1

1.

1.

N4189 - Generic Scope Guard and RAII Wrapper for the
Standard Library

Peter Sommerlad and Andrew L. Sandoval
2014-10-08

Document Number: N4189 | (update of N3949, N3830, N3677)
Date: 2014-10-08

Project: Programming Language C++
History

1 Changes from N3949

e renamed scope_guard to scope_exit and the factory to make_scope_exit. Rea-
son for make_ is to teach users to save the result in a local variable instead of just
have a temporary that gets destroyed immediately. Similarly for unique resources,

unique_resource, make_unique_resource and make_unique_resource_checked.

e renamed editorially scope_exit::deleter to scope_exit::exit_function.

e changed the factories to use forwarding for the deleter/exit_function but not
deduce a reference.

e get rid of invoke’s parameter and rename it to reset () and provide a noexcept
specification for it.

2 Changes from N3830

e rename to unique_resource_t and factory to unique_resource, resp. unique_-
resource_checked

e provide scope guard functionality through type scope_guard_t and scope_guard
factory

e remove multiple-argument case in favor of simpler interface, lambda can deal with
complicated release APIs requiring multiple arguments.

e make function/functor position the last argument of the factories for lambda-
friendliness.

2 N4189 2014-10-08

1.3 Changes from N3677

e Replace all 4 proposed classes with a single class covering all use cases, using
variadic templates, as determined in the Fall 2013 LEWG meeting.

e The conscious decision was made to name the factory functions without ”make”,
because they actually do not allocate any resources, like std::make_unique or
std: :make_shared do

2 Introduction

The Standard Template Library provides RAII classes for managing pointer types, such
as std: :unique_ptr and std::shared_ptr. This proposal seeks to add a two generic
RAII wrappers classes which tie zero or one resource to a clean-up/completion routine
which is bound by scope, ensuring execution at scope exit (as the object is destroyed)
unless released early or in the case of a single resource: executed early or returned by
moving its value.

3 Acknowledgements

e This proposal incorporates what Andrej Alexandrescu described as scope_guard
long ago and explained again at C++ Now 2012 ().

e This proposal would not have been possible without the impressive work of Pe-
ter Sommerlad who produced the sample implementation during the Fall 2013
committee meetings in Chicago. Peter took what Andrew Sandoval produced for
N3677 and demonstrated the possibility of using C++14 features to make a single,
general purpose RAII wrapper capable of fulfilling all of the needs presented by
the original 4 classes (from N3677) with none of the compromises.

e Gratitude is also owed to members of the LEWG participating in the February 2014
(Issaquah) and Fall 2013 (Chicago) meeting for their support, encouragement, and
suggestions that have led to this proposal.

e Special thanks and recognition goes to OpenSpan, Inc. (http://www.openspan.com)
for supporting the production of this proposal, and for sponsoring Andrew L. San-
doval’s first proposal (N3677) and the trip to Chicago for the Fall 2013 LEWG
meeting. Note: this version abandons the over-generic version from N3830 and
comes back to two classes with one or no resource to be managed.

e Thanks also to members of the mailing lists who gave feedback. Especially Zhihao
Yuan, and Ville Voutilainen.

e Special thanks to Daniel Kriigler for his deliberate review of the draft version of
this paper (D3949).

N4189 2014-10-08 3

4 Motivation and Scope

The quality of C+4 code can often be improved through the use of ”smart” holder
objects. For example, using std: :unique_ptr or std::shared_ptr to manage pointers
can prevent common mistakes that lead to memory leaks, as well as the less common leaks
that occur when exceptions unwind. The latter case is especially difficult to diagnose
and debug and is a commonly made mistake — especially on systems where unexpected
events (such as access violations) in third party libraries may cause deep unwinding
that a developer did not expect. (One example would be on Microsoft Windows with
Structured Exception Handling and libraries like MFC that issue callbacks to user-
defined code wrapped in a try/catch(...) block. The developer is usually unaware
that their code is wrapped with an exception handler that depending on compile-time
options will quietly unwind their code, masking any exceptions that occur.)

While std: :unique_ptr can be tweaked by using a custom deleter type to almost a
perfect handler for resources, it is awkward to use for handle types that are not pointers
and for the use case of a scope guard. As a smart pointer std: :unique_ptr can be used
syntactically like a pointer, but requires the use of get () to pass the underlying pointer
value to legacy APIs.

