
Document Number: N4152

Date: 2014-09-30

Authors: Herb Sutter (hsutter@microsoft.com)

uncaught_exceptions

This paper is a revision of N3614 to implement EWG direction in Bristol.

Motivation
std::uncaught_exception is known to be “nearly useful” in many situations, such as when

implementing an Alexandrescu-style ScopeGuard. [1]

In particular, when called in a destructor, what C++ programmers often expect and what is basically true

is: “uncaught_exception returns true iff this destructor is being called during stack unwinding.”

However, as documented at least since 1998 in Guru of the Week #47 [2], it means code that is

transitively called from a destructor that could itself be invoked during stack unwinding cannot

correctly detect whether it itself is actually being called as part of unwinding. Once you’re in unwinding

of any exception, to uncaught_exception everything looks like unwinding, even if there is more than

one active exception.

Example 1: Transaction (GotW #47)
Consider this code taken from [2], which shows an early special case of ScopeGuard (ScopeGuard is

described further in the following section):

Transaction::~Transaction() {
 if(uncaught_exception()) // unreliable, ONLY if Transaction could be
 Rollback(); // used from within a dtor (transitively!)
}

void LogStuff() {
 Transaction t(/*...*/);
 // :::
 // do work
 // :::
} // oops, if U::~U() is called as part of unwinding another exception
 // so uncaught_exception will return true and t will not commit

U::~U() {
 /* deep call tree that eventually calls LogStuff() */
}

// for example:
int main() {
 try {

mailto:hsutter@microsoft.com

 U u;
 throw 1;
 } // U::~U() invoked here
 catch(...) {
 }
}

The problem is that, inside ~Transaction, there is no way to tell whether ~Transaction is being called

as part of stack unwinding. Asking uncaught_exception() will only say whether some unwinding is in

progress, which might already have been true, rather than answering whether ~Transaction itself is

being called to perform unwinding.

Example 2: ScopeGuard
Alexandrescu’s ScopeGuard [1, 3] is a major motivating example, where the point is to execute code

upon a scope’s:

a) termination in all cases == cleanup à la finally;
b) successful termination == celebration; or
c) failure termination == rollback-style compensating “undo” code.

However, currently there is no way to automatically distinguish between (b) and (c) in standard C++

without requiring the user to explicitly signal successful scope completion by calling a Dismiss function

on the guard object, which makes the technique useful but somewhere between tedious and fragile.

Annoyingly, that Dismiss call is also usually right near where the failure recovery code would have been

written without ScopeGuard, thus not relieving the programmer of having to think about the placement

of success/failure determination and compensating actions shouldn’t/should occur.

For example, adapted from [1]:

void User::AddFriend(User& newFriend)
{
 friends_.push_back(&newFriend);
 ScopeGuard guard([&]{ friends_.pop_back(); });
 :::
 pDB_->AddFriend(GetName(), newFriend.GetName());
 :::
 guard.Dismiss();
}

Nevertheless, despite that current drawback, as demonstrated for example in [4], ScopeGuard is known

to be useful in practice in C++ programs. See slides 35-44 in the Appendix for additional examples from

production code.

ScopeGuard is desirable because it simplifies control flow by allowing “ad-hoc destructors” without

having to write a custom type for each recovery action. For example, in the D programming language,

which has language support for ScopeGuard in the form of the scope statement, the D standard library

uses scope(…) almost as frequently as while.

We would like to enable ScopeGuard and similar uses to automatically and reliably distinguish between

success and failure in standard C++ without requiring the user to explicitly signal success or failure by

calling a Dismiss function on the guard object. This makes the technique even more useful and less

tedious to write code that is clear and exception-safe. The adapted example from [1] would be:

void User::AddFriend(User& newFriend)
{
 friends_.push_back(&newFriend);
 ScopeGuard guard([&]{ friends_.pop_back(); });
 :::
 pDB_->AddFriend(GetName(), newFriend.GetName());
 :::
 // no need to call guard.Dismiss();
}

Proposal
This paper proposes a simple function that enables the above uses. This paper does not propose adding

language support for D-style scope statements, or more general approaches such as suggested in [5].

Option 1: bool unwinding_exception()
The previous version of this paper suggested a function that returned true iff called during stack

unwinding. EWG pointed out that this could involve overheads on programs that did not use the feature,

because the implementation would have to be ready to answer the query at any time; it might also be

an ABI-breaking change in compilers.

Instead, EWG pointed out that having an integer denoting the number of uncaught exceptions was just

as useful to implement cases like Transaction and ScopeGuard. Furthermore, Alexandrescu [6] and

others point out that this just uses information already present in the major implementations.

