
Title: SG5 Transactional Memory Support for C++
Update

Number: N4180
Date: 2014-10-10
Authors: Michael Wong, michaelw@ca.ibm.com

Victor Luchangco, victor.luchangco@oracle.com
with other members of the transactional memory study group (SG5), including:
Hans Boehm, hboehm@google.com
Justin Gottschlich, justin.gottschlich@intel.com
Jens Maurer, jens.maurer@gmx.net
Paul McKenney, paulmck@linux.vnet.ibm.com
Maged Michael, magedm@us.ibm.com
Mark Moir, mark.moir@oracle.com
Torvald Riegel, triegel@redhat.com
Michael Scott, scott@cs.rochester.edu
Tatiana Shpeisman, tatiana.shpeisman@intel.com
Michael Spear, spear@cse.lehigh.edu

Project: Programming Language C++, SG5 Transactional Memory
Reply to: Michael Wong michaelw@ca.ibm.com (Chair of SG5)
For: EWG, LEWG
Revision: 2

Introduction
Transactional memory supports a programming style that is intended to facilitate parallel execution with
a comparatively gentle learning curve. This document further describes a proposal developed by SG5 to
introduce transactional constructs into C++ as a Technical Specification based on N3999.
 This paper (N4180) is an update of the Transactional Memory design proposal outlined in N3999
based on feedbacks from Rapperswil Core and Library working group Review. A separate paper (N4179)
describes the wording changes that support all the following changes.
Specifically, it describes these changes to N3999’s design.

1. Request in Rapperswil CWG review for static checking for the replace code-bloat issue from
safe-by-default. This is already approved by EWG in Rapperswil.

2. Add new function attribute [[optimized_for_synchronized]] for optimized
invocation inside synchronized statement to enable speculation, as a consequence of the static
checking. This is pending approval by EWG.

3. Add keyword transaction_safe noinherit for virtual functions to make transaction-
safety not be viral in the virtual functions of the derived class to address LWG review in
Rapperswil on transaction-safety of destructors of exception types derived from std::exception.
This is pending approval by EWG.

4. Adds Transaction-safety for all containers and iterator-related functions. This is pending
approval by LEWG.

5. Adds tx_exception. This is pending approval by LEWG.

mailto:michaelw@ca.ibm.com�
mailto:justin.gottschlich@intel.com�
mailto:jens.maurer@gmx.net�
mailto:magedm@us.ibm.com�
mailto:mark.moir@oracle.com�
mailto:triegel@redhat.com�
mailto:scott@cs.rochester.edu�
mailto:tatiana.shpeisman@intel.com�
mailto:spear@cse.lehigh.edu�
mailto:michaelw@ca.ibm.com�

Changes in previous revisions

• N3999: From N3919, we updated with discussion results from EWG, and the TM Evening

Session of Issaquah. We considered the memory model effect from Chandler on whether a
transaction that does not access any shared data induces any happens-before arcs – and in
particular whether transactions that are provably thread-local must incur synchronization costs. We
also added Core Standard Wording to support TM TS in preparation for the Draft Document. Core
Standard Wording will be reviewed in a separate telecon call on June 2, and likely again at
Rapperswil. Library wording is posted here and in N4000 and was reviewed in Rapperswil.

• N3919: From N3859, this was the EWG approved version that was also voted in Issaquah as the
indicated document for the TM TS NP.
We added examples, and modified the syntax as directed by EWG vote.

• N3859: From N3718, we made several changes based on feedback and discussion at and since the
Chicago meeting, including:
– The atomic transactions and relaxed transactions of N3718 were renamed atomic blocks and
synchronized blocks respectively (and the relevant keywords were changed to reflect this).
– Synchronized blocks are defined before and without reference to atomic blocks.
– We eliminated the use of escape to refer to an exception being thrown but not caught within a
transaction (and the relevant keywords were changed to reflect this).
– Synchronized blocks may be nested within atomic blocks. (In N3718, atomic transactions could
be nested within relaxed transactions, but relaxed transactions could not be nested within atomic
transactions.)
– We decided to expand the set of functions in the standard library designated transaction-safe,
and the set of exceptions that can cancel an atomic block. (This document does not fully reflect
the intended change; instead, it includes relevant comments at appropriate places.)

Static Checking and removal of Safe-by-Default
This has already been approved by EWG in Rapperswil.