This proposal introduces a new RAII ”smart” resource container called unique_-
resource which can bind a resource to ”clean-up” code regardless of type of the argu-
ment required by the ”clean-up” function.

4.1 Without Coercion

Existing smart pointer types can often be coerced into providing the needed functionality.
For example, std: :unique_ptr could be coerced into invoking a function used to close
an opaque handle type. For example, given the following system APIs, std: :unique_ptr
can be used to ensure the file handle is not leaked on scope exit:

typedef void *HANDLE; // System defined opaque handle type
typedef unsigned long DWORD;

#define INVALID_HANDLE_VALUE reinterpret_cast<HANDLE>(-1)

// Can’t help this, that’s from the OS

// System defined APIs
void CloseHandle (HANDLE hObject);

HANDLE CreateFile(const char *pszFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile);

bool ReadFile(HANDLE hFile,
void *pBuffer,

4 N4189 2014-10-08

DWORD nNumberOfBytesToRead,
DWORD*pNumber0fBytesRead) ;

// Using std::unique_ptr to ensure file handle is closed on scope-exit:
void CoercedExample()

{
// Initialize hFile ensure it will be ”closed” (regardless of value) on scope-exit
std: :unique_ptr<void, decltype(&CloseHandle)> hFile(
CreateFile("test.tmp",
FILE_ALL_ACCESS,
FILE_SHARE_READ,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
nullptr),
CloseHandle) ;
// Read some data using the handle
std::array<char, 1024> arr = { };
DWORD dwRead = O;
ReadFile(hFile.get(), // Must use std::unique_ptr::get()
&arr[0],
static_cast<DWORD>(arr.size()),
&dwRead) ;
}

While this works, there are a few problems with coercing std::unique_ptr into
handling the resource in this manner:

e The type used by the std: :unique_ptr does not match the type of the resource.
void is not a HANDLE. (Thus the word coercion is used to describe it.)

e There is no convenient way to check the value returned by CreateFile and assigned
to the std: :unique_ptr<void> to prevent calling CloseHandle when an invalid
handle value is returned. std::unique_ptr will check for a null pointer, but the
CreateFile API may return another pre-defined value to signal an error.

e Because hFile does not have a cast operator that converts the contained ” pointer”
to a HANDLE, the get() method must be used when invoking other system APIs
needing the underlying HANDLE.

Each of these problems is solved by unique_resource as shown in the following
example:

void ScopedResourceExamplel()
{
// Initialize hFile ensure it will be ”closed” (regardless of value) on scope-exit
auto hFile = std::make_unique_resource_checked(
CreateFile("test.tmp",
FILE_ALL_ACCESS,

N4189 2014-10-08)

FILE_SHARE_READ,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,

nullptr), // The resource
INVALID_HANDLE_VALUE, // Don’t call CloseHandle if it failed!
CloseHandle) ; // Clean-up API, lambda-friendly position

// Read some data using the handle
std::array<char, 1024> arr = { };
DWORD dwRead = O0;
// cast operator makes it seamless to use with other APIs needing a HANDLE
ReadFile(hFile,
&arr[0],
static_cast<DWORD>(arr.size()),
&dwRead) ;

4.1.1 Non-Pointer Handle Types

While std: :unique_ptr can deal with the above pointer handle type, as well as <cstdio>’s
FILE *, it is non-intuitive to use with handle’s like <fcntl.h>’s and <unistd.h>’s int
file handles. See the following code examples on using unique_resource with int and
FILE * handle types.

void demonstrate_unique_resource_with_stdio() {
const std::string filename = "hello.txt";
{
auto file=make_unique_resource(::fopen(filename.c_str(),"w") ,&::fclose);
::fputs("Hello World!\n", file);
ASSERT(file.get () != NULL);

}

{
std::ifstream input { filename.c_str() };
std::string line { };
getline(input, line);
ASSERT_EQUAL("Hello World!", line);
getline(input, line);
ASSERT (input.eof ());

}

::unlink(filename.c_str());

{
auto file = make_unique_resource_checked(::fopen("nonexistingfile.txt", "r"),

(FILE*) NULL, &::fclose);

