
N4158 | Destructive Move (Rev 1)

Pablo Halpern phalpern@halpernwightsoftware.com

2014-10-12

1 Abstract

This paper proposes a function template for performing destructive move operations – a type of move
construction where the moved-from object, instead of being left in a “valid, but unspecified” state, is left in a
destructed state. This operation can be made non-throwing in a wider range of situations than a normal
move constructor, and can be used to optimize crucial operations, such as reallocations within vectors. An
array version of the destructive move template is proposed specifically for moving multiple objects efficiently
and with the strong exception guarantee.

The facilities described in this paper are targeted for a future library Technical Specification, probably the
Fundamentals version 2 TS.

This paper is a revision of N4034, which was reviewed by the LEWG and advanced to the LWG.

2 Changes from N4034

• Renamed destructive_move to uninitialized_destructive_move so that the name reflects the fact
that one of the arguments is a pointer to uninitialized storage similar to the case of uninitialized_copy.

• Renamed destructive_move_array to uninitialized_destructive_move_n

• Added uninitialized_trivial_destructive_move as a central place for behavior that interacts with
the core language.

• Changed order of arguments to more closely match similar functions such as uninitialized_copy and
uninitialized_copy_n.

• Clarified some formal wording, especially regarding overloading the functions and specializing the traits
for user-defined types.

3 Motivation

3.1 Background

Rvalue references and move operations were introduced into the standard to improve performance by reducing
the use of expensive copy operations. The noexcept keyword was added in order to support important use
cases where move operations could not otherwise be used. Because move constructors modify the moved-from
object, an operation that moves multiple elements, e.g., in a container, could result in both containers being
in a half-moved state if one of the move constructors throws an exception. It is not possible to reliably reverse
this half-moved situation without risking another exception being thrown.

1

mailto:phalpern@halpernwightsoftware.com
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n4034.pdf

Using noexcept, an implementation can detect whether it is possible that a move constructor might throw and,
if so, can choose copy construction, instead. The standard provides the function template move_if_noexcept
specifically for this purpose. The following implementation of push_back for a simplified vector uses this
idiom to preserve the strong exception guarantee, whereby the moved-from vector remains unchanged if an
exception is thrown:

template <class T, class A = std::allocator<T>>
class simple_vec
{

A m_alloc; // allocator to obtain space for elements
T* m_data; // address of allocated storage (or null)
std::size_t m_capacity; // size (in elements) of allocate storage
std::size_t m_length; // number of elements in container

public:
...
void push_back(const T& v);

};

template <class T, class A>
void simple_vec<T, A>::push_back(const T& v)
{

typedef std::allocator_traits<A> alloc_traits;

if (m_length == m_capacity) {
// Grow the vector by creating a new one and swapping.
simple_vec temp(m_alloc);
temp.m_capacity = (m_capacity ? 2 * m_capacity : 1);
temp.m_data = alloc_traits::allocate(m_alloc, temp.m_capacity);

T *from = m_data, *to = temp.m_data;
for (temp.m_length = 0; temp.m_length < m_length; ++temp.m_length)

alloc_traits::construct(m_alloc, to++,
std::move_if_noexcept(*from++));

temp.swap(*this);
// Destructor for 'temp' destroys moved-from elements.

}

alloc_traits::construct(m_alloc, &m_data[m_length], v);
++m_length;

}

3.2 Lost opportunities

Unfortunately, the requirement that move constructors leave the moved-from object in a valid (though
unspecified) state results in several important situations where a move constructor cannot be decorated with
noexcept. For example, some implementations of list, including at least one commercial implementation,
use a heap-allocated sentinel node in order to preserve the stability of the end() iterator when using swap
and splice. A moved-from list implemented this way must have a sentinel node in order to avoid an
“emptier than empty” violation of its class invariants. The default constructor and move constructor for
such a list might look like the following (m_begin and m_end are member variables pointing to the first and
past-the-end nodes in the list. Node is class representing a single list node.):

N4158 2 Pablo Halpern

// default constructor for a simple list type (no allocator support)
template <class T>
simple_list<T>::simple_list()
{

m_begin = m_end = new Node(nullptr, nullptr); // might throw
}

// move constructor for a simple list type (no allocator support)
template <class T>
simple_list<T>::simple_list(simple_list&& other)
{

simple_list temp; // Default constructor might throw.
temp.swap(*this); // 'swap' never throws.

