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1 Introduction

The most obscure member of the C11 and C++11
memory order enum seems to be memory order

consume [27]. The purpose of memory order

consume is to allow reading threads to correctly tra-
verse linked data structures without the need for
locks, atomic instructions, or (with the exception of
DEC Alpha) memory-fence instructions, even though
new elements are being inserted into these linked
structures before, during, and after the traversal.
Without memory order consume, both the compiler
and (again, in the case of DEC Alpha) the CPU
would be within their rights to carry out aggres-
sive data-speculation optimizations that would per-
mit readers to see pre-initialization values in the
newly added data elements. The purpose of memory
order consume is to prevent these optimizations.

Of course, memory order acquire may be used as
a substitute for memory order consume, however do-
ing so results in costly explicit memory-fence instruc-
tions (or, where available, load-acquire instructions)
on weakly ordered systems such as ARM, Itanium,
and PowerPC [9, 3, 12, 13]. These systems enforce

dependency ordering in hardware, in other words, if
the address used by one memory-reference instruction
depends on the value from a preceding load instruc-
tion, the hardware forces that earlier load to com-
plete before the later memory-reference instruction
commences.1 Similarly, if the data to be stored by a
given store instruction depends on the value from a
preceding load instruction, the hardware again forces
that earlier load to complete before the later store in-
struction commences. Recent software tools for ARM
and PowerPC can help explicate their memory mod-
els [19, 1, 2]. Note that strongly ordered systems like
x86, IBM mainframe, and SPARC TSO enforce de-
pendency ordering as a side effect of the fact that
they do not reorder loads with subsequent memory
references. Therefore, memory order consume is ben-
eficial on hot code paths, removing the need for hard-
ware ordering instructions for weakly ordered systems
and permitting additional compiler optimizations on
strongly ordered systems.

When implementing concurrent insertion-only
data structures, a few of which are found in the Linux

1 But please note that hardware can and does take advan-
tage of the as-if rule, just as compilers do.

1
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kernel, memory order consume is all that is required.
However, most data structures also require removal
of data elements. Such removal requires that the
thread removing the data element wait for all read-
ers to release their references to it before reclaim-
ing that element. The traditional way to do this is
via garbage collectors (GCs), which have been avail-
able for more than half a century [15] and which are
now available even for C and C++ [4]. Another
way to wait for readers is to use read-copy update
(RCU) [23, 21], which explicitly marks read-side re-
gions of code and provides primitives that wait for
all pre-existing readers to complete. RCU is gaining
significant use both within the Linux kernel [16] and
outside of it [6, 5, 8, 14, 28].

Despite the growing number of memory order

consume use cases, there are no known high-
performance implementations of memory order

consume loads in any C11 or C++11 environments.
This situation suggests that some change is in or-
der: After all, if the standard does not support this
use case, the corresponding users can be expected to
continue to exploit whatever implementation-specific
facilities provide the required functionality. This doc-
ument therefore provides a brief overview of RCU
in Section 2 and surveys memory order consume use
cases within the Linux kernel in Section 3. Section 4
looks at how dependency ordering is currently sup-
ported in pre-C11 implementations, and then Sec-
tion 5 looks at possible ways to support those use
cases in existing C11 and C++11 implementations,
followed by some thoughts on incremental paths to-
wards official support of these use cases in the stan-
dards. Section 6 lists some weaknesses in the current
C11 and C++11 specification of dependency order-
ing, and finally Section 7 outlines a few possible al-
ternative dependency-ordering specifications.

Note: SC22/WG14 liason issue.

2 Introduction to RCU

The RCU synchronization mechanism is often used as
a replacement for reader-writer locking because RCU
avoids the high-overhead cache thrashing that is char-
acteristic of many common reader-writer-locking im-

plementations. RCU is based on three fundamental
concepts:

1. Light-weight in-memory publish-subscribe oper-
ation.

2. Operation that waits for pre-existing readers.

3. Maintaining multiple versions of data to avoid
disrupting old readers that are still referencing
old versions.

We would like to use C11’s and C++11’s memory

order consume to implement RCU’s lightweight sub-
scribe operation, rcu dereference(). We assume
that rcu dereference() is a good example of how
developers would exploit the dependency-ordering
feature of weakly ordered systems, so we look to rcu

dereference() as an indication of the semantics that
memory order consume should have.

In one typical RCU use case, updaters publish
new versions of a data structure while readers con-
currently subscribe to whatever version is current
at the time a given reader starts. Once all pre-
existing readers complete, old versions can be re-
claimed. This sort of use case may be a bit unfa-
miliar to many, but it is extremely effective in many
situations, offering excellent performance, scalability,
real-time latency, deadlock avoidance, and read-side
composability. More details on RCU are readily avail-
able [8, 17, 18, 20, 21, 22, 24].

Figure 1 shows the growth of RCU usage over time
within the Linux kernel, which is strong evidence of
RCU’s effectiveness. However, RCU is a specialized
mechanism, so its use is much smaller than general-
purpose techniques such as locking, as can be seen in
Figure 2. It is unlikely that RCU’s usage will ever
approach that of locking because RCU coordinates
only between readers and updaters, which means
that some other mechanism is required to coordinate
among concurrent updates. In the Linux kernel, that
update-side mechanism is normally locking, although
pretty much any synchronization mechanism may be
used, including transactional memory [10, 11, 26].

However RCU is now being used in many situa-
tions where reader-writer locking would be used. Fig-
ure 3 shows that the use of reader-writer locking has
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Figure 1: Growth of RCU Usage

changed little since RCU was introduced. This data
suggests that RCU is at least as important to parallel
software as is reader-writer locking.

In more recent years, a user-level library implemen-
tation of RCU has been available [7]. This library is
now available for many platforms and has been in-
cluded in a number of Linux distributions. It has
been pressed into service for a number of open-source
software projects, proprietary products, and reserch
efforts.