ASSERT_EQUAL ((FILE*)NULL, file.get());

}

N4189 2014-10-08

void demontrate_unique_resource_with_POSIX_I0() {
const std::string filename = "./hellol.txt";
{
auto file=make_unique_resource(::open(filename.c_str(),
O_CREAT|O_RDWR|O0_TRUNC,0666), &::close);

i:write(file, "Hello World!\n", 12u);

ASSERT(file.get() != -1);

}

{
std::ifstream input { filename.c_str() };
std::string line { };
getline(input, line);
ASSERT_EQUAL("Hello World!", line);
getline(input, line);
ASSERT (input.eof ());

}

::unlink(filename.c_str());

{
auto file = make_unique_resource_checked(::open("nonexistingfile.txt",

O_RDONLY), -1, &::close);

ASSERT_EQUAL(-1, file.get());

}

N4189 2014-10-08 7

4.2 Multiple Parameters

This feature was abandoned due to feedback by LEWG in Issaquah. A lambda as deleter
can have the same effect without complicating unique_resource.

4.3 Lambdas, etc.

It is also possible to use lambdas instead of a function pointer to initialize a unique_-
resource. The following is a very simple and otherwise useless example:

void TalkToTheWorld(std::ostream& out, std::string const farewell="Uff Wiederluege..

{

// Always say goodbye before returning,
// but if given a non-empty farewell message use it...
auto goodbye = make_scope_exit([&out] () ->void
{
out << "Goodbye world..." << std::endl;
b
auto altgoodbye = make_scope_exit([&out,farewell] () ->void
{
out << farewell << std::endl;

B

if (farewell.empty())

{
altgoodbye.release(); // Don’t use farewell!
}
else
{
goodbye.release(); // Don’t use the alternate
}

void testTalkToTheWorld(){

}

std::ostringstream out;

TalkToTheWorld(out,"");

ASSERT_EQUAL("Goodbye world...\n",out.str());
out.str("");

TalkToTheWorld(out) ;

ASSERT_EQUAL("Uff Wiederluege...\n",out.str());

The example also shows that a scope guard can be released early (that is the clean-up
function is not called).

.ll)

8 N4189 2014-10-08

4.4 Other Functionality

In addition to the basic features shown above, unique_resource also provides various
operators (cast, =>, (), *, and accessor methods (get, get_deleter). The most com-
plicated of these is the invoke () member function which allows the ”clean-up” function
to be executed early, just as it would be at scope exit. This function takes a parameter
indicating whether or not the function should again be executed at scope exit. The
reset (R&& resource) member function that allows the resource value to be reset.

As already shown in the examples, the expected method of construction is to use one
of the two generator functions:

e unique_resource(resources,deleter) - non-checking instance, allows multiple
parameters.

e unique_resource_checked(resource, invalid_value,deleter) - checked in-
stance, allowing a resource which is validated to inhibit the call to the deleter
function if invalid.

4.5 What’s not included

unique_resource does not do reference counting like shared_ptr does. Though there is
very likely a need for a class similar to unique_resource that includes reference counting
it is beyond the scope of this proposal.

One other limitation with unique_resource is that while the resources themselves
may be reset (), the "deleter” or ”clean-up” function/lambda can not be altered, be-
cause they are part of the type. Generally there should be no need to reset the deleter,
and especially with lambdas type matching would be difficult or impossible.

5 Impact on the Standard

This proposal is a pure library extension. Two new headers, <scope_guard> and
<unique_resource> are proposed, but it does not require changes to any standard
classes or functions. It does not require any changes in the core language, and it has
been implemented in standard C++ conforming to C++14. Depending on the timing
of the acceptance of this proposal, it might go into library fundamentals TS under the
namespace std::experimental or directly in the working paper of the standard, once it is
open again for future additions.