}

Since the sentinel node requires a memory allocation, which might throw, neither the default constructor nor
the move constructor can be decorated with noexcept. Such a type cannot benefit from the move_if_noexcept
optimization – it would need to be copied every time.
As you can see from the push_back code for simple_vec in the previous section, after all of the elements
have been moved from one place to the other, the moved-from elements are destroyed. It is not necessary in
this and many similar situations to leave the moved-from object in a valid state – it would be sufficient to
end its lifetime as part of the move (i.e., as if its destructor had been called).
Why is this important? Many, if not most, classes that cannot offer a nothrow move constructor can offer
a nothrow destructive move operation – a move combined with a destroy. In the case of our simple_list,
above, the destructive move operation would simply move the m_begin and m_end pointers from the list
being moved from to the list being moved to. Any attempt to use (or destroy) the moved-from object would
be undefined behavior. Thus, a destructive move operation could expand the set of cases that could benefit
from move_if_noexcept-like optimizations.
Another benefit of destructive move is that it is often more efficient to perform a destructive move operation
than a non-destructive move construction. In the case of a string, for example, a destructive move would
simply copy pointers. Since pointers are trivially copyable, the entire move operation becomes a trivial copy
that can be implemented as a memcpy. This optimization is magnified when operating on arrays of strings; the
entire array can be destructively moved with a single memcpy or memmove. This optimization was implemented
at Bloomberg before move constructors were even invented and has yielded significant performance gains. It
turns out that a large number of classes, like string, can be destructively moved using byte copies. Such
classes model a concept I call trivially destructive-movable.
Note that trivially destructive-movable does not require or imply trivially copyable; unlike a copy, after the
destructive move is complete, the moved-from object must not be accessed, since any pointer members would
point to memory shared with the moved-to object.

4 Proposal summary

This proposal comprises two new function templates and two new traits. The first function template is called
uninitialized_destructive_move and looks like this:

template <class T>
void uninitialized_destructive_move(T* from, T* to)

noexcept(/* see below */);

The preconditions are that from points to a valid object and to points to raw memory. The postconditions
are that to points to a valid object and from points to raw memory. The default implementation is simply:

N4158 3 Pablo Halpern

::new(to) T(std::move(*from));
from->~T();

This default, however, can be overridden in two ways:

1. If the trait is_trivially_destructive_movable<T> is true, then the destructive move is implemented
using byte copies. This trait is always true for types that are trivially movable, but can also be
overridden for other types by class authors.

2. If uninitialized_destructive_move is overloaded for a specific type, then ADL will resolve to the
overloaded version. Thus, a class author can implement an efficient destructive move (with its own
noexcept clause) for his/her new type.

The noexcept specification for this function template is computed to be true for as many types as possible.
Only if a type has a throwing move constructor and does not override the default for destructive move is
the noexcept specification false. The is_nothrow_destructive_movable<T> trait is defined to be true if
uninitialized_destructive_move<T> has a true noexcept specification.
Note, however, that destructive move cannot be used with an idiom like move_if_noexcept. The
move_if_noexcept function guarantees that its argument remains valid whether an exception is thrown
or not. The uninitialized_destructive_move function, in contrast, invalidates its second argument on
success and leaves it unchanged if an exception is thrown. A hypothetical destructive_move_if_noexcept
function could result in a third possible end state: both to and from could be valid if the object
is_nothrow_destructive_movable<T> is false and the function were forced to make a copy. The usage
idiom for such a function would be complex and non-intuitive. Instead, this paper proposes a function
template uninitialized_destructive_move_n, which encapsulates the entire process of moving elements
from one array to another and rolling back on failure. Using uninitialized_destructive_move_n, the
implementation of simple_vec::push_back would look as follows:

template <class T, class A>
void simple_vec<T, A>::push_back(const T& v)
{

typedef std::allocator_traits<A> alloc_traits;

using std::experimental::uninitialized_destructive_move_n;

if (m_length == m_capacity) {
// Grow the vector by creating a new one and swapping
simple_vec temp(m_alloc);
temp.m_capacity = (m_capacity ? 2 * m_capacity : 1);
temp.m_data = alloc_traits::allocate(m_alloc, temp.m_capacity);