Safe-by-default (SBD) is the design in N3999 where the implementation is allowed to generate two
versions of functions for cases where they apply and is necessary: one a transaction-safe and another
that is transaction-unsafe. The implementation is allowed to choose at link time and possibly discard the
unused one depending on the facility supported.

Up to now, we have exposed this consequence through several meetings, and while we have heard
some saying they dislike it (while others may even say they are OK with it), none have said it is over my
dead body. The EWG review in Rapperswil is the first. We have been in effect waiting to hear this, and
did not want to ignore this.

Those members who objected also offered a solution which would resolve their objection. In fact, this
was an earlier design before SBD and is implemented in GCC 4.7 based on N3725: Original Draft
Specification of Transactional Language Constructs for C++.

They feel the SBD solution would be non-portable depending on the quality of linker (say on older VMS
platforms), or whether full program analysis would be enabled, which might even depend on what
optimization was turned on. This breaks the spirit of a Standard which is about portability. However, an
implementation is always allowed to do more and enable optionally SBD.

This design change was approved and is reflected in the wording in N4179.

Specifically, we will require explicit annotation for non-template inline function, or
an inline function if declared without a body if it's used before the definition (likewise for templates),
or"plain" extern functions. But for all other cases (specifically the templates that fall outside the above
list) do not need to be annotated.

[[optimized_for_synchronized]] for synchronized
Statement
This still requires EWG approval but is reflected in N4179.

With Safe-by-default generating two versions, there was no need for this attribute. With static-checking
back in the design, we require this attribute to bring back speculation in synchronized blocks.

As with much of our design, there is implementation experience as this is an attribute which has been
implemented in the Intel STM compiler but is named transaction_callable.

There are some library functions that could not be made transaction-safe. Examples are assert, fprintf,
perror, and abort. Consider this example from memcache:

store_item(){ // in thread.c
 ...
 synchronized {
 ret = do_store_item(...)
 }
 ...
}
do_store_item() { // in memcached.c
 ...
 if (...)
 else if (...)
 else if (...)
 if (...)
 else if (...)
 else
 ...
 if (settings.verbose > 1) //A
 fprintf(stderr, "CAS: failure: expected %llu, got %llu\n", (unsigned
long long) ITEM_get_cas(old_it), (unsigned long long)ITEM_get_cas(it));
 ...
}

All the conditionals are there to show that even if the verbose test in Line A passes (when verbose
is 2 or higher), it is still a very rare case that fprintf will run. However rare, do_store_item() cannot
be made transaction-safe because it contains an unsafe code path with fprintf. This means that
when it is called from a synchronized block from within store_item(), (because
do_store_item() is not transaction-safe) it must serialize before the call to do_store_item(),
since there is only an uninstrumented version of the function.

This is unsatisfactory for most of the normal paths of this function. So a new optimization function
attribute is needed: [[optimized_for_synchronized]]. This indicates to the compiler that (a)
do_store_item() might be called from a synchronized block in another compilation unit, and (b)
the programmer thinks that the compiler should generate an instrumented version of
do_store_item() even though it has unsafe code, because doing so would incur serialization only
for those control flows in which the fprintf() is reached.

In effect, a function annotated with [[optimized_for_synchronized]] may have irrevocable
operations and legacy function calls inside its lexical and dynamic scope. Such a function may call other
similarly annotated functions within its lexical and dynamic scopes, and may contain synchronized or
atomic blocks. Further, a function that is annotated as such may contain indirect function calls and
virtual function calls even if it is unknown at compile-time whether the target of a function pointer is
also annotated as such.

A further example demonstrates its use:

// translation unit 1
[[optimize_for_synchronized]] int f(int);

void g(int x) {
 synchronized {
 ret = f(x*x);
 }
}

// translation unit 2
extern int verbose;

[[optimize_for_synchronized]] int f(int x)
{
 if (x >= 0)
 return x;
 if (verbose > 1)
 std::cerr << "failure: negative x" << std::endl;
 return -1;
}
If the attribute were not present for f, which is not declared transaction_safe, a program
might have to drop out of speculative execution in g's synchronized block every time when
calling f, although that is only actually required for displaying the error message in the rare
verbose error case.

Virtual function with transaction_safe noinherit
This still requires EWG approval but is reflected in N4179.

During LWG review in Rapperswil, it was discovered that we need to consider the case for destructors
for exception types (i.e., classes that derive from std::exception). When an exception is thrown
from within an atomic block, its constructor and destructor are called within a transaction. So, by our
current rules, they must be transaction-safe. However, the destructor calls the destructor of
std::exception (because it derives from std::exception), so, again by our current rules,
std::exception’s destructor must be transaction-safe, which in turn forces all classes that derive
from std::exception to have transaction-safe destructors. This viral effect is unacceptable and
undesirable for legacy code who might not know or care about transactional memory.