N4189 2014-10-08 9

6 Design Decisions

6.1 General Principles

The following general principles are formulated for unique_resource, and are valid for
scope_exit correspondingly.

e Simplicity - Using unique_resource should be nearly as simple as using an un-
wrapped type. The generator functions, cast operator, and accessors all enable
this.

e Transparency - It should be obvious from a glance what each instance of a unique_-
resource object does. By binding the resource to it’s clean-up routine, the decla-
ration of unique_resource makes its intention clear.

e Resource Conservation and Lifetime Management - Using unique_resource makes
it possible to ”allocate it and forget about it” in the sense that deallocation is
always accounted for after the unique_resource has been initialized.

e Exception Safety - Exception unwinding is one of the primary reasons that unique_-
resource is needed. Nevertheless the goal is to introduce a new container that
will not throw during construction of the unique_resource itself. However, there
are no intentions to provide safeguards for piecemeal construction of resource and
deleter. If either fails, no unique_resource will be created, because the factory func-
tion unique_resource will not be called. It is not recommended to use unique_-
resource () factory with resource construction, functors or lambda capture types
where creation, copying or moving might throw.

o Flexibility - unique_resource is designed to be flexible, allowing the use of lamb-
das or existing functions for clean-up of resources.

6.2 Prior Implementations

Please see N3677 from the May 2013 mailing (or http://www.andrewlsandoval.com/scope._-
exit/) for the previously proposed solution and implementation. Discussion of N3677 in
the (Chicago) Fall 2013 LEWG meeting led to the creation of unique_resource with the
general agreement that such an implementation would be vastly superior to N3677 and
would find favor with the LEWG. Professor Sommerlad produced the implementation
backing this proposal during the days following that discussion.

N3677 has a more complete list of other prior implementations.

N3830 provided an alternative approach to allow an arbitrary number of resources
which was abandoned due to LEWG feedback

The following issues have been discussed by LEWG already:

e Should there be a companion class for sharing the resource shared_resource ?
(Peter thinks no. Ville thinks it could be provided later anyway.) LEWG: NO.

10 N4189 2014-10-08

o Should scope_ezit() and unique_resource::invoke() guard against deleter
functions that throw with try deleter(); catch(...) (asnow) or not? LEWG:
NO, but provide noexcept in detail.

e Does scope_exit need to be move-assignable? LEWG: NO.

6.3 Open Issues to be Discussed

e Should we make the regular constructors private and friend the factory functions
only?

e Should we provide a factory for type-erasing the deleter/exit_function using std::function?

7 Technical Specifications

The following formulation is based on inclusion to the draft of the C+4 standard.
However, if it is decided to go into the Library Fundamentals TS, the position of the
texts and the namespaces will have to be adapted accordingly, i.e., instead of namespace
std:: we suppose namespace std: :experimental::.

7.1 Header
In section [utilities.general] add two extra rows to table 44

Table 1: Table 44 - General utilities library summary

Subclause Header
20.nn Scope Guard Support <scope_exit>
20.nn+1 Unique Resource Wrapper | <unique_resource>

7.2 Additional sections

Add a two new sections to chapter 20 introducing the contents of the headers <scope_-
exit> and <unique_resource>.

7.3 Scope Guard Support [utilities.scope_exit]

This subclause contains infrastructure for a generic scope guard.

Header <scope_exit> synopsis

N4189 2014-10-08 11

1 The header <scope_exit> defines the class template scope_exit and the function tem-
plate make_scope_exit () to create its instances.

namespace std {

template <typename EF>

struct scope_exit {
// construction
explicit
scope_exit (EF &&f) noexcept
:exit_function(std: :move(f))
,execute_on_destruction{true}{}
// move
scope_exit(scope_exit &&rhs) noexcept
:exit_function(std: :move(rhs.exit_function))
,execute_on_destruction{rhs.execute_on_destruction}{

rhs.release();

}
// release

“scope_exit() noexcept(noexcept(this->exit_function())){
if (execute_on_destruction)
this->exit_function();

}

void release() noexcept { this->execute_on_destruction=false;}
private:

scope_exit(scope_exit const &)=delete;

void operator=(scope_exit const &)=delete;

scope_exit& operator=(scope_exit &&)=delete;

EF exit_function;

bool execute_on_destruction; // exposition only
I
// factory function

template <typename EF>
auto make_scope_exit (EF &&exit_function) noexcept {
return scope_exit<std::remove_reference_t<EF>>(std::forward<EF>(exit_function));

3

} // namespace std

2 [Note: scope_exit is meant to be a universal scope guard to call its deleter function
on scope exit. — end note |

7.3.1 Class Template scope_exit [scope_exit.scope_exit]

L Requires: EF shall be a MoveConstructible function object type or reference to such, the
expression exit_function() shall be valid. Move construction of EF shall not throw an
exception.

explicit
scope_exit (EF &&exit_function) noexcept;

12 N4189 2014-10-08

Effects: constructs a scope_exit object that will call exit_function() on its destruction
if not release()ed prior to that. execute_on_destruction is set to true.