Fully and fully performant C11/C++11 support
for memory order consume is therefore quite impor-
tant. However, good progress can often be made in
the short term by focusing on the cases that are com-
monly used in practice rather than on the general
case. The next section therefore takes a rough census
of the Linux kernel’s use of the rcu dereference()

family of primitives, which memory order consume is
intended to implement.
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Figure 2: Growth of RCU Usage vs. Locking

3 Linux-Kernel Use Cases

Section 3.1 lists types of dependency chains in the
Linux kernel, Section 3.2 lists operators used within
these dependency chains, Section‘3.3 lists operators
that are considered to terminate dependency chains,
and finally Section 3.4 surveys a longer-than-average
(but by no means maximal) dependency chain that
appears in the Linux kernel.

It is worth reviewing the relationship between
memory order acquire and memory order consume

loads, both of which interact with memory release

stores.
A memory order acquire load is said to synchro-

nize with a memory order release store if that load
returns the value stored or in some special cases,
some later value [27, 1.10p6-1.10p8]. When a memory

order acquire load synchronizes with a memory

order release store, any memory reference preced-
ing the memory order acquire load will happen be-
fore any memory reference following the memory

order release store [27, 1.10p11-1.10p12]. This
property allows a linked structure to be locklessly tra-
versed by using memory order release stores when
updating pointers to reference new data elements and
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Figure 3: Growth of RCU Usage vs. Reader-Writer
Locking

by using memory order acquire loads when loading
pointers while locklessly traversing the data struc-
ture, as shown in Figure 4.

Unfortunately, a memory order acquire load re-
quires expensive special load instructions or memory-
fence instructions on weakly ordered systems such
as ARM, Itanium, and PowerPC. Furthermore, in
traverse(), the address of each memory order

acquire load within the while loop depends on
the value of the previous memory order acquire

load.2 Therefore, in this case, weakly ordered sys-
tems don’t really need the special load instructions or
the memory-fence instructions, as these systems can
instead rely on the hardware-enforced dependency or-
dering.

This is the use case for memory order consume,
which can be substituted for memory order acquire

in cases where hardware dependency ordering applies.
One such case is the preceding example, and Fig-

2 The initial load on line 16 might well depend on an earlier
load, but for simplicity, this example assumes that the initial
foo head structure is statically allocated, and thus not subject
to updates.

1 void new_element(struct foo **pp, int a)
2 {
3 struct foo *p = malloc(sizeof(*p));
4
5 if (!p)
6 abort();
7 p->a = a;
8 atomic_store_explicit(pp, p, memory_order_release);
9 }

10
11 int traverse(struct foo_head *ph)
12 {
13 int a = -1;
14 struct foo *p;
15
16 p = atomic_load_explicit(&ph->h, memory_order_acquire);
17 while (p != NULL) {
18 a = p->a;
19 p = atomic_load_explicit(&p->n, memory_order_acquire);
20 }
21 return a;
22 }
23

24

Figure 4: Release/Acquire Linked Structure Traver-
sal

1 void new_element(struct foo **pp, int a)
2 {
3 struct foo *p = malloc(sizeof(*p));
4
5 if (!p)
6 abort();
7 p->a = a;
8 atomic_store_explicit(pp, p, memory_order_release);
9 }

10
11 int traverse(struct foo_head *ph)
12 {
13 int a = -1;
14 struct foo *p;
15
16 p = atomic_load_explicit(&ph->h, memory_order_consume);
17 while (p != NULL) {
18 a = p->a;
19 p = atomic_load_explicit(&p->n, memory_order_consume);
20 }
21 return a;
22 }
23

24

Figure 5: Release/Consume Linked Structure Traver-
sal
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ure 5 shows that same example recast in terms of
memory order consume. A memory order release

store is dependency ordered before a memory order

consume load when that load returns the value stored,
or in some special cases, some later value [27, 1.10p1].
Then, if the load carries a dependency to some
later memory reference [27, 1.10p9], any memory
reference preceding the memory order release store
will happen before that later memory reference [27,
1.10p9-1.10p12]. This means that when there is de-
pendency ordering, memory order consume gives the
same guarantees that memory order acquire does,
but at lower cost.

On the other hand, memory order consume re-
quires the compiler to track the carries-a-dependency
relationships, with the set of such relationships
headed by a given memory order consume load be-
ing called that load’s dependency chains. It is quite
possible that the complexity of implementing this ca-
pability has thus far prevented high-quality memory

order consume implementations from appearing. It
is therefore worthwhile to review use of dependency
chains in practice in order to determine what types
of operations typically appear in dependency chains,
which might result in guidance to implementations
or perhaps even modifications to the definition of
memory order consume.

3.1 Types of Linux-Kernel Depen-
dency Chains

One goal for memory order consume is to implement
rcu dereference(), which heads a Linux-kernel
dependency-ordering tree. There are a number
of variant of rcu dereference() in the Linux
kernel in order to implement the four flavors of
RCU and also to enable RCU usage diagnositics
for code that is shared by readers and updaters.
These additional variants are rcu dereference(),
rcu dereference bh(), rcu dereference

bh check(), rcu dereference bh check(),
rcu dereference check(), rcu dereference

index check(), rcu dereference protected(),
rcu dereference raw(), rcu dereference

sched(), rcu dereference sched check(), srcu

dereference(), and srcu dereference check().

Taken together, there are about 1300 uses of these
functions in version 3.13 of the Linux kernel.
However, about 250 of those are rcu dereference

protected(), which is used only in update-side code
and thus does not head up read-side dependency
chains, which leaves about 1000 uses to be inspected
for dependency-ordering usage.

3.2 Operators in Linux-Kernel De-
pendency Chains

A surprisingly small fraction of the possible C opera-
tors appear in dependency chains in the Linux kernel,
namely ->, infix =, casts, prefix &, prefix *, [], infix
+, infix -, ternary ?:, and infix (bitwise) &.

