(2, std::all, std::index_range(3,4)) complete with all sorts of concept checks. These ad-
vanced features of a variadic overload should not be implemented initially, but future-proofing is useful.

4.3 Other Features for Interoperability

In order to ensure that the array_view objects can be used by general libraries, a few small additions
are necessary. One complete test is whether numeric bindings can be written using the structure of
boost::numeric_bindings. This would allow immediate access to a variety of libraries such as LAPACK.
See the example bindings in https://svn.boost.org/svn/boost/sandbox/numeric_bindings/boost/

numeric/bindings/ for other libraries such as Eigen and boost::multi_array.
In particular, some of the requirements become absolutely necessary for strided_array access with

different storage orderings, and basic detection of aliasing.
In order to exploit existing standard library algorithms and code, support for RandomAccessContainer

and other range-supported concepts should be added. These will be most useful for a single dimension as
users will often take one-dimensional slices or directly create a 1D version.

2A notable exception is boost::multi_array which only uses the [{i,j,k}] or [i][j][k] access, but this is an older
and experimental library made well before C++11 features were available.

3See http://www.boost.org/doc/libs/1_55_0/libs/multi_array/doc/user.html#sec_views for an example. As dis-
cussed above, the template errors here get ugly due to the monadic operator[].

3

https://svn.boost.org/svn/boost/sandbox/numeric_bindings/boost/numeric/bindings/
https://svn.boost.org/svn/boost/sandbox/numeric_bindings/boost/numeric/bindings/
http://www.boost.org/doc/libs/1_55_0/libs/multi_array/doc/user.html#sec_views


5 Technical Specifications

5.1 Storage Ordering

Add in a template parameter to the definitions for array_view and strided_array_view. As a change
of the storage ordering would require a transposing of the physical data, the constructors and copy
constructors for these would allow for those of the same storage ordering type. For example, writing out
the template definition and one of the constructors,

struct column_major_order {}; //tag structs , see alternative names above

struct row_major_order {};

template <typename ValueType , int Rank = 1,

typename StorageOrder = row_major_order >

class array_view{

template <typename ViewValueType , int ViewRank > // leaving off enable_if

array_view(const array_view <ViewValueType , ViewRank , StorageOrder >& rhs)

: Base{ static_cast <typename bounds_type ::value_type >(rhs.size()), 1, rhs.data() }

{

}

};

template <typename ValueType , int Rank = 1,

typename StorageOrder = row_major_order >

class strided_array_view {...};

The slices from std::array_view would also need to generate an object with the same storage ordering
as the parent, but with semantics independent of the ordering.4

The implementation of the ordering for pointer arithmetic follows the standard rules of access, where
essentially the strides are reversed. This would require changes to the definition of the .stride() re-
quirements for both array_view and strided_array_view.

Crucially, we believe that operator[] on an array_view may no longer return an array_view in
general. If myarray[2] was called on row-major data, it can be represented as an array_view, though we
think there is a strong reason to keep around the pointer to the original data and formalize an offset–as
discussed in Section 5.3. But if the data is column-major, then myarray[2] on an array_view must
return a strided_array_view. One possibility is to always return a strided_array_view since it nests
an array view with standard strides for the row-major case.

This leads to the only major design change to consider: whether it makes sense to have array_view

and strided_array_view as separate classes at all. If both of them need to have a .data() and a
.offset() as described Section 5.3, then can’t array_view just be when strides the same as the extents
(or reversed, depending on storage order). Simple constructors could be made to simplify that. The

4In future versions of this library, arbitrary storage ordering would just require a static list of or-
ders. For example, struct storage_order:std::integer_list<Order...> {};. This could be used like
array_view<double, 3, std::storage_order<1,3,2>>.

When a fixed extent version of the view is added to the library, consider putting the storage order at the end of the
argument list. i.e.,

template <typename ValueType , int Extents ..., typename StorageOrder = row_major_order >

class fixed_array_view {...};

4



concern for implementors that this adds in additional storage of the list of strides of the class could be
resolved by a partial specialization with some simple templates (e.g.

struct general_strides {};

struct contiguous_strides {};

template <typename ValueType , int Rank = 1,

typename StorageOrder = row_major_order ,

typename StrideType = contiguous_strides >

class array_view {...

//no storage of strides if the StrideType = contiguous_strides specialization

};

%

We should point out that merging the two views is exactly how boost::multi_array did it, though
they don’t seem to take the next step to a specialization without storing strides, which is an implemen-
tation decision.

From a teaching perspective, none of the user interfaces for creating views or the constructors im-
plemented in your documentation change with the merged class, and only a single class would need to
be taught (getting around the confusion for people that a strided_array is mostly a superset of an
array_view).