~scope_exit();

Effects: If and only if execute_on_destruction is true, calls exit_function().

void release() noexcept;

Effects: execute_on_destruction=false;

scope_exit(scope_exit &&rhs) noexcept;
Effects: Move constructs exit_function from rhs.exit_function. execute_on_-
destruction=rhs.execute_on_destruction;rhs.release();

7.3.2 Factory Function make_scope_exit [scope_exit.make scope_exit]

template <typename EF>
scope_exit<remove_reference_t<EF>> make_scope_exit(EF && exit_function) noexcept;

Returns: scope_exit<std::remove_reference_t<EF>>(std::forward<EF>(exit_function))

7.4 Unique Resource Wrapper [utilities.unique_resource]

This subclause contains infrastructure for a generic RAII resource wrapper.

Header <unique_resource> synopsis
The header <unique_resource> defines the class template unique_resource, the enu-
meration invoke_it and function templates make_unique_resource() and make_unique_-
resource_checked() to create its instances.

namespace std {

template<typename R,typename D>
class unique_resource {
R resource; // exposition only
D deleter; // exposition only
bool execute_on_destruction; // exposition only
unique_resource& operator=(unique_resource const &)=delete;
unique_resource(unique_resource const &)=delete;
public:
// construction
explicit
unique_resource(R &% resource, D && deleter, bool shouldRun=true) noexcept;
// move
unique_resource(unique_resource &&other) noexcept;
unique_resource& operator=(unique_resource &&other) noexcept ;

// resource release

“unique_resource() noexcept(noexcept(this->reset()));

void reset() noexcept(noexcept(this->get_deleter() (resource)));
void reset(R && newresource) noexcept(noexcept(this->reset())) ;

N4189 2014-10-08 13

R const & release() noexcept;

// resource access

R const & get() const noexcept ;

operator R const &() const noexcept ;

R operator->() const noexcept ;

see below operatorx() const;

// deleter access

const D & get_deleter() const noexcept;

};

//factories

template<typename R,typename D>
unique_resource<R,remove_reference_t<D>>
make_unique_resource(R && r,D &&d) noexcept;
template<typename R,typename D>

unique_resource<R,D>

make_unique_resource_checked(R r, R invalid, D d) noexcept;

} // namespace std

[Note: unique_resource is meant to be a universal RAII wrapper for resource handles
provided by an operating system or platform. Typically, such resource handles come with
a factory function and a deleter function and are of trivial type. The deleter function
together with the result of the factory function is used to create a unique_resource
variable, that on destruction will call the release function. Access to the underlying
resource handle is achieved through a set of convenience functions or type conversion.
— end note |

7.4.1 Class Template unique_resource
[unique_resource.unique_resource]

Requires: D and R shall be a MoveConstructible and MoveAssignable. D shall be a
function object type or reference to such. The expression deleter(resource) shall be
valid. Move construction and move assignment of D and R shall not throw an exception.

explicit

unique_resource(R &% resource, D && deleter, bool shouldRun=true) noexcept;
Effects: constructs a unique_resource by moving resource and then deleter. The
constructed object will call deleter (resource) on its destruction if not release()ed
prior to that. execute_on_destruction is set to true.

unique_resource (unique_resource &&other) noexcept;
Effects: move-constructs a unique_resource from other’s members then callsother.release().

unique_resource& operator=(unique_resource &&other) noexcept ;
Effects: this->reset () ; Move-assigns members from other then calls other.release().

“unique_resource() ;

10

11

12

13
14

15

14 N4189 2014-10-08

Effects: this->reset();

void reset() noexcept(noexcept(this->get_deleter() (resource)));

Effects:

if (execute_on_destruction) {
this->execute_on_destruction = false;
this->get_deleter() (resource) ;

void reset(R && newresource) noexcept ;

Effects:

this—>reset();
this->resource=std: :move(newresource) ;
this->execute_on_destruction = true;

[Note: This function takes the role of an assignment of a new resource. — end note |

R const & release() noexcept;
Effects: execute_on_destruction=false;
Returns: resource

R const & get() const noexcept ;
operator R const &() const noexcept ;
R operator->() const noexcept ;

Requires: operator-> is only available if

is_pointer<R>::value &&

(is_class<remove_pointer_t<R>>::value || is_union<remove_pointer_t<R>>::value)
is true.