By far the two most common operators are the
-> pointer field selector and the -> assignment op-
erator. Enabling the carries-dependency relationship
through only these two operators would likely cover
better than 90% of the Linux-kernel use cases.

Casts, the prefix * indirection operator, and the
prefix & address-of operator are used to implement
Linux’s list primitives, which translate from list
pointers embedded in a structure to the structure it-
self. These operators are also used to get some of the
effects of C++ subtyping in the C language.

The [] array-indexing operator, and the infix +

and - arithmetic operators are used to manipulate
RCU-protected arrays, as well as to index into arrays
contained within RCU-protected structures. RCU-
protected arrays are becoming less common because
they are being converted into more complex data
structures, such as trees. However, RCU-protected
structures containing arrays are still fairly common.

The ternary ?: if-then-else expression is used to
handle default values for RCU-protected pointers, for
example, as shown in Figure 6, or in C++11 form
in Figure 7. Note that the dependency is carried
only through the rightmost two operands of ?:, never
through the leftmost one.

The infix & operator is used to mask low-order bits
from RCU pointers. These bits are used by some
algorithms as markers. Such markers, though not
common in the Linux kernel, are well-known in the
art, with hazard pointers being but one example [25].
Note that it is expected that both operands of infix
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1 struct foo {
2 int a;
3 };
4 struct foo *fp;
5 struct foo default_foo;
6
7 int bar(void)
8 {
9 struct foo *p;

10
11 p = rcu_dereference(fp);
12 return p ? p->a : default_foo.a;
13 }

Figure 6: Default Value For RCU-Protected Pointer,
Linux Kernel

1 class foo {
2 int a;
3 };
4 std::atomic<foo *> fp;
5 foo default_foo;
6
7 int bar(void)
8 {
9 std::atomic<foo *> p;

10
11 p = fp.load_explicit(memory_order_consume);
12 return p ? kill_dependency(p->a) : default_foo.a;
13 }

Figure 7: Default Value For RCU-Protected Pointer,
C++11

& are expected to have some non-zero bits, because
otherwise a NULL pointer will result (at least in most
implementations), and NULL pointers cannot reason-
ably be said to carry much of anything, let alone a de-
pendency. Although I did not find any infix | opera-
tors in my census of Linux-kernel dependency chains,
symmetry considerations argue for also including it,
for example, for read-side pointer tagging. Presum-
ably both of the operands of infix | must have at least
one zero bit.

To recap, the operators appearing in Linux-kernel
dependency chains are: ->, infix =, casts, prefix &,
prefix *, [], infix +, infix -, ternary ?:, infix (bitwise)
&, and probably also |.

3.3 Operators Terminating Linux-
Kernel Dependency Chains

Although C++11 has the kill dependency() func-
tion to terminate a dependency chain, no such func-
tion exists in the Linux kernel. Instead, Linux-kernel
dependency chains are judged to have terminated
upon exit from the outermost RCU read-side critical
section,3 when existence guarantees are handed off
from RCU to some other synchronization mechanism
(usually locking or reference counting), or when the
variable carrying the dependency goes out of scope.

That said, it is possible to analyze Linux-kernel
dependency chains to see what part of the chain is
actually required by the algorithm in question. We
can therefore define the essential subset of a depen-
dency chain to be that subset within which ordering
is required by the algorithm. In the 3.13 version of
the Linux kernel, the following operators always mark
the end of the essential subset of a dependency chain:
(), !, ==, !=, &&, ||, infix *, /, and %.

The postfix () function-invocation operator is an
interesting special case in the Linux kernel. In theory,
RCU could be used to protect JITed function bodies,

3 The beginning of a given RCU read-side critical section is
marked with rcu read lock(), rcu read lock bh(), rcu read

lock sched(), or srcu read lock(), and the end by the cor-
responding primitive from the list rcu read unlock(), rcu

read unlock bh(), rcu read unlock sched(), or srcu read

unlock(). There is currently no C++11 counterpart for an
RCU read-side critical section.
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but in current practice RCU is instead used to wait
for all pre-existing callers to the function referenced
by the previous pointer. The functions are all com-
piled into the kernel, and the dependency chains are
therefore irrelevant to the () operator. Hence, in ver-
sion 3.13 of the Linux kernel, the () operator marks
the end of the essential subset of any dependency
chain that it resides in.

The !, ==, !=, &&, and || operators are used ex-
clusively in ”if” statements to make control-flow de-
cisions, and therefore also mark the end of the essen-
tial subset of any dependency chains that they reside
in. In theory, these relational and boolean operators
could be used to form array indexes, but in practice
the Linux kernel does not yet do this in RCU depen-
dency chains. The other relational operators (>, <,
>=, and <=) should probably also be added to this
list.

The infix *, /, and % arithmetic operators could
potentially be used for construct array addresses, but
they are not yet used that way in the Linux kernel.
Instead, they are used to do computation on values
fetched as the last operation in an essential subset of
a dependency chain.

In short, in the current Linux kernel, (), !, ==,
!=, &&, ||, infix *, /, and % all mark the end of the
essential subset of a dependency chain. That said,
there is potential for them to be used as part of the
essential subset of dependency changes in future ver-
sions of the Linux kernel. And the same is of course
true of the remaining C-language operators, which
did not appear within any of the dependency chains
in version 3.13 of the Linux kernel.

3.4 Linux-Kernel Dependency Chain
Length

Many Linux-kernel dependency chains are very short
and contained, with a fair number living within the
confines of a single C statement. If there were only
a few short dependency chains in the Linux kernel,
one could imagine decorating all the operators in each
dependency chain, for example, replacing the -> op-
erator with something like the mythical field dep()

operator shown on lines 16, 19, and 20 of Figure 8.