There is a similar legacy problem for virtual functions of well-established library classes in general: We
cannot declare such a function to be transaction-safe, even if it is transaction-safe, because existing
derived classes might not be. Thus, we cannot call such virtual functions from atomic blocks (in the
current rules).

Another similar case is for function pointer parameters to functions, such as the compare argument to
qsort: We cannot call qsort within an atomic block unless it is declared to be transaction-safe, in which
case, because qsort may call through its compare argument, we must also declare compare to be
transaction-safe. But legacy calls to qsort may have passed transaction-unsafe compare functions.

Of these three cases, we must address the first two cases, i.e. virtual destructors and virtual functions in
general. For the other case (function pointer), SG5 is considering if we should use the same solution
(though with a possibly more suitable name) or leave them until usage experience requires a solution.
This remains open for debate.

Initial proposals to address the first case were:

(a) make a special case for destructors,
(b) make a special case for all virtual methods of std::exception, or
(c) allow transaction-safe virtual methods to be overridden by transaction-unsafe virtual methods.

Another possibility that we didn’t discuss is to make an even narrower exception, just for the destructor
of std::exception.

None of these proposals address the function pointer case, since we hadn’t raised it yet at the time.

SG5 agreed that each of these was unpalatable, in part because it felt rather ad hoc, or, for proposal (c),
that it meant that we had to forego static checking for all virtual methods, even ones without legacy
issues.

We propose to adapt a variant of (c):

(d) introduce a new kind of transaction-safety declaration for virtual methods that allows them to be
overridden with transaction-unsafe virtual methods. This is a new keyword called
transaction_safe noinherit. The precise naming is still open for debate. Even within SG5, we
have considered and rejected names such as

• transaction_safe explicit

• transaction_safe unchecked

• transaction_safe maybe

Note that all of these proposals allow transaction-unsafe functions to be called within a transaction,
resulting in a run-time error. We think this is unavoidable. The proposals differ in when they allow this
to happen.

There are some within SG5 who feel we should treat function pointers in the same way for the qsort
case. However, there is an escape path for the qsort case. You can have two overloads of qsort: One
declared transaction-safe and taking a function pointer to a transaction-safe compare function. The
other not declared transaction-safe and taking a (plain) function pointer for compare.

This is actually possible because a "pointer to transaction-safe function" is a different type than "pointer
to function". These two qsort overloads being totally different functions makes it possible
to declare one as transaction-safe and the other as not. (Something that is currently not possible with
functions that do not otherwise differ in their signature.)

We can extend proposal (d) straightforwardly by allowing function pointers to be declared
transaction safe noinherit (possibly with a new name that better fits the context). A
function pointer so declared could be assigned a transaction-unsafe function, and it could be called
through within a transaction (resulting in a run-time error if it points to a transaction-unsafe function).
There are others who worried that extending unchecked transaction-safety to function pointers was
going too far (due to the connotation that comes with noinherit rather than any objection with the
concept), that there would be possible pushback from the committee, and that we are conflating
different issues.
(1) the problem that arises because the destructor of a derived class calls the destructor of its base class,
(2) checking that a function definition is transaction-safe, and
(3) the inheritance of transaction-safety for virtual methods (i.e., requiring that an overriding virtual
method of derived class be transaction-safe if the corresponding virtual method in the base class is).

The fundamental issue that we agree we must resolve is due to issue (1) and (3) together. That is, we

can address it by addressing either (1) or (3). Proposal (a) above addresses (1); the others address issue
(3).

Michael Scott suggested that we consider having two separate mechanisms (he suggested this as a
conceptual exercise, not necessarily that we should actually separate them): asserting that a particular
function being defined is transaction-safe (resulting in a compile-time error if it is not), and asserting
that derived classes must not override a virtual method with a transaction-unsafe function. That is, the
two mechanisms would check issues (2) and (3) respectively. Applied to a function pointer, the second
mechanism would statically forbid the assignment of a transaction-unsafe function. Separating these
mechanisms makes clear that there are two variants to proposal (d) when extended to function
pointers, one that checks that the initial value of the pointer (if any) is a transaction-safe function, and
the other that doesn’t. The same issue actually applies to virtual methods too, because they may be
pure. However, pure virtual functions may or may not have definitions.