Returns: resource.

see below operator*() const noexcept;

Requires: This function is only available if is_pointer<R>::value is true.
Returns: *this->get ().

Return type is std::add_lvalue_reference_t<std::remove_pointer_t<R>>

const DELETER & get_deleter() const noexcept;
Returns: deleter

7.4.2 Factories for unique_resource [unique_resource.unique_resource]

template<typename R,typename D>
unique_resource<R,remove_reference_t<D>>

make_unique_resource(R && r,D &&d) noexcept;

Returns: unique_resource<R,remove_reference_t<D>>(std: :move(r),
std: :forward<remove_reference_t<D>>(d) ,true)

template<typename R,typename D>

N4189 2014-10-08 15

unique_resource<R,D>

make_unique_resource_checked(R r, R invalid, D d) noexcept;

Requires: R is EqualityComparable

Returns: unique_resource<R,D>(std: :move(r), std::move(d), not bool(r==invalid))

8 Appendix: Example Implementations
8.1 Scope Guard Helper

#ifndef SCOPE_EXIT_H_
#define SCOPE_EXIT_H_

// modeled slightly after Andrescu’s talk and article(s)

namespace std{
namespace experimental{

template <typename EF>
struct scope_exit {
// construction
explicit
scope_exit (EF &&f) noexcept
:exit_function(std: :move(f))
,execute_on_destruction{true}{}
// move
scope_exit(scope_exit &&rhs) noexcept
:exit_function(std: :move(rhs.exit_function))
,execute_on_destruction{rhs.execute_on_destruction}{
rhs.release();
}
// release
“scope_exit() noexcept(noexcept(this->exit_function())){
if (execute_on_destruction)
this->exit_function();
}

void release() noexcept { this->execute_on_destruction=false;}

private:
scope_exit(scope_exit const &)=delete;
void operator=(scope_exit const &)=delete;
scope_exit& operator=(scope_exit &&)=delete;
EF exit_function;
bool execute_on_destruction; // exposition only

};

template <typename EF>
auto make_scope_exit (EF &&exit_function) noexcept {

16 N4189 2014-10-08

return scope_exit<std::remove_reference_t<EF>>(std::forward<EF>(exit_function));

}

}
}

#endif /x SCOPE_EXIT_H_*/

8.2 Unique Resource

#ifndef UNIQUE_RESOURCE_H_
#define UNIQUE_RESOURCE_H_

namespace std{
namespace experimental{

template<typename R,typename D>
class unique_resourceq{
R resource;
D deleter;
bool execute_on_destruction; // exposition only
unique_resource& operator=(unique_resource const &)=delete;
unique_resource(unique_resource const &)=delete; // no copies!
public:
// construction
explicit
unique_resource(R &% resource, D && deleter, bool shouldrun=true) noexcept
resource(std: :move(resource))
, deleter(std::move(deleter))
, execute_on_destruction{shouldrun}{}
// move
unique_resource(unique_resource &&other) noexcept
:resource(std: :move (other.resource))
,deleter(std::move(other.deleter))
,execute_on_destruction{other.execute_on_destruction}{
other.release();
}
unique_resource&
operator=(unique_resource &&other) noexcept(noexcept(this->reset())) {
this->reset();
this->deleter=std: :move(other.deleter);
this->resource=std: :move(other.resource);
this->execute_on_destruction=other.execute_on_destruction;
other.release();
return *this;
}
// resource release
“unique_resource() noexcept(noexcept(this->reset())){
this->reset();

N4189 2014-10-08

}
void reset() noexcept(noexcept(this->get_deleter() (resource))) {
if (execute_on_destruction) {
this->execute_on_destruction = false;
this->get_deleter() (resource);
}
}
void reset(R && newresource) noexcept(noexcept(this->reset())) {
this->reset();
this->resource = std::move(newresource);
this->execute_on_destruction = true;
}
R const & release() noexcept{
this->execute_on_destruction = false;
return this->get();
}