1 void new_element(struct foo **pp, int a)
2 {
3 struct foo *p = malloc(sizeof(*p));
4
5 if (!p)
6 abort();
7 p->a = a;
8 atomic_store_explicit(pp, p, memory_order_release);
9 }

10
11 int traverse(struct foo_head *ph)
12 {
13 int a = -1;
14 struct foo *p;
15
16 p = atomic_load_explicit(&field_dep(ph, h),
17 memory_order_consume);
18 while (p != NULL) {
19 a = field_dep(p, a);
20 p = atomic_load_explicit(&field_dep(p, n),
21 memory_order_consume);
22 }
23 return a;
24 }

Figure 8: Decorated Linked Structure Traversal

However, there are a great many dependency
chains that extend across multiple functions. One
relatively modest example is in the Linux network
stack, in the arp process() function. This depen-
dency chain extends as follows, with deeper nesting
indicating deeper function-call levels:

• The arp process() function invokes in dev

get rcu(), which returns an RCU-protected
pointer. The head of the dependency chain is
therefore within the in dev get rcu() func-
tion.

• The arp process() function invokes the follow-
ing macros and functions:

– IN DEV ROUTE LOCALNET(), which expands
to the ipv4 devconf get() function.

– arp ignore(), which in turn calls:

∗ IN DEV ARP IGNORE(), which expands
to the ipv4 devconf get() function.

∗ inet confirm addr(), which calls:

· dev net(), which in turn calls
read pnet().

– IN DEV ARPFILTER(), which expands to
ipv4 devconf get().
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– IN DEV CONF GET(), which also expands to
ipv4 devconf get().

– arp fwd proxy(), which calls:

∗ IN DEV PROXY ARP(), which expands
to ipv4 devconf get().

∗ IN DEV MEDIUM ID(), which also ex-
pands to ipv4 devconf get().

– arp fwd pvlan(), which calls:

∗ IN DEV PROXY ARP PVLAN(), which ex-
pands to ipv4 devconf get().

– pneigh enqueue().

Again, although a great many dependency chains
in the Linux kernel are quite short, there are quite a
few that spread both widely and deeply. We therefore
cannot expect Linux kernel hackers to look fondly
on any mechanism that requires them to decorate
each and every operator in each and every depen-
dency chain as was shown in Figure 8. In fact, even
kill dependency() will likely be an extremely diffi-
cult sell.

4 Dependency Ordering in Pre-
C11 Implementations

Pre-C11 implementations of the C language do not
have any formal notion of dependency ordering, but
these implementations are nevertheless used to build
the Linux kernel—and most likely all other software
using RCU. This section lays out a few straightfor-
ward rules for both implementers (Section 4.2) and
users of these pre-C11 C-language implementations
(Section 4.1).

4.1 Rules for C-Language RCU Users

The primary rule for developers implementing RCU-
based algorithms is to avoid letting the compiler de-
terming the value of any variable in any dependency
chain. This primary rule implies a number of sec-
ondary rules:

1. Use only intrinsic operators on basic types. If
you are making use of C++ template metapro-
gramming or operator overloading, more elabo-
rate rules apply, and those rules are outside the
scope of this document.

2. Use a volatile load to head the dependency chain.
This is necessary to avoid the compiler repeating
the load or making use of (possibly erroneous)
prior knowledge of the contents of the memory
location, each of which can break dependency
chains.

3. Avoid use of single-element RCU-protected ar-
rays. The compiler is within its right to assume
that the value of an index into such an array
must necessarily evaluate to zero. The com-
piler could then substitute the constant zero for
the computation, breaking the dependency chain
and introducing misordering.

4. Avoid cancellation when using the + and - infix
arithmetic operators. For example, for a given
variable x, avoid (x−x). The compiler is within
its rights to substitute zero for any such cancel-
lation, breaking the dependency chain and again
introducing misordering. Similar arithmetic pit-
falls must be avoided if the infix *, /, or % oper-
ators appear in the essential subset of a depen-
dency chain.

5. Avoid all-zero operands to the bitwise & opera-
tor, and similarly avoid all-ones operands to the
bitwise | operator. If the compiler is able to
deduce the value of such operands, it is within
its rights to substitute the corresponding con-
stant for the bitwise operation. Once again, this
breaks the dependency chain, introducing mis-
ordering.

6. If you are using RCU to protect JITed functions,
so that the () function-invocation operator is a
member of the essential subset of the dependency
tree, you may need to interact directly with the
hardware to flush instruction caches. This issue
arises on some systems when a newly JITed func-
tion is using the same memory that was used by
an earlier JITed function.
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7. Do not use the boolean && and || operators in
essential dependency chains. The reason for this
prohibition is that they are often compiled using
branches. Weak-memory machines such as ARM
or PowerPC order stores after such branches, but
can speculate loads, which can break data depen-
dency chains.

8. Do not use relational operators (==, !=, >, >=,
<, or <=) in the essential subset of a dependency
chain. The reason for this prohibition is that, as
for boolean operators, relational operators are
often compiled using branches. Weak-memory
machines such as ARM or PowerPC order stores
after such branches, but can speculate loads,
which can break dependency chains.

9. Be very careful about comparing pointers in the
essential subset of a dependency chain. As Linus
Torvalds explained, if the two pointers are equal,
the compiler could substitute the pointer you are
comparing against for the pointer in the essen-
tial subset of the dependency chain. On ARM
and Power hardware, it might be that only the
original value carried a hardware dependency, so
this substitution would break the chain, in turn
permitting misordering. Such comparisons are
OK in the following cases:

(a) The pointer being compared against refer-
ences memory that was initialized at boot
time, or otherwise long enough ago that
readers cannot still have pre-initialized data
cached. Examples include module-init time
for module code, before kthread creation
for code running in a kthread, while the
update-side lock is held, and so on.

(b) The pointer is never dereferenced after
being compared. This exception occurs
when comparing against the NULL pointer
or when scanning RCU-protected circular
linked lists.

(c) The pointer being compared against is part
of the essential subset of a dependency
chain. This can be a different dependency
chain, but only as long as that chain stems

from a pointer that was modified after any
initialization of interest. This exception can
apply when carrying out RCU-protected
traversals from different entry points that
converged on the same data structure.