// Exception-safe move from this->m_data to temp.m_data
uninitialized_destructive_move_n(m_data, m_length, temp.m_data);

// All elements of 'temp' have been constructed and
// all elements of '*this' have been destroyed.
temp.m_length = m_length;
m_length = 0;
temp.swap(*this);

}

alloc_traits::construct(m_alloc, &m_data[m_length], v);
++m_length;

}

N4158 4 Pablo Halpern

5 Formal wording for the TS

5.1 Header <experimental/destructive_move> synopsis

namespace std {
namespace experimental {
inline namespace fundamentals_v2 {

template <class T> struct is_trivially_destructive_movable;
template <class T> struct is_nothrow_destructive_movable;

template <class T>
void uninitialized_trivial_destructive_move(T* from, T* to) noexcept;

template <class T>
void uninitialized_destructive_move(T* from, T* to)

noexcept(/* see below */);

template <class T>
void uninitialized_destructive_move_n(T* from, size_t sz, T* to)

noexcept(is_nothrow_destructive_movable<T>::value);

}
}
}

5.2 Type trait is_trivially_destructive_movable

namespace std {
namespace experimental {
inline namespace fundamentals_v2 {

template <class T>
struct is_trivially_destructive_movable :

integral_constant<bool, (is_trivially_move_constructible<T>::value &&
is_trivially_destructible<T>::value)>

{
};

}
}
}

A type T is trivially destructive-movable if, given two pointers to T, p1 and p2, where p1 points to an existing
object that is not a base-class subobject and p2 points to allocated storage of suitable size and alignment
for an object of type T, copying the underlying bytes from *p1 to *p2 has the same user-visible effects as
move-constructing *p2 from *p1 then destroying *p1. [Note: In order to take advantage of this trait, a
program can invoke uninitialized_trivial_destructive_move (5.4). – end note] [Note: A type need not
be trivially move-constructible nor trivially destructible in order to be trivially destructive-movable. The
is_trivially_destructive_movable template could be specialized for such a type. – end note]

The is_trivially_destructive_movable template is a UnaryTypeTrait with a base characteristic of
true_type or false_type. A specialization with a base characteristic of true_type indicates that type

N4158 5 Pablo Halpern

T is trivially destructive-movable. A specialization with a base characteristic of false_type gives no
indication of whether or not T is trivially destructive-movable. The behavior of a program for which a
specialization of is_trivially_destructive_movable incorrectly derives from true_type is undefined.
[Note: False negatives are acceptable, but false positives would result in undefined behavior. – end note]
An implementation may provide explicit specializations of is_trivially_destructive_movable for any
subset of types in the standard, and a program may specialize is_trivially_destructive_movable for
user-defined classes.

5.3 Type trait is_nothrow_destructive_movable

namespace std {
namespace experimental {
inline namespace fundamentals_v2 {

template <class T> struct is_nothrow_destructive_movable;

}
}
}

The is_nothrow_destructive_movable template shall be a UnaryTypeTrait with a base characteristic
of true_type if the expression uninitialized_destructive_move<T>(p1, p2) is known not to throw
exceptions for valid arguments p1 and p2, otherwise false_type.

5.4 Function template uninitialized_trivial_destructive_move

template <class T>
void uninitialized_trivial_destructive_move(T* from, T* to) noexcept;

Requires: T shall be trivially destructive-movable.

Preconditions: to shall be a pointer to allocated memory of suitable size and alignment for an object of type
T; from shall be a pointer to an existing object that is not a base-class subobject.

Effects: equivalent to memcpy(to, from, sizeof(T));. The lifetime of *to begins on return from this
function. The lifetime of *from ends on entry to this function, although from still points to allocated storage.

5.5 Function template uninitialized_destructive_move

template <class T>
void uninitialized_destructive_move(T* from, T* to)

noexcept(/* see below */);

Requires: If is_trivially_destructive_movable<T>::value is false, then T shall be MoveConstructible.

Preconditions: to shall be a pointer to allocated memory of suitable size and alignment for an object of type
T; from shall be a pointer to an existing object that is not a base-class subobject.