// resource access

R const & get() const noexcept {
return this->resource;

}

operator R const &() const noexcept {
return this->resource;

3

R

operator->() const noexcept {
return this->resource;

}

std::add_lvalue_reference_t<
std: :remove_pointer_t<R>>

operator*() const {
return * this->resource;

}

// deleter access
const D &
get_deleter() const noexcept {
return this->deleter;
}
s

//factories

template<typename R,typename D>
auto
make_unique_resource(R && r,D &&d) noexcept {
return unique_resource<R,std::remove_reference_t<D>>(
std: :move(r)
,std: :forward<std::remove_reference_t<D>>(d)
,true);

17

18 N4189 2014-10-08

}
template<typename R,typename D>
auto
make_unique_resource_checked(R r, R invalid, D d) noexcept {
bool shouldrun = not bool(r == invalid);
return unique_resource<R,D>(std::move(r), std::move(d), shouldrun);
}
}}

#endif /x UNIQUE_RESOURCE_H. */

8.3 Test cases

#include "cute.h"

#include "ide_listener.h"
#include "xml_listener.h"
#include "cute_runner.h"
#include "scoped_resource.h"

#include <iostream>
#include <unistd.h>
#include <memory>

void thisIsATest() {

using namespace std;

string const msg { " deleted resource\n" };

auto res = make_scoped_resource([msg] {cout << msg<< flush;});

auto file = make_scoped_resource(
[msg] (int i) {write(i,msg.data(),msg.size());}, 2);

auto duo = make_scoped_resource(
[msg] (int j, double d) {cout << j <<", "<< d << msg<< flush;}, 42,
3.14);

cout << "handle: " << file.get() << "\n";

cout << "handle again casted:" << static_cast<int>(file) << endl;

ASSERTM("start writing tests", true);
}
void test_scoped_function_semantics() {
std::ostringstream out { };

{
auto cleanup = make_scoped_resource([&out] {out << "cleaned";});
}
ASSERT_EQUAL("cleaned", out.str());
}
void test_scoped_function_semantics_invoke_false_release() {
std::ostringstream out { };

N4189 2014-10-08 19

{
auto cleanup = make_scoped_resource([&out] {out << "cleaned";});
cleanup.invoke(invoke_it::again) ;
cleanup.invoke (invoke_it::again) ;
cleanup.release();
}

ASSERT_EQUAL("cleanedcleaned", out.str());
}

void test_scoped_function_semantics_invoke_twice_only_does_once() {
std: :ostringstream out { };

{
auto cleanup = make_scoped_resource([&out] {out << "cleaned";});
cleanup.invoke();
cleanup.invoke() ;

}

ASSERT_EQUAL("cleaned", out.str());
}
void test_scoped_function_semantics_release_does_nothing() {
std::ostringstream out { };
{
auto cleanup = make_scoped_resource([&out] {out << "cleaned";});
cleanup.release();
}
ASSERT_EQUAL("", out.str());
¥
void test_scoped_resource_semantics() {
std::ostringstream out { };
{
auto cleanup = make_scoped_resource(
[&out] (int i) {out << "cleaned " << i;}, 1);
}
ASSERT_EQUAL("cleaned 1", out.str());
}
void test_scoped_resource_semantics_reset() {
std::ostringstream out { };

{
auto cleanup = make_scoped_resource(
[&out] (int i,int j) {out << "cleaned " << i;}, 1, 2);
cleanup.reset(2, 1);
¥

ASSERT_EQUAL("cleaned 1cleaned 2", out.str());
}
void test_scoped_resource_semantics_reset_move() {
std::ostringstream out { };
{
auto cleanup = make_scoped_resource (
[&out] (auto const &) {out << "cleaned ";},
std: :make_unique<int>(42));
cleanup.reset (nullptr);

20

N4189 2014-10-08

}
ASSERT_EQUAL("cleaned cleaned ", out.str());
}
void test_scoped_resource_semantics_release() {
std::ostringstream out { };

{
auto cleanup = make_scoped_resource(
[&out] (int i) {out << "cleaned " << i;}, 5);
ASSERT_EQUAL(5, cleanup.release());
}