(d) The pointer being compared against is
fetched using rcu access pointer() and
all subsequent dereferences are stores.

(e) The pointers compared not-equal and the
compiler does not have enough information
to deduce the value of the pointer. (For
example, if the compiler can see that the
pointer will only ever take on one of two
values, then it will be able to deduce the
value based on a not-equals comparison.)

10. Disable any value-speculation optimizations that
your compiler might provide, especially if you are
making use of feedback-based optimizations that
take data collected from prior runs.

4.2 Rules for C-Language Imple-
menters

The main rule for C-language implementers is to
avoid any sort of value speculation, or, at the very
least, provide means for the user to disable such
speculation. An example of a value-speculation opti-
mization that can be carried out with the help of
hardware branch prediction is shown in Figure 9,
which is an optimized version of the code in Fig-
ure 5. This sort of transformation might result from
feedback-directed optimization, where profiling runs
determined that the value loaded from ph was almost
alway 0xbadfab1e. Although this transformation is
correct in a single-threaded environment, in a concur-
rent environment, nothing stops the compiler or the
CPU from speculating the load on line 19 before it
executes the rcu dereference() on line 16, which
could result in line 19 executing before the corre-
sponding store on line 7, resulting in a garbage value
in variable a.4

There are some situations where this sort of opti-
mization would be safe, including:

4 Kudos to Olivier Giroux for pointing out use of branch
prediction to enable value speculation.
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1 void new_element(struct foo **pp, int a)
2 {
3 struct foo *p = malloc(sizeof(*p));
4
5 if (!p)
6 abort();
7 p->a = a;
8 rcu_assign_pointer(pp, p);
9 }

10
11 int traverse(struct foo_head *ph)
12 {
13 int a = -1;
14 struct foo *p;
15
16 p = rcu_dereference(&ph->h);
17 while (p != NULL) {
18 if (p == (struct foo *)0xbadfab1e)
19 a = ((struct foo *)0xbadfab1e)->a;
20 else
21 a = p->a;
22 p = rcu_dereference(&p->n);
23 }
24 return a;
25 }

Figure 9: Dangerous Optimizations: Hardware
Branch Predictions

1. The value speculated is a numeric value rather
than a pointer, so that if the guess proves correct
after the fact, the computation will be appropri-
ate after the fact.

2. The value speculated is a pointer to invariant
data, so that reasonable values are produced by
dereeferencing, even if the guess proves to have
been correct only after the fact.

3. As above, but where any updates result in data
that produces appropriate computations at any
and all phases of the update.

However, this list does not contain the general case
of memory order consume loads.

Pure hardware implementations of value specula-
tion can avoid this problem because they monitor
cache-coherence protocol events that would result
from some other CPU invalidating the guess.

In short, compiler writers must provide means to
disable all forms of value speculation, unless the spec-
ulation is accompanied by some means of detecting
the race condition that Figure 9 is subject to.

Are there other dependency-breaking optimizations
that should be called out separately?

5 Dependency Ordering in C11
and C++11 Implementations

The simplest way to avoid dependency-ordering is-
sues is to strengthen all memory order consume oper-
ations to memory order acquire. This functions cor-
rectly, but may result in unacceptable performance
due to memory-barrier instructions on weakly or-
dered systems such as ARM and PowerPC,5 and may
further unnecessarily suppress code-motion optimiza-
tions.

Another straightforward approach is to avoid value
speculation and other dependency-breaking opti-
mizations. This might result in missed opportu-
nities for optimization, but avoids any need for
dependency-chain annotations and also all issues
that might otherwise arise from use of dependency-
breaking optimizations. This approach is fully com-
patible with the Linux kernel community’s current
approach to dependency chains. Unfortunately, there
are any number of valuable optimizations that break
dependency chains, so this approach seems impracti-
cal.

A third approach is to avoid value speculation
and other dependency-breaking optimizations in any
function containing either a memory order consume

load or a [[carries dependency]] attribute. For
example, the hardware-branch-predition optimiza-
tion shown in Figure 9 would be prohibited in such
functions, as would cancellation optimizations such
as optimizing a = b + c - c into a = b. This too
can result in missed opportunities for optimization,
though very probably many fewer than the previous
approach. This approach can also result in issues due
to dependency-breaking optimizations in functions
lacking [[carries dependency]] attributes, for ex-
ample, function d() in Figure 10. It can also result
in spurious memory-barrier instructions when a de-

5 From a Linux-kernel community viewpoint, that should
read “will result in unacceptable performance”.
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1 int a(struct foo *p [[carries_dependency]])
2 {
3 return kill_dependency(p->a != 0);
4 }
5
6 int b(int x)
7 {
8 return x;
9 }

10
11 foo *c(void)
12 {
13 return fp.load_explicit(memory_order_consume);
14 /* return rcu_dereference(fp) in Linux kernel. */
15 }
16
17 int d(void)
18 {
19 int a;
20 foo *p;
21
22 rcu_read_lock();
23 p = c();
24 a = p->a;
25 rcu_read_unlock();
26 return a;
27 }

Figure 10: Example Functions for Dependency Or-
dering, Part 1

1 [[carries_dependency]] struct foo *e(void)
2 {
3 return fp.load_explicit(memory_order_consume);
4 /* return rcu_dereference(fp) in Linux kernel. */
5 }
6
7 int f(void)
8 {
9 int a;

10 foo *p;
11
12 rcu_read_lock();
13 p = e();
14 a = p->a;
15 rcu_read_unlock();
16 return kill_dependency(a);
17 }
18
19 int g(void)
20 {
21 int a;
22 foo *p;
23
24 rcu_read_lock();
25 p = e();
26 a = p->a;
27 rcu_read_unlock();
28 return b(a);
29 }

Figure 11: Example Functions for Dependency Or-
dering, Part 2

pendency chain goes out of scope, for example, with
the return statement of function g() in Figure 11.