Ignoring the naming issue (although it does affect how we think about the mechanism), we need to
decide whether we prefer to have a more restrictive solution or a broader one. The restrictive solution
has several advantages:

- it is easier to provide a more general solution later, if needed, than to restrict an overly broad one.
- we can get feedback about what kind of a more general solution, if any, is actually needed, and use this
to inform our design.
- a more restrictive solution might be easier to implement.

However, an overly restrictive solution may cause programmers to avoid using atomic blocks. Also, if we
adopt a more restrictive solution, we should consider whether it is compatible with a future broader
solution. In particular, if we make a special case for destructors, then that mechanism might not be a
special case of proposal (d), and it may introduce unnecessary complications. (unnecessary because if
we adopt proposal (d), we don’t need a different special case for destructors.) But if we choose a
restrictive solution that is simply the broader solution but applied only to some cases, programmers
might find the restrictions arbitrary and counterintuitive.

As a possible extension, proposal (d) extended to function pointers is intended to be a single mechanism
that happens to address the destructor problem, but it does so as part of a broad straightforward
change, rather than one tailored for that problem. It simply says that we can declare a function pointer
that can be called through within a transaction, but isn’t actually checked for transaction-safety. This
declaration is a gesture we force the programmer to make to take responsibility for the possible run-
time error. In that proposal, we also require that the initial value of the function pointer is transaction-
safe: if that value is a transaction-unsafe function, the program is rejected by the compiler. However,
later assignments to such function pointer are not checked. Some disagree with providing this facility
and prefer the same checking for the initial value and for later assignments, to avoid ugly workarounds
of this rule. Applied to virtual methods, this means that if the class declares a virtual method to be
unchecked transaction-safe, and also defines it (i.e., it is not a pure virtual method), then the definition

is checked and rejected at compile time if it is not transaction-safe. However, overriding functions of
unchecked transaction-safe virtual methods in derived classes are not checked (unless the derived class
explicitly declares them transaction-safe or unchecked transaction-safe).

For this paper, SG5 agreed for now is to adopt a restricted version of proposal (d), or actually the
original form of proposal (d), not extended to function pointers.

So a function that overrides a function declared transaction_safe, but not transaction_safe
noinherit, is implicitly considered to be declared transaction_safe. Its definition is ill-
formed unless it actually has a transaction-safe definition. A function declared
transaction_safe noinherit that overrides a function declared transaction_safe (but not
transaction_safe noinherit) is ill-formed.

Here is an example demonstrating transaction_safe noinherit:

struct B {
 virtual void f() transaction_safe;
 virtual ~B() transaction_safe noinherit;
};

// pre-existing code
struct D1 : B
{
 void f() override { } // ok
 ~D1() override { } // ok
};

struct D2 : B
{
 void f() override { std::cout << "D2::f" << std::endl; }
 // error: transaction-safe f has transaction-unsafe definition
 ~D2() override { std::cout << "~D2" << std::endl; } // ok
};

struct D3 : B
{
 void f() transaction_safe noinherit override;
 // error: B::f() is transaction_safe
};

int main()
{
 D2 * d2 = new D2;
 B * b2 = d2;
 atomic_commit {
 B b; // ok
 D1 d1; // ok
 B& b1 = d1;
 D2 x; // error: destructor of D2 is not transaction-safe
 b1.f(); // ok, calls D1::f()
 delete b2; // undefined behavior: calls unsafe destructor of D2
 }

}

Add Transaction-safety for all containers and iterator-related
functions
This still requires LEWG approval but is reflected in N4179.

This is applied in N4179 to unique_ptr, strings, array, deque, forwardlist, list, vector, vector<bool>, map,
set, multiset, unordered_map, unordered_multimap, unordered_set, unordered_multiset as well as
iterators.

Add tx_exception

This still requires LEWG approval but is reflected in N4179.

We intend to introduce a

template<class T>
class tx_exception : exception { ... };
with a transaction-safe "what()" function and where "T" can be memcpy'd.

This means that a specialization of tx_exception supports transaction cancellation only if T is a
trivially-copyable type.

	Title: SG5 Transactional Memory Support for C++ Update
	Introduction
	Changes in previous revisions

	Static Checking and removal of Safe-by-Default
	[[optimized_for_synchronized]] for synchronized Statement
	Virtual function with transaction_safe noinherit
	Add Transaction-safety for all containers and iterator-related functions
	Add tx_exception