ASSERT_EQUAL("", out.str());
}

void test_scope_resource_with_two_values() {
std::ostringstream out { };

{
auto cleanup = make_scoped_resource([&out] (int i, double d) {
out << "cleaned " << i << ", "<<d;
}, 42, 3.14);
ASSERT_EQUAL(3.14, cleanup.get<i>());
cleanup.reset(1l, cleanup.get<i>());
ASSERT_EQUAL(1, cleanup.get());
}

ASSERT_EQUAL("cleaned 42, 3.14cleaned 1, 3.14", out.str());

}
void test_scoped_resource_with_pointer() {
std::ostringstream out { };

{
using namespace std::literals;
auto cleanup = make_scoped_resource(
[&out] (char const *s) {out << "cleaned " << s;},
static_cast<char const * const >("hello"));
ASSERT_EQUAL(’h’, *cleanup);
}

ASSERT_EQUAL("cleaned hello", out.str());
}

void test_scoped_resource_address_of() {
std::ostringstream out { };

{
int j { 4 };
auto cleanup = make_scoped_resource(
[&out] (int &i) {out << "cleaned " << i;}, j);
ASSERT_EQUAL(j, *&cleanup);
X

ASSERT_EQUAL("cleaned 4", out.str());

N4189 2014-10-08 21

void test_scoped_resource_with_failure_value() {
std::ostringstream out { };

{
auto cleanup = make_scoped_resource_checked(
[&out] (int i) {out << "cleaned " << i;}, -1, -1);
ASSERT_EQUAL(-1, cleanup.release());
b

ASSERT_EQUAL("", out.str());

}

void test_scoped_resource_move_enable() {
std::ostringstream out { };

{
auto cleanup = make_scoped_resource(
[&out] (int i) {out << "cleaned " << i;}, -1);
auto cleanup2 = std::move(cleanup);
cleanup2.release();
cleanup2.reset(42);
}

ASSERT_EQUAL("cleaned 42", out.str());
}

auto pass_scoped_resource(std::ostream &out) {
auto cleanup = make_scoped_resource(
[&out] (std: :unique_ptr<int>const& i) {out << "cleaned " << *i;},
std::unique_ptr<int>(new int { 42 1}));
return cleanup;

}

void test_scoped_resource_can_be_moved() {
std::ostringstream out { };
{
auto cleanup = pass_scoped_resource(out);
ASSERT_EQUAL (42, *cleanup.get());
}
ASSERT_EQUAL("cleaned 42", out.str());
}

void thrower() noexcept(false){
throw 42;
3

void test_scoped_resource_noexcept_deleter(){
// auto cleanup = make_scoped_resource(thrower);
// will terminate if run....

3

void runAllTests(int argc, char const *argv[]) {
cute::suite s;

//TODO add your test here

22

N4189 2014-10-08

.push_back(CUTE(thisIsATest));
.push_back(CUTE(test_scoped_function_semantics));

.push_back (CUTE(test_scoped_function_semantics_invoke_false_release));
.push_back (CUTE(test_scoped_function_semantics_invoke_twice_only_does_once));
.push_back (CUTE (test_scoped_function_semantics_release_does_nothing));
.push_back (CUTE(test_scoped_resource_semantics_reset));
.push_back(CUTE(test_scoped_resource_semantics));

.push_back (CUTE(test_scope_resource_with_two_values));
.push_back(CUTE(test_scoped_resource_with_pointer));

.push_back (CUTE (test_scoped_resource_semantics_release));
.push_back(CUTE(test_scoped_resource_address_of));
.push_back(CUTE(test_scoped_resource_with_failure_value));

.push_back (CUTE (test_scoped_resource_move_enable)) ;

.push_back (CUTE(test_scoped_resource_can_be_moved)) ;

.push_back (CUTE (test_scoped_resource_semantics_reset_move)) ;
.push_back(CUTE(test_scoped_resource_noexcept_deleter));
cute::xml_file_opener xmlfile(argc, argv);
cute::xml_listener<cute::ide_listener<> > lis(xmlfile.out);

cute: :makeRunner (lis, argc, argv) (s, "AllTests");

n n n n n n n n n n nn nn nn n nn

}

int main(int argc, char const *argv[]) {
runAllTests(argc, argv);
return O;