A fourth approach is to add a compile-time op-
eration corresponding to the beginning and end of
RCU read-side critical section. These would need to
be evaluated at compile time, taking into account
the fact that these critical sections can nest and can
be conditionally entered and exited. Note that the
exit from an outermost RCU read-side critical sec-
tion should imply a kill dependency() operation on
each variable that is live at that point in the code.6

Although it is probably impossible to precisely de-
termine the bounds of a given RCU read-side critical
section in the general case, conservative approaches
that might overestimate the extent of a given sec-
tion should be acceptable in almost all cases. This
approach would make functions c() and d() in Fig-
ure 10 handle dependency chains in a natural manner,
but avoiding whole-program analysis would require
something similar to the [[carries dependency]]

annotations called out in the C11 and C++11 stan-
dards.

A fifth approach would be to require that all op-
erations on the essential subset of any dependency
chain be annotated. This would greatly ease imple-
mentation, but would not be likely to be accepted by
the Linux kernel community.

A sixth approach is to track dependencies as called
out in the C11 and C++11 standards. However, in-
stead of emitting a memory-barrier instruction when
a dependency chain flows into or out of a function
without the benefit of [[carries dependency]], in-
sert an implicit kill dependency() invocation. Im-
plementation should also optionally issue a diagnostic
in this case. The motivation for this approach is that
it is expected that many more kill dependencies()

than [[carries dependency]] would be required to
convert the Linux kernel’s RCU code to C11. In the
example in Figure 11, this approach would allow func-
tion g() to avoid emitting an unnecessary memory-
barrier instruction, but without function f()’s ex-
plicit kill dependency(). Both functions are in Fig-

6 What if a given rcu read unlock() sometimes marked the
end of an outermost RCU read-side critical section, but other
times was nested in some other RCU read-side critical section?
In that case, there should be no kill dependency().
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1 p = atomic_load_explicit(gp, memory_order_consume);
2 if (p == ptr_a)
3 a = p->special_a;
4 else
5 a = p->normal_a;

Figure 12: Dependency-Ordering Value-Narrowing
Hazard

ure 11.
A seventh and final approach is to track dependen-

cies as called out in in the C11 and C++11 standards.
With this approach, functions e() and f() properly
preserve the required amount of dependency order-
ing.

6 Weaknesses in C11 and
C++11 Dependency Or-
dering

Experience has shown several weaknesses in the de-
pendency ordering specified in the C11 and C++11
standards:

1. The C11 standard does not provide attributes,
and in particular, does not provide the
[[carries dependency]] attribute. This pre-
vents the developer from specifying that a given
dependency chain passes into or out of a given
function.

2. The implementation complexity of the
dependency-chain tracking required by both
standard can be quite onerous on the one hand,
and the overhead of unconditionally promoting
memory order consume loads to memory order

acquire can be excessive on weakly ordered
implementations on the other. There is therefore
no easy way out for a memory order consume

implementation on a weakly ordered system.

3. The function-level granularity of [[carries

dependency]] seems too coarse. One problem
is that points-to analysis is non-trivial, so that
compilers are likely to have difficulty determin-
ing whether or not a given pointer carries a de-

pendency. For example, the current wording of
the standard (intentionally!) does not disallow
dependency chaining through stores and loads.
Therefore, if a dependency-carrying value might
ever be written to a given variable, an implemen-
tation might reasonably assume that any load
from that variable must be assumed to carry a
dependency.

4. The rules set out in the standard [27, 1.10p9]
do not align well with the rules that developers
must currently adhere to in order to maintain
dependency chains when using pre-C11 and pre-
C++11 compilers (see Section 4.1). For exam-
ple, the standard requires x-x to carry a depen-
dency, and providing this guarantee would at the
very least require the compiler to also turn off
optimizations that remove x-x (and similar pat-
terns) if x might possibly be carrying a depen-
dency. For another example, consider the value-
speculation-like code shown in Figure 12 that is
sometimes written by developers, and that was
described in bullet 9 of Section 4.1. In this ex-
ample, the standard requires dependency order-
ing between the memory order consume load on
line 1 and the subsequent dereference on line 3,
but a typical compiler would not be expected to
differentiate between these two apparently iden-
tical values. These two examples show that a
compiler would need to detect and carefully han-
dle these cases either by artificially inserting de-
pendencies, omitting optimizations, differentiat-
ing between apparently identical values, or even
by emitting memory order acquire fences.

5. The whole point of memory order consume and
the resulting dependency chains is to allow de-
velopers to optimize their code. Such optimiza-
tion attempts can be completely defeated by the
memory order acquire fences that the standard
currently requires when a dependency chain goes
out of scope without the benefit of a [[carries

dependency]] attribute. Preventing the com-
piler from emitting these fences requires liberal
use of kill dependency(), which clutters code,
requires large developer effort, and further re-
quires that the developer know quite a bit about
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which code patterns a given version of a given
compiler can optimize (thus avoiding needless
fences) and which it cannot (thus requiring man-
ual insertion of kill dependency().

As of this writing, no known implementations fully
support C11 or C++11 dependency ordering.

It is worth asking why Paul didn’t anticipate these
weaknesses. There are several reasons for this:

1. Compiler optimizations have become more ag-
gressive over the seven years since Paul started
working on standardization.

2. New dependency-ordering use cases have arisen
during that same time, in particular, there are
longer dependency chains and more of them,
including dependency chains spanning multiple
compilation units.

3. The number of dependency chains has increased
by roughly an order of magnitude during that
time, so that changes in code style can be ex-
pected to face a commeasurate increase in resis-
tance from the Linux kernel community – unless
those changes bring some tangible benefit.

With that, let’s look at some potential alternatives
to dependency ordering as defined in the C11 and
C++11 standards.