Therefore, we do not propose Option 1, favoring instead Option 2 below.

Option 2: int uncaught_exceptions()
This paper proposes a new function int std::uncaught_exceptions() that returns the number of

exceptions currently active, meaning thrown or rethrown but not yet handled.

A type that wants to know whether its destructor is being run to unwind this object can query

uncaught_exceptions in its constructor and store the result, then query uncaught_exceptions again

in its destructor; if the result is different, then this destructor is being invoked as part of stack unwinding

due to a new exception that was thrown later than the object’s construction.

As demonstrated in slides 28-31 of the Appendix [6], this uses information already present in major

implementations, where current implementations of ScopeGuard resort to nonportable code that relies

on undocumented compiler features to make ScopeGuard “portable in practice” today. This option

proposes adding a single new function to expose the information that already present in compilers, so

that these uses can be truly portable.

Proposed Wording
In clause 15.5, insert:

15.5.x The std::uncaught_exceptions() function [except.uncaught-exceptions]

1 The function int std::uncaught_exceptions() returns the number of exception objects that

have been initialized and thrown or rethrown (15.1) but for which no handler has been activated

(15.3, 18.8.4).

Acknowledgments
Thanks to Andrei Alexandrescu for prompting this paper and providing examples.

References
[1] A. Alexandrescu. “Change the Way You Write Exception-Safe Code – Forever” (Dr. Dobb’s, December

2000).

[2] H. Sutter. “Guru of the Week #47: Uncaught Exceptions” (November 1998).

[3] A. Alexandrescu. “Three Unlikely Successful Features of D” (video) (Lang.NEXT, April 2012).

[4] K. Rudolph et al. “Does ScopeGuard use really lead to better code?” (StackOverflow, September 2008).

[5] V. Voutilainen. “Accessing current exception during unwinding” (N2952, September 2009).

[6] A. Alexandrescu, “Declarative Control Flow” (C++ and Beyond, Stuttgart, Germany, September 2014).

Appendix: [6]
The following is a copy of the handouts of [6], reproduced with permission. In particular, notice in slides

28-31 how the absence of a portable way to get the number of currently active exceptions causes at

least some developers to resort to undocumented features that are already present in the major

compilers. This proposal is to provide access to this information that already exists in implementations.

http://www.drdobbs.com/cpp/generic-change-the-way-you-write-excepti/184403758
http://www.gotw.ca/gotw/047.htm
http://ecn.channel9.msdn.com/events/LangNEXT2012/AndreiLangNext.pdf
http://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2012/Three-Unlikely-Successful-Features-of-D
http://stackoverflow.com/questions/48647/does-scopeguard-use-really-lead-to-better-code
http://open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2952.html

© 2014- Andrei Alexandrescu. Reproduced with permission. 1 / 46

Declarative Control Flow
Prepared for The C++ and Beyond Seminar

Stuttgart, Germany, Sep 29–Oct 1, 2014

Andrei Alexandrescu, Ph.D.

andrei@erdani.com

Agenda

© 2014- Andrei Alexandrescu. Reproduced with permission. 2 / 46

• Motivation

• Implementation

• Use cases

andrei@erdani.com

© 2014- Andrei Alexandrescu. Reproduced with permission. 3 / 46

〈action〉

〈cleanup〉

〈next〉

〈rollback〉

C

© 2014- Andrei Alexandrescu. Reproduced with permission. 4 / 46

if (〈action〉) {

if (!〈next〉) {

〈rollback〉
}

〈cleanup〉
}

C++

© 2014- Andrei Alexandrescu. Reproduced with permission. 5 / 46

class RAII {

RAII() { 〈action〉 }

~RAII() { 〈cleanup〉 }

};

...

RAII raii;

try {

〈next〉
} catch (...) {

〈rollback〉
throw;

}

Java, C#

© 2014- Andrei Alexandrescu. Reproduced with permission. 6 / 46

〈action〉
try {

〈next〉
} catch (Exception e) {

〈rollback〉
throw e;

} finally {

〈cleanup〉
}

Go

© 2014- Andrei Alexandrescu. Reproduced with permission. 7 / 46

result, error := 〈action〉
if error != nil {

defer 〈cleanup〉
if !〈next〉

〈rollback〉
}

Composition

C

© 2014- Andrei Alexandrescu. Reproduced with permission. 9 / 46

if (〈action1〉) {

if (〈action2〉) {

if (!〈next2〉) {

〈rollback2〉
〈rollback1〉

}

〈cleanup2〉
} else {

〈rollback1〉
}

〈cleanup1〉
}

C (Pros Only)