5.2 Operator ()

Add in a variadic operator, which is required to be of the same dimensionality as the array_view.

template <typename ValueType , int Rank = 1,

typename StorageOrder = row_major_order >

class array_view{

...

template <typename ... Indices >

constexpr operator ()( Indices ... indices) // Independent of storage order

// requires Rank = length(Indices)

// requires all indices convertible to the array_view :: index_type

{ //Tag dispatch to an implementation based on the storage order

};

As discussed, the operator() notation can lead to powerful overloads with clear error messages due
to concepts-light. Recall that concepts only apply to a single instantiation, rather than tying down a
complicated chain of nested operator[] calls or a nested object passed into operator[]. None of these
need to be implemented in the first version.

5.3 Other Features for Interoperability

In general, we believe that exposing all underlying data pointers, offsets, etc. is important for interoper-
ability. This is not an inherently safe library, so always err on the side of less encapsulation and ensure
maximum interoperability. Much better safety and encapsulation could be attained in the inevitable
container for multi-arrays itself.

The most important feature is to ensure that the underlying pointers for strided_array_view can
be accessed. i.e., an equivalent to the .data() of array_view. The boost::multi_array kept around
both the offset and the origin for its version of strided_array_view, and believe it is necessary. When

5



alternative storage ordering is implemented in strided_array_view, we believe it will be necessary to
have the underlying pointer to the data.

Note that the .data() of a strided_array_view is not the address of the first element you are
accessing, especially with different storage orderings, so you cannot just dereference it as a trick. You
see this with the .section(...) function as well, which has an offset. Without a .data(), it is also
impossible to do a rough aliasing check in a library. Having a .offset(...) may also apply to the
array_view itself, especially if an array_view is returned from certain operations.

For RandomAccessContainer support, an iterator type would need to be created to go through the
views along the first semantic dimension (i.e., the equivalent of taking slices [1], [2], . . .). As always, this
means that whether the iterator goes through memory contiguously or strided depends on the storage
ordering. Coupled with begin(), end(), and the existing slice notation, this would enable access to a large
number of existing functions as well as the range based for. While many algorithms would recursively go
through these iterators (i.e., multi-dimensional splines), it is reasonable to start with this only available
for the one-dimensional case.

6 Acknowledgments

Thank you to all those providing comments on iso future proposals forum, and to  Lukasz Mendakiewicz.

7 References

• For the referenced array_view proposal,

– The original was http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3851.pdf,
with https://isocpp.org/files/papers/N3976.html and the latest changes in http://

isocpp.org/files/papers/N4087.html

– Further presentation on this material can be found on https://github.com/CppCon/CppCon2014/

tree/master/Presentations

– An experimental implementation of that specification is implemented in http://parallelstl.

codeplex.com/SourceControl/latest#include/experimental/impl/array_view.h with a
test in http://parallelstl.codeplex.com/SourceControl/latest#Test/array_view.cpp

• For the boost numeric_bindings as an example of an external interface, see https://svn.boost.

org/svn/boost/sandbox/numeric_bindings/boost/numeric/bindings/ and in particular, https:
//svn.boost.org/svn/boost/sandbox/numeric_bindings/boost/numeric/bindings/boost/multi_

array.hpp and https://svn.boost.org/svn/boost/sandbox/numeric_bindings/boost/numeric/

bindings/eigen/matrix.hpp

6

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3851.pdf
https://isocpp.org/files/papers/N3976.html
http://isocpp.org/files/papers/N4087.html
http://isocpp.org/files/papers/N4087.html
 https://github.com/CppCon/CppCon2014/tree/master/Presentations
 https://github.com/CppCon/CppCon2014/tree/master/Presentations
http://parallelstl.codeplex.com/SourceControl/latest#include/experimental/impl/array_view.h
http://parallelstl.codeplex.com/SourceControl/latest#include/experimental/impl/array_view.h
http://parallelstl.codeplex.com/SourceControl/latest#Test/array_view.cpp
https://svn.boost.org/svn/boost/sandbox/numeric_bindings/boost/numeric/bindings/
https://svn.boost.org/svn/boost/sandbox/numeric_bindings/boost/numeric/bindings/
https://svn.boost.org/svn/boost/sandbox/numeric_bindings/boost/numeric/bindings/boost/multi_array.hpp
https://svn.boost.org/svn/boost/sandbox/numeric_bindings/boost/numeric/bindings/boost/multi_array.hpp
https://svn.boost.org/svn/boost/sandbox/numeric_bindings/boost/numeric/bindings/boost/multi_array.hpp
https://svn.boost.org/svn/boost/sandbox/numeric_bindings/boost/numeric/bindings/eigen/matrix.hpp
https://svn.boost.org/svn/boost/sandbox/numeric_bindings/boost/numeric/bindings/eigen/matrix.hpp

	Introduction
	Motivation and Scope
	Impact on the Standard
	Design Decisions
	Storage Ordering
	Operator ()
	Other Features for Interoperability

	Technical Specifications
	Storage Ordering
	Operator ()
	Other Features for Interoperability

	Acknowledgments
	References

