
Implicit Evaluation of “auto” Variables and Arguments

Document number: N4035 (update of N3748)
Authors: Joël Falcou University Paris XI, LRI

Peter Gottschling SimuNova
Herb Sutter Microsoft

Date:
Project:
Reply to:

2014-05-23
Programming Language C++, Evolution Working Group
Peter.Gottschling@simunova.com

Revision to N3748

1. Prioritized syntax changed.

2. Third alternative introduced.

3. Library-based disabling introduced.

4. Some type traits removed.

Altogether, the proposal is a clear simplification to its predecessor.

1 Motivation

Type detection for variables from expressions’ return type:

auto x= expr;

has proven high usability. However, it fails to meet most users’ expectations and preferences when
proxies or expression templates (ET) are involved, e.g.:

matrix A, B;
// setup A and B
auto C= A ∗ B;

Many people would expect C to be of type matrix as well. Whether C is a matrix depends on the
implementation of operator∗. In the case that the operator returns a matrix then C is a matrix.

For the sake of performance, computationally expensive operators very often return an Expres-
sion Template and delay the evaluation to a later point in time when it can be performed more
efficiently—because we know the entire expression and where the result is stored so that we can
avoid the creation and destruction of a temporary. The impact of this approach to the before-
mentioned example is that C is not of type matrix but of some intermediate type that was probably
only intended to be used internally in a library.

1

2

Moreover, we assume that even people who are aware of expression templates will very often
prefer the evaluated object (here a matrix containing the product of A and B) and not an unevaluated
or partially evaluated object (representing the product of A and B).

We therefor need a mechanism to evaluate objects of certain types implicitly and sufficient
control over this mechanism.

2 Goals

The implicit evaluation shall:

1. Enable class implementers to indicate that objects of this class are evaluated in an auto
statement;

2. Enable them to determine the type of the evaluated object;

3. Enable them to implement the evaluation;

4. Allow programmers to explicitly disable this evaluation;

5. Provide information about the return type;

6. Allow for efficient use as function arguments;

7. Establish a compact and intuitive notation; and

8. Maximize backward compatibility.

3 Example

For the sake of illustration, we start with a typical implementation of expression templates:

class product expr; // forward declaration

class matrix
{ ...
matrix& operator=(const product expr& product)
{ /∗ perform matrix product here ∗/ }
};

class product expr { ... };

inline product expr operator∗(const matrix& A, const matrix& B)
{ return product expr(A, B); }

int main()
{
matrix A, B;
// setup A and B
auto C= A ∗ B; // type of C is thus product expr
}

The auto variable C yield the type of the assigned expression which is in this case product expr not
matrix. We could have written:

3

matrix C= A ∗ B;

and C would obviously be a matrix and also contain the evaluated product.
In the example above, the anonymous object product expr(A, B) apparently represents the prod-

uct of A and B and the product of two matrices is a matrix as well. Thus, to meet the users’ typical
expectations/preferences, we need to express how we create from an object representing A∗B an
object that actually is A∗B.

4 Solution

To achieve the goal that the type of C becomes matrix we know of three approaches:

• Operator notation;

• using declaration; and

• Specialization of decay.

In discussions in the Chicago meeting and the reflector, the using declaration found the strongest
consensus. We therefore, focus on this one and mention the alternatives later

4.1 Preferred Approach

It was suggested in the reflector to introduce an operator auto to enable this implicit evaluation.
In the example above, we would expand the implementation of product expr:

class product expr
{
public:
product expr(const matrix& arg1, const matrix& arg2)
: arg1(arg1), arg2(arg2) {}

using auto= matrix;

private:
const matrix &arg1, &arg2;
};

The actual evaluation can be implemented in both classes:

• Either in matrix with a constructor accepting product expr; or

• In product expr with a conversion operator towards matrix.

4.2 Alternative Approaches

Operator notation: The idea was to introduce a new operator like:

class product expr
{
...
matrix operator auto() { ... }
};

4

The advantage of this form is that the implicit evaluation could be implemented independently
from constructors and conversion operators. However, such generality seems to be rarely necessary
according to current experience and feedback. Furthermore, the syntax of the conversion operator
with return type deduction is so close that a lot of confusion would be expected.

decay: Arno Schödl suggests using specialization of decay. The type trait decay reflects the type
behavior of auto variables, i.e. typename decay<decltype(expr)>::type yield the type of variable x
in auto x= expr;. He suggests to turn the semantics around and define auto x= expr; as:

typename std::decay<decltype(expr)>::type x=expr;

In this case, the type of the implicit evaluation can be customized by specializing std::decay.

4.3 Disabling the Implicit Evaluation

In several situations, the programmer will need the unevaluated object and still likes to use the
automatic type deduction. For this purpose, we propose denoting the declaration with the keyword
explicit:

explicit auto D= A ∗ B;

Daveed Vandevorde remarked that the evaluation could also be disabled on the library level:

auto D= noeval(A ∗ B);

where noeval wraps the expression (for later unwrapping):

template <typename T>
struct noeval type
{

const T& ref;
noeval type(const T& ref) : ref(ref) {}
operator T const&() { return ref; }
using auto= T const&;

};

template <typename T>
auto noeval(const T& ref)
{

return noeval type(ref);
}

We have no strong preference to any of the two approaches.

4.4 Reflection

To refer to the return type of the operator auto, we propose the following template alias:

template <typename T>
using auto result type= ...;

When no operator auto is define the template alias returns T. For the types from this proposal it
would be therefor:

5

Type expression Result

auto result type<product expr> matrix
auto result type<matrix> matrix

5 Backward Compatibility

The implicit evaluation only applies on types that are equipped with an using auto declaration and
existing code is not affected.

6 Consistency

No matter what semantics we choose, we do want to end up where these cases are consistent:

// case 1: local variable
auto x = expr;

// case 2: function parameter
template<class T> void f(T x);
f(expr);

// case 3: lambda parameter
auto f = [](auto x) { };
f(expr);

Today these are identical (except only that case 1 can deduce initializer list, and there is some
pressure to remove that inconsistency). We believe these should stay identical.

We propose that all type-deduced variables and parameters with value semantic are subject to
implicit evaluation in the same way. All forms of references are not implicitly evaluated.

7 Summary

We proposed a user-friendly method to deal with expression templates and proxies for local variables
by introducing an implicit evaluation.

8 Wording

To be done!