© 2014- Andrei Alexandrescu. Reproduced with permission. 10 / 46

if (!〈action1〉) {

goto done;

}

if (!〈action2〉) {

goto r1;

}

if (!〈next2〉) {

goto r2;

}

〈cleanup2〉

goto c1;

r2: 〈rollback2〉

〈cleanup2〉

r1: 〈rollback1〉

c1: 〈cleanup1〉

done: ;

C++

© 2014- Andrei Alexandrescu. Reproduced with permission. 11 / 46

class RAII1 {

RAII1() { 〈action1〉 }

~RAII1() { 〈cleanup1〉 }

};

class RAII2 {

RAII2() { 〈action2〉 }

~RAII2() { 〈cleanup2〉 }

};

...

C++

© 2014- Andrei Alexandrescu. Reproduced with permission. 12 / 46

RAII1 raii1;

try {

RAII2 raii2;

try {

〈next2〉
} catch (...) {

〈rollback2〉
throw;

}

} catch (...) {

〈rollback1〉
throw;

}

Java, C#

© 2014- Andrei Alexandrescu. Reproduced with permission. 13 / 46

〈action1〉

try {

〈action2〉

try {

〈next2〉

} catch (Exception e) {

〈rollback2〉

throw e;

} finally {

〈cleanup2〉

}

} catch (Exception e) {

〈rollback1〉

throw e;

} finally {

〈cleanup1〉

}

Go

© 2014- Andrei Alexandrescu. Reproduced with permission. 14 / 46

result1, error := 〈action1〉
if error != nil {

defer 〈cleanup1〉
result2, error := 〈action2〉
if error != nil {

defer 〈cleanup2〉
if !〈next2〉

〈rollback2〉
} else {

〈rollback2〉
}

}

© 2014- Andrei Alexandrescu. Reproduced with permission. 15 / 46

Explicit Control Flow =

Fail

Declarative Programming

© 2014- Andrei Alexandrescu. Reproduced with permission. 16 / 46

• Focus on stating needed accomplishments

• As opposed to describing steps

• Control flow typically minimal/absent

• Execution is implicit, not explicit

• Examples: SQL, regex, make, config,. . .

• Let’s take a page from their book!

According to Seinfeld

© 2014- Andrei Alexandrescu. Reproduced with permission. 17 / 46

Declarative: airplane

ticket

Imperative: what the

pilot does

Surprising Insight

© 2014- Andrei Alexandrescu. Reproduced with permission. 18 / 46

• Consider bona fide RAII with destructors:

X States needed accomplishment?

X Implicit execution?

X Control flow minimal?

• RAII is declarative programming!

More RAII: ScopeGuard

© 2014- Andrei Alexandrescu. Reproduced with permission. 19 / 46

• Also declarative

• Less syntactic baggage than cdtors

• Flow is “automated” through placement

• Macro SCOPE_EXIT raises it to

pseudo-statement status

Pseudo-Statement (C&B 2012 recap!)

© 2014- Andrei Alexandrescu. Reproduced with permission. 20 / 46

namespace detail {

enum class ScopeGuardOnExit {};

template <typename Fun>

ScopeGuard<Fun>

operator+(ScopeGuardOnExit, Fun&& fn) {

return ScopeGuard<Fun>(std::forward<Fun>(fn));

}

}

#define SCOPE_EXIT \

auto ANONYMOUS_VARIABLE(SCOPE_EXIT_STATE) \

= ::detail::ScopeGuardOnExit() + [&]()

Preprocessor Trick (C&B 2012 recap!)

© 2014- Andrei Alexandrescu. Reproduced with permission. 21 / 46

#define CONCATENATE_IMPL(s1, s2) s1##s2

#define CONCATENATE(s1, s2) CONCATENATE_IMPL(s1, s2)

#ifdef __COUNTER__

#define ANONYMOUS_VARIABLE(str) \

CONCATENATE(str, __COUNTER__)

#else

#define ANONYMOUS_VARIABLE(str) \

CONCATENATE(str, __LINE__)

#endif

Use (C&B 2012 recap!)

© 2014- Andrei Alexandrescu. Reproduced with permission. 22 / 46

void fun() {

char name[] = "/tmp/deleteme.XXXXXX";

auto fd = mkstemp(name);

SCOPE_EXIT { fclose(fd); unlink(name); };

auto buf = malloc(1024 * 1024);

SCOPE_EXIT { free(buf); };

... use fd and buf ...

}

(if no “;” after lambda, error message is meh)

Painfully Close to Ideal!