Effects: If is_trivially_destructive_movable<T>::value is true, then
uninitialized_trivial_destructive_move(from, to); otherwise, equivalent to
::new(static_cast<void*>(to)) T(std::move(*from)); from->~T();. This function may be over-
loaded, in the appropriate associated namespaces, for user-defined or library types. Such overloads shall

N4158 6 Pablo Halpern

achieve the postconditions described below, but are not required to use either of the two methods described
here.
Throws: nothing unless the destructor or selected constructor for T throws.
Remark: The expression within the noexcept clause is equivalent to
is_trivially_destructive_movable<T>::value || (is_nothrow_move_constructible<T>::value &&
is_nothrow_destructible<T>::value). Overloads of this function for specific types may have different
exception specifications.
Postconditions: *to (after the call) is equivalent to *from before the call, where equivalence is defined in
the same way as it is for move construction. The lifetime of *from has ended, although from still points to
allocated storage. [Note: To avoid invoking the destructor on the destroyed object, from should not point to
an object having static or automatic storage duration. – end note]

5.6 Function template uninitialized_destructive_move_n

template <class T>
void uninitialized_destructive_move_n(T* from, size_t sz, T* to)

noexcept(is_nothrow_destructive_movable<T>::value);

Requires: uninitialized_destructive_move(from, to) shall be well formed. If
is_nothrow_destructive_movable<T>::value is false, then T shall also be CopyConstructible and the
destructor for T shall not throw for any element in from.
Preconditions: to shall be a pointer to allocated memory of suitable size and alignment for an array of
sz elements of type T, from shall be a pointer to an existing array of sz elements of type T. The memory
addressed by to and from shall not overlap.
Effects: For each i in [0,sz), Constructs a copy of element from + i into to + i and destroys the element
in from + i. If is_nothrow_destructive_movable<T>::value is true, the copies are constructed as if by
uninitialized_destructive_move, otherwise by copy construction.
Throws: Nothing unless the copy constructor for T throws. If an exception is thrown, the call shall have no
effect.

6 Implementation Experience

Source code for the traits and function templates proposed in this paper, as well as an implementation of
simple_vec and a test driver for the whole thing, is available at http://halpernwightsoftware.com/WG21/
destructive_move.tgz. The code is free to use and distribute for both commercial and non-commercial
purposes. Destructive move with specializations for trivially destructive-movable types has been in use in
Bloomberg LP’s BDE code base for well over 5 years and has resulted in significantly faster vector operations.

7 Future work

The uninitialized_destructive_move function template can be useful, not only for non-overlapping
operations such as vector reallocations, but also for overlapping array operations such as inserting and erasing
elements. uninitialized_destructive_move_n, however, is not suited to those overlapping moves. There
is an opportunity to add one or two additional function templates for this purpose. There may also be use
cases for a variant of uninitialized_destructive_move_n that would work on arbitrary iterator ranges
rather than specifically on arrays.
There is an opportunity for the standard to specialize is_trivially_destructive_movable for tuple, pair,
and array such that each derives from true_type when the trait for all if its elements yields true_type.

N4158 7 Pablo Halpern

http://halpernwightsoftware.com/WG21/destructive_move.tgz
http://halpernwightsoftware.com/WG21/destructive_move.tgz
https://github.com/bloomberg/bde

8 Acknowledgments

Thanks to my former colleagues at Bloomberg for encouraging me to write this paper and reviewing the
drafts.

9 References

BDE BDE Library, developed by Bloomberg LP. Source code available at https://github.com/bloomberg/bde

N3908 Working Draft, Technical Specification on C++ Extensions for Library Fundamentals, Jeffrey Yasskin,
editor, 2014-03-02

N4034 Destructive Move, Pablo Halpern, 2014-05-23

N4158 8 Pablo Halpern

https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n3908.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n4034.pdf

	Abstract
	Changes from N4034
	Motivation
	Background
	Lost opportunities

	Proposal summary
	Formal wording for the TS
	Header <experimental/destructive_move> synopsis
	Type trait is_trivially_destructive_movable
	Type trait is_nothrow_destructive_movable
	Function template uninitialized_trivial_destructive_move
	Function template uninitialized_destructive_move
	Function template uninitialized_destructive_move_n

	Implementation Experience
	Future work
	Acknowledgments
	References

