Document Number: N4089

Date: 2014-06-25

Project: Programming Language C++, Library Working Group
Revises: N4042

Reply-to: Geoffrey Romer <gromer@google.com>

Safe conversions in unique _ptr<T[]>, revision 2

Introduction

This paper proposes to resolve LWG 2118 by permitting conversions to unique_ptr<T[]> if
they are known to be safe.

Changes since N4042

This paper corrects a minor factual error in N4042, and makes the following changes to the
proposed wording:
e Restored guarantee that default_delete: :operator() is ill-formed when called on an
incomplete type.
Added noexcept to reset().
Improved parallelism of wording for SFINAE conditions.
Added note clarifying relationship between SFINAE rules for the primary template and
the specialization.

Correction on multi-level qualification conversions
Consider the following code:

unique_ptr<Foo const * const []> ptrl(new Foo*[10]);
Foo const * ptr = ptri[9];

Under this proposed resolution, the declaration of ptrl would be ill-formed due to the issue
reported in CWG 330, but would become well-formed if that issue is resolved. N4042 stated that
even if it were well-formed, the declaration of ptrl would have undefined behavior due to the
issue reported in CWG 1865, but this is not precisely correct. The undefined behavior results not
from the pointer conversion itself, but from performing arithmetic on the result of the conversion,
so it is the second line that results in undefined behavior, not the first.

http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2FJtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2014%2Fn4042.pdf&sa=D&sntz=1&usg=AFQjCNFmU4-ySvnRUwyYJ-CKD90QCadGPg
mailto:gromer@google.com
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Flwg-active.html%232118&sa=D&sntz=1&usg=AFQjCNEZNShGQlBGnjc4xOyrHllIz-L4Cw
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2FJtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2014%2Fn4042.pdf&sa=D&sntz=1&usg=AFQjCNFmU4-ySvnRUwyYJ-CKD90QCadGPg
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fcwg_active.html%23330&sa=D&sntz=1&usg=AFQjCNGxpRYAMs_HtL8fKOMfNjx463ADbg
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2FJtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2014%2Fn4042.pdf&sa=D&sntz=1&usg=AFQjCNFmU4-ySvnRUwyYJ-CKD90QCadGPg
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fcwg_active.html%231865&sa=D&sntz=1&usg=AFQjCNHGpa3K4_DR6bhHYUzW5lBdhEjqRQ

Proposed Wording

Changes are relative to N3936.

Revise [unique.ptr.ditr.dfit1] as follows:

namespace std {
template <class T> struct default delete<T[]> {
constexpr default_delete() noexcept = default;
template <class U> default delete(const default delete<U[]>&) noexcept;
void operater{F*)const;
template <class U> void operator()(U*_ptr) const—=—delete;
s
¥

template <class U> default delete(const default delete<U[]>& other) noexcept;
Effects: constructs a default_delete object from another default delete<U[]> object.
Remarks: This constructor shall not participate in overload resolution unless U(*)[] is
convertible to T(*) [].

void operater{(Fr ptr)consts

template <class U> void operator()(U* ptr) const;

Effects: calls delete[] on ptr.

Remarks: If FU is an incomplete type, the program is ill-formed._This function shall not
participate in overload resolution unless U(*)[] is convertible to T(*) [].

Revise [unique.ptr.single]/3 as follows:

If the type remove_reference<D>: :type: :pointer exists, then unique_ptr<T, D>::pointer
shall be a synonym for remove_reference<D>: :type: :pointer. Otherwise unique_ptr<T,
D>::pointer shall be a synonym for % element_type*. The type unique_ptr<T,
D>::pointer shall satisfy the requirements of NullablePointer (17.6.3.3).

Revise [unique.ptr.runtime] as follows:

namespace std {
template <class T, class D> class unique_ptr<T[], D> {
public:
typedef see below pointer;
typedef T element_ type;
typedef D deleter_type;

// 20.7.1.3.1, constructors
constexpr unique_ptr() noexcept;

http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fprot%2F14882fdis%2Fn3936.pdf&sa=D&sntz=1&usg=AFQjCNGVBrTEJigeU4d3iIQL8ts2gicIoA

template <class U> explicit unique_ptr(peinterU p) noexcept;
template <class U> unique_ptr(peinterU p, see below d) noexcept;
template <class U> unique_ptr(peinterU p, see below d) noexcept;
unique_ptr(unique_ptr&& u) noexcept;

constexpr unique_ptr(nullptr t) noexcept : unique ptr() { }
template <class U, class E>

unigue ptr(unique ptr<U, E>&& u) noexcept;