© 2014- Andrei Alexandrescu. Reproduced with permission. 23 / 46

〈action1〉
SCOPE_EXIT { 〈cleanup1〉 };

SCOPE_FAIL { 〈rollback1〉 }; // nope

〈action2〉
SCOPE_EXIT { 〈cleanup2〉 };

SCOPE_FAIL { 〈rollback2〉 }; // nope

〈next2〉

• Note: slide plagiated from C&B 2012

One more for completeness

© 2014- Andrei Alexandrescu. Reproduced with permission. 24 / 46

〈action〉
SCOPE_SUCCESS { 〈celebrate〉 };

〈next〉

• Powerful flow-declarative trifecta!

• Do not specify flow

• Instead declare circumstances and goals

© 2014- Andrei Alexandrescu. Reproduced with permission. 25 / 46

Can be implemented

today on ALL major

compilers

© 2014- Andrei Alexandrescu. Reproduced with permission. 26 / 46

May become 100%
portable:

http://isocpp.org/files/papers/N3614.pdf

http://isocpp.org/files/papers/N3614.pdf

Credits

© 2014- Andrei Alexandrescu. Reproduced with permission. 27 / 46

• Evgeny Panasyuk: compiler-specific bits

github.com/panaseleus/stack_unwinding

• Daniel Marinescu: folly implementation

github.com/facebook/folly

Underpinnings

© 2014- Andrei Alexandrescu. Reproduced with permission. 28 / 46

class UncaughtExceptionCounter {

int getUncaughtExceptionCount() noexcept;

int exceptionCount_;

public:

UncaughtExceptionCounter()

: exceptionCount_(getUncaughtExceptionCount()) {

}

bool isNewUncaughtException() noexcept {

return getUncaughtExceptionCount()

> exceptionCount_;

}

};

• Only detail left: getUncaughtExceptionCount()

github.com/panaseleus/stack_unwinding
folly
github.com/facebook/folly

gcc/clang

© 2014- Andrei Alexandrescu. Reproduced with permission. 29 / 46

inline int UncaughtExceptionCounter::

getUncaughtExceptionCount() noexcept {

// __cxa_get_globals returns a __cxa_eh_globals*
// (defined in unwind-cxx.h).

// The offset below returns

// __cxa_eh_globals::uncaughtExceptions.

return *(reinterpret_cast<int*>(

static_cast<char*>(

static_cast<void*>(
__cxxabiv1::__cxa_get_globals()))

+ sizeof(void*)));

}

gcc/clang

© 2014- Andrei Alexandrescu. Reproduced with permission. 30 / 46

namespace __cxxabiv1 {

// defined in unwind-cxx.h from from libstdc++

struct __cxa_eh_globals;

// declared in cxxabi.h from libstdc++-v3

extern "C"
__cxa_eh_globals* __cxa_get_globals() noexcept;

}

MSVC 8.0+

© 2014- Andrei Alexandrescu. Reproduced with permission. 31 / 46

struct _tiddata;

extern "C" _tiddata* _getptd();

inline int UncaughtExceptionCounter::

getUncaughtExceptionCount() noexcept {

// _getptd() returns a _tiddata*
// (defined in mtdll.h).

// The offset below returns

// _tiddata::_ProcessingThrow.

return *(reinterpret_cast<int*>(static_cast<char*>(

static_cast<void*>(_getptd()))

+ sizeof(void*) * 28 + 0x4 * 8));

}

Layering

© 2014- Andrei Alexandrescu. Reproduced with permission. 32 / 46

template <typename FunctionType, bool executeOnException>

class ScopeGuardForNewException {

FunctionType function_;

UncaughtExceptionCounter ec_;

public:

explicit ScopeGuardForNewException(const FunctionType& fn)

: function_(fn) {

}

explicit ScopeGuardForNewException(FunctionType&& fn)

: function_(std::move(fn)) {

}

~ScopeGuardForNewException() noexcept(executeOnException) {

if (executeOnException == ec_.isNewUncaughtException()) {

function_();

}

}

};

Icing

© 2014- Andrei Alexandrescu. Reproduced with permission. 33 / 46

enum class ScopeGuardOnFail {};

template <typename FunctionType>

ScopeGuardForNewException<

typename std::decay<FunctionType>::type, true>

operator+(detail::ScopeGuardOnFail, FunctionType&& fn) {

return

ScopeGuardForNewException<

typename std::decay<FunctionType>::type, true>(

std::forward<FunctionType>(fn));

}

Cake Candles

© 2014- Andrei Alexandrescu. Reproduced with permission. 34 / 46

enum class ScopeGuardOnSuccess {};

template <typename FunctionType>

ScopeGuardForNewException<

typename std::decay<FunctionType>::type, false>

operator+(detail::ScopeGuardOnSuccess, FunctionType&& fn) {

return

ScopeGuardForNewException<

typename std::decay<FunctionType>::type, false>(

std::forward<FunctionType>(fn));

}

Use Cases

© 2014- Andrei Alexandrescu. Reproduced with permission. 35 / 46

Tracing

© 2014- Andrei Alexandrescu. Reproduced with permission. 36 / 46

void login() {

SCOPE_FAIL {

cerr << "Failed to log in.\n";

};

...