7 Potential Alternatives to C11
and C++11 Dependency Or-
dering

Given the weaknesses in the current standard’s spec-
ification of dependency ordering, it is quite reason-
able to consider alternatives. To this end, Section 7.1
enlists help from the type system, but also imposes
value restrictions (thus revising the C11 and C++11
semantics for dependencies), Section 7.2 enlists help
from the type system without the value restrictions,
Section 7.3 describes a whole-program approach to
dependency chains (also revising the C11 and C++11
semantics for dependencies), and finally Section 7.4
discusses ease-of-use issues involved with revisions to

1 value_dep_preserving struct foo *p;
2
3 p = atomic_load_explicit(gp, memory_order_consume);
4 q = some_other_pointer;
5 if (p == q)
6 do_something_with(p->a);
7 else
8 do_something_else_with(p->b);

Figure 13: Single-Value Variables and Dependency
Ordering

the C11 and C++11 definitions of dependency order-
ing. Each approach appears to have advantages and
disadvantages, so it is hoped that further discussion
will either help settle on one of these alternatives or
generate something better.

7.1 Type-Based Designation of De-
pendency Chains With Restric-
tions

This approach was formulated by Torvald Riegel in
response to Linus Torvalds’s spirited criticisms of the
current C11 and C++11 wording.

This approach introduces a new value dep

preserving type qualifier. Dependency ordering is
preserved only via variables having this type quali-
fier. This is meant to model the real scope of depen-
dencies, which is data flow, not execution at function-
level granularity. This approach should therefore give
developers much finer control of which dependencies
are tracked.

Assigning from a value dep preserving value to a
non-value dep preserving variable terminates the
tracking of dependencies in much the same way that
an explicit kill dependency() would. However, un-
like an explicit kill dependency(), compilers should
be able to emit a disablable warning on implicit con-
versions, so as to alert the developer about otherwise
silent dropping of dependency tracking.7

Next, we specify that memory order consume loads
return a value dep preserving type by default; the
compiler must assume such a load to be capable of

7 Other choices are possible in this case, including emit-
ting a memory order acquire fence in order to conservatively
preserve a potentially intended ordering.
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producing any value of the underlying type. In other
words, the implementation is not permitted to apply
any value-restriction knowledge it might gain from
whole-program analysis.

This allows developers to start with a clean slate
for the additional rule that they must follow to be
able to rely on dependency ordering: Subsequent ex-
ecution must not lead to a situation there is only one
possible value for the value dep preserving expres-
sion, because otherwise the implementation is per-
mitted to break the dependency chain. This is shown
in Figure 13, where the compiler is permitted to break
dependency ordering on line 6 because it knows that
the value of p is equal to that of q, which means that
it could substitute the latter value from the former,
which would break dependency ordering.

This approach has several advantages:

1. The implementation is simpler because no de-
pendency chains need to be traced. The imple-
mentation can instead drive optimization deci-
sions strictly from type information.

2. Use of the value dep preserving type modifier
allows the developer to limit the extent of the
dependency chains.

3. This type modifier can be used to mark a depen-
dency chain’s entry to and exit from a function
in a straightforward way, without the need for
attributes.

4. The value dep preserving type modifiers serve
as valuable documentation of the developer’s in-
tent.

5. This approach permits many additional opti-
mizations compared to those permitted by the
current standard on code that carries a depen-
dency. Expressions such as x-x no longer require
establishment of artificial dependencies and the
compiler is no longer required to detect value-
narrowing hazards like that shown in Figure 12.
However, the compiler is still prohibited from
adding its own value-speculation optimizations.

6. Linus Torvalds seems to be OK with it, which
indicates that this set of rules might be practical

from the perspective of developers who currently
exploit dependency chains.

According to Peter Sewell, one disadvantage is that
this approach will be quite difficult to model, which in
turn will pose obstacles for the analysis tooling that
will be increasingly necessary for large-scale concur-
rent programming efforts. In particular, the concern
is that forcing the compiler to assume that a memory

order consume load could possibly return any value
permitted by its type might require program-analysis
tools to consider counterfactual hypothetical execu-
tions, which might complicate specification of seman-
tics and verification.

7.2 Type-Based Designation of De-
pendency Chains

Jeff Preshing made an off-list suggestion of using a
value dep preserving type modifier as suggested
by Torvald Riegel, but using this type modifier to
strictly enforce dependency ordering. For example,
consider the code fragment shown in Figure 13. The
scheme described in Section 7.1 would not necessar-
ily enforce dependency ordering between the load on
line 3 and the access one line 6, while the approach
described in this section would enforce dependency
ordering in this case.

Furthermore, cancelling or value-destruction oper-
ations on value dep preserving values would not
disrupt dependency ordering. As with the cur-
rent C11 and C++11 standards, the implementation
would be required to emit a memory-barrier instruc-
tion or compute an artificial dependency for such op-
erations. (Note however that use of cancelliong or
value-destruction operations on dependency chains
has proven quite rare in practice.)

This approach shares many of the advantages of
Torvald Riegel’s approach:

1. The implementation is simpler because no de-
pendency chains need be traced. The implemen-
tation can instead drive optimization decisions
strictly from type information.
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2. Use of the value dep preserving type modifier
allows the developer to limit the extent of the
dependency chains.

3. This type modifier can be used to mark a depen-
dency chain’s entry to and exit from a function
in a straightforward way, without the need for
attributes.

4. The value dep preserving type modifiers serve
as valuable documentation of the developer’s in-
tent.

5. Although optimizations on a dependency chain
are restricted just as in the current standard,
the use of value dep preserving restricts the
dependency chains to those intended by the de-
veloper.

6. Restricting dependency-breaking optimizations
on all dependency chains marked value dep

preserving, without exceptions for cases in
which the compiler knows too much, might make
this approach easier to learn and to use.

It is expected that modeling this approach should
be more straightforward.