// destructor
~unique_ptr();

// assignment
unique ptr& operator=(unique_ptr&& u) noexcept;
template <class U, class E>

unigue ptr& operator=(unique ptr<U, E>&& u) noexcept;

}s

unique_ptr& operator=(nullptr_t) noexcept;

// 20.7.1.3.2, observers

T& operator[](size t i) const;

pointer get() const noexcept;

deleter type& get deleter() noexcept;

const deleter_type& get deleter() const noexcept;
explicit operator bool() const noexcept;

// 20.7.1.3.3 modifiers
pointer release() noexcept;
. E—— E——— =
void reset(nullptr_t_= nullptr) noexcept;
template <class U> void reset(U p)_noexcept—=—delete;
void swap(unique_ptr& u) noexcept;

// disable copy from Lvalue
unique ptr(const unique ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;

A specialization for array types is provided with a slightly altered interface.
— Conversions between different types of unique_ptr<T[], D> that would be disallowed for
the corresponding pointer-to-array types-ef, and conversions to or from the non-array forms of

unique_ptr, produce an ill-formed program.
— Pointers to types derived from T are rejected by the constructors, and by reset.
— The observers operator* and operator-> are not provided.

— The indexing observer operator[] is provided.

— The default deleter will call delete[].

Descriptions are provided below only for memberfunetions-thathave behaviordifferent
members that differ from the primary template.

The template argument T shall be a complete type.

unique_ptr constructors [unique.ptr.runtime.ctor]

template <class U> explicit unique_ptr(peinterU p) noexcept;

template <class U> unique_ptr(peinterU p, see below d) noexcept;

template <class U> unique_ptr(peinterU p, see below d) noexcept;

These constructors behave the same as the constructors that take a pointer parameter in the
primary template except that they gde-rnet-aceeptpeintertypes-which-are-convertibleto
peintershall not participate in overload resolution unless either

— U is the same type as pointer, or

— pointer is the same type as element_type*, Uis a pointer type V*, and V(*)[] is

convertible to element_type(*)[]. fNete-One-implementationtechniqueisto-createprivate
templated-overioads-ofthese-members——end-rote]

template <class U, class E> unique_ptr(unique ptr<U, E>&& u) noexcept;

This constructor behaves the same as in the primary template, except that it shall not participate
in overload resolution unless all of the following conditions hold, where UP is unique_ptr<u,
E>:

— Uis an array type, and

— pointer is the same type as element_type*, and

— UP: :pointer is the same type as UP: :element_type*, and

— UP: :element_type(*)[]is convertible to element_type(*)[]. and

— either D is a reference type and E is the same type as D. or D is not a reference type and E is
implicitly convertible to D.

[Note: this replaces the overload-resolution specification of the primary template — end note]

unique_ptr assignment [unique.ptr.runtime.asgn]

template <class U, class E>

unique ptr& operator=(unique_ ptr<U, E>&& u) noexcept;
This operator behaves the same as in the primary template, except that it shall not participate in
overload resolution unless all of the following conditions hold, where UP is unique_ptr<U, E>:
— Uis an array type, and
— pointer is the same type as element_type*, and
— UP: :pointer is the same type as UP: :element_type*, and
— UP: :element_type(*)[]is convertible to element_type(*)[]. and
— either D is a reference type and E is the same type as D. or D is not a reference type and E is
implicitly convertible to D.

[Note: this replaces the overload-resolution specification of the primary template — end note]

unique_ptr observers [unique.ptr.runtime.observers]

T& operator[](size t i) const;
Requires: i < the number of elements in the array to which the stored pointer points.
Returns: get()[1].

unique_ptr modifiers [unique.ptr.runtime.modifiers]

d E— EueE—m =
void reset(nullptr_t p_= nullptr) noexcept;

Effects: fgetO—==nullptr-there-are-no-effects—Otherwise
get—deleter(O{get()-Equivalent to reset(pointer()).
Pesteondition-getO—==—p-

template <class U> void reset(U p) noexcept;

This function behaves the same as the reset member of the primary template, except that it
shall not participate in overload resolution unless either

— U is the same type as pointer, or

— pointer is the same type as element_type*, Uis a pointer type V*, and V(*)[] is
convertible to element_type(*)[].