}

• User-displayable (unlike stack traces)

• Show only major failure points

Transactional Work

© 2014- Andrei Alexandrescu. Reproduced with permission. 37 / 46

void buildFile(const string& name) {

auto tmp = name + ".deleteme";

auto f = fopen(tmp.data(), "w");

enforce(f, "...");

SCOPE_SUCCESS {

enforce(fclose(f) == 0, "...");

rename(tmp.data(). name.data());

};

SCOPE_FAIL {

fclose(f); // don’t care if fails

unlink(tmp.data());

};

...

}

Order Still Matters

© 2014- Andrei Alexandrescu. Reproduced with permission. 38 / 46

void buildFile(const string& name) {

auto tmp = name + ".deleteme";

auto f = fopen(tmp.data(), "w");

enforce(f, "...");

SCOPE_FAIL { // PLANTED TOO EARLY!

fclose(f); // don’t care if fails

unlink(tmp.data());

};

SCOPE_SUCCESS {

enforce(fclose(f) == 0, "...");

rename(tmp.data(). name.data());

};

...

}

• Handler “sees” exceptions after planting

Please Note

© 2014- Andrei Alexandrescu. Reproduced with permission. 39 / 46

Only SCOPE_SUCCESS

may throw

Postconditions

© 2014- Andrei Alexandrescu. Reproduced with permission. 40 / 46

int string2int(const string& s) {

int r;

SCOPE_SUCCESS {

assert(int2string(r) == s);

};

...

return r;

}

Changing of the Guard

© 2014- Andrei Alexandrescu. Reproduced with permission. 41 / 46

void process(char *const buf, size_t len) {

if (!len) return;

const auto save = buf[len - 1];

buf[len - 1] = 255;

SCOPE_EXIT { buf[len - 1] = save; };

for (auto p = buf;;) switch (auto c = *p++) {

...

}

}

Scoped Changes

© 2014- Andrei Alexandrescu. Reproduced with permission. 42 / 46

bool g_sweeping;

void sweep() {

g_sweeping = true;

SCOPE_EXIT { g_sweeping = false; };

auto r = getRoot();

assert(r);

r->sweepAll();

}

No RAII Type? No Problem!

© 2014- Andrei Alexandrescu. Reproduced with permission. 43 / 46

void fileTransact(int fd) {

enforce(flock(fd, LOCK_EX) == 0);

SCOPE_EXIT {

enforce(flock(fd, LOCK_UN) == 0);

};

...

}

• No need to add a type for occasional RAII

idioms

Remarks

© 2014- Andrei Alexandrescu. Reproduced with permission. 44 / 46

• All examples taken from production code

• Declarative focus

◦ Declare contingency actions by context

• SCOPE_* more frequent than try in new code

• The latter remains in use for actual handling

• Flattened flow

• Order still matters

Summary

© 2014- Andrei Alexandrescu. Reproduced with permission. 45 / 46

Summary

© 2014- Andrei Alexandrescu. Reproduced with permission. 46 / 46

• SCOPE_EXIT

• SCOPE_FAILURE

• SCOPE_SUCCESS

	Agenda
	
	C
	C++
	Java, C#
	Go
	
	C
	C (Pros Only)
	C++
	C++
	Java, C#
	Go
	
	Declarative Programming
	According to Seinfeld
	Surprising Insight
	More RAII: ScopeGuard
	Pseudo-Statement (C&B 2012 recap!)
	Preprocessor Trick (C&B 2012 recap!)
	Use (C&B 2012 recap!)
	Painfully Close to Ideal!
	One more for completeness
	
	
	Credits
	Underpinnings
	gcc/clang
	gcc/clang
	MSVC 8.0+
	Layering
	Icing
	Cake Candles
	Use Cases
	Tracing
	Transactional Work
	Order Still Matters
	Please Note
	Postconditions
	Changing of the Guard
	Scoped Changes
	No RAII Type? No Problem!
	Remarks

	Summary
	Summary