7.3 Whole-Program Option

This approach, also suggested off-list by Jeff Presh-
ing, has the goal of reusing existing non-dependency-
ordered source code unchanged (albeit requiring re-
compilation in most cases).8 For example, this ap-
proach permits an instance of std::map to be refer-
enced by a pointer loaded via memory order consume

and to provide that std::map instance with the
benefits of dependency ordering without any code
changes whatsoever to std::map. It is important to
note that this protection will be provided only to a
read-only std::map that is referenced by a changing
pointer loaded via memory order consume, in partic-
ular, not to a concurrently updated std::map refer-
enced by a pointer (read-only or otherwise) loaded
via memory order consume. This latter case would

8 A module or library that is known to never carry a de-
pendency would not need to be recompiled.

require changes to the underlying std:map implemen-
tation, at a minimum, changing some of the loads to
be memory order consume loads. Nevertheless, the
ability to provide dependency-ordering protection to
pre-existing linked data structures is valuable, even
with this read-only restriction.

This approach, which again does require full re-
compilation, can be implemented using two ap-
proaches:

1. Promote all memory order consume loads to
memory order acquire, as may be done with
the current standard.

2. Prohibit all dependency-breaking optimizations
throughout the entire program, but only in
cases where a change in the value returned by
a memory order consume load could cause a
change in the value computed later in that same
dependency chain. Note again that the possibil-
ity of storing a value obtained from a memory

order consume load, the loading it later, means
that normal loads as well as memory order

relaxed loads often must be considered to head
their own dependency chains.

Some implementations might allow the developer
to choose between these two approaches, for example,
by using a compiler switch provided for that purpose.

This approach also has the effect of permitting a
trivial implementation of a memory order consume

atomic thread fence(). When using the first im-
plementation approach, the atomic thread fence()

is simply promoted to memory order acquire. In-
terestingly enough, when using the second ap-
proach, the memory order consume atomic thread

fence() may simply be ignored. The reason for
this is that this approach has the effect of promot-
ing memory order relaxed loads to memory order

consume, which already globally enforces all the
ordering that the memory order consume atomic

thread fence() is required to provide locally.
This approach has its own set of advantages and

disadvantages:

1. This approach dispenses with the [[carries

dependency]] attribute and the kill

dependency() primitive.
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2. This approach better promotes reuse of existing
source code.

3. This approach allows implementations to carry
out dependency-breaking optimizations on de-
pendency chains as long as a change in the
value from the memory order consume load does
not change values further down the dependency
chain, both with and without the optimization.
Jeff conjectures that the set of dependency-
breaking optimizations used in practice apply
only outside of dependency chains, by the re-
vised definition.9 If this conjecture holds, it also
applies to Torvald’s approach described in Sec-
tion 7.1.

4. Code that follows the rules presented in Sec-
tion 4.1 (substituting memory order consume

loads for volatile loads) would have its depen-
dency ordering properly preserved.

7.4 Revising C11 and C++11
Dependency-Ordering Definition

The approaches described in Section 7.1 and 7.3 re-
vise the dependency-ordering definition from that in
the current C11 and C++11 standards.10 In both
cases, a dependency chain breaks if it comes to a
point where only a single value is possible, regardless
of the value of the memory order consume load head-
ing up the chain. At first glance, this definition could
be quite difficult to live with, as dependency ordering
could come and go depending on small details of code
far away from that point in the dependency chain.

However, a review of the Linux-kernel operators in
Section 3.2 shows that the most commonly used op-
erators act identically under both definitions. The
problem-free operators include ->, infix =, casts, pre-
fix &, prefix *, and ternary ?:.

One example of a potentially troublesome opera-
tor, namely ==, was shown in Figure 13, where line 6
breaks dependency ordering because the value of p is

9 This is certainly the case for the usual optimizations ex-
emplified by replacing x-x with zero.

10 The approach described in Section 7.2 provides clear syn-
tactic delineation of what is and is not part of a dependency
chain, so is not discussed further here.

1 int my_array[MY_ARRAY_SIZE];
2
3 i = atomic_load_explicit(gi, memory_order_consume);
4 r1 = my_array[i];

Figure 14: Single-Element Arrays and Dependency
Ordering

known to be equal to that of q, which is not part of a
dependency chain. This example could be addressed
through careful diagnostic design coupled with appro-
priate coding standards. For example, the compiler
could emit a warning on line 6, but remain silent for
the equivalent line substituting q for p, namely, do
something with(q->a).

Another example is the use of postfix [] shown in
Figure 14. If this code fragment was compiled with
MY ARRAY SIZE equal to one, there is no dependency
ordering between lines 3 and 4, but that same code
fragment compiled with MY ARRAY SIZE equal to two
or greater would be dependency-ordered. Here a di-
agnostic for single-element arrays might prove useful.

In the Linux kernel, infix + and - are used for
pointer and array computations. These are all safe
in that they operate on an integer and pointer, so
that any cancellation will not normally be detectable
at compile time. However, one big purpose of diag-
nostics is to detect abnormal conditions indicating
probable bugs. Therefore, in cases where the com-
piler can determine that two values from dependency
chains are annihilating each other via infix + and -,
a diagnostic would be appropriate.

Similarly, the Linux kernel uses infix (bitwise) & to
manipulate bits at the bottom of a pointer, where
again cancellation will not normally be detectable at
compile time—except in the case of operations on a
NULL pointer, for which dependency ordering is not
meaningful in any case. However, as wtih infix +

and -, if the compiler detects value annihilation, a
diagnostic would be appropriate.

Although issues with false positives and negatives
needs further investigation, there is reason to hope
that this revision of the definition of dependency or-
dering might avoid significant impacts on ease of use.
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8 Summary

This document has analyzed Linux-kernel use of de-
pendency ordering and has laid out the status-quo in-
teraction between the Linux kernel and pre-C11 com-
pilers. It has also put forward some possible ways of
building towards a full implementation of C11’s and
C++11’s handling of dependency ordering. Finally,
it calls out some weaknesses in C11’s and C++11’s
handling of dependency ordering and offers some al-
ternatives.
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