
N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 1 of 32

Doc No: N3997
Date: 2014-05-27

Authors: John Lakos (jlakos@bloomberg.net)
 Alexei Zakharov (alexeiz@gmail.com)

 Alexander Beels (abeels@bloomberg.net)

Centralized Defensive-Programming Support for Narrow
Contracts (Revision 5)

Abstract

Reducing defects in software is a central goal of modern software engineering.
Providing essentially defect-free library software can, in large part, be accomplished

through thorough unit testing, yet even the best library software—if misused—can
lead to defective applications. When invoking a function, not every combination of

syntactically valid inputs will (or should) necessarily result in defined behavior.
Functions for which certain combinations of inputs and (object) state result in
undefined behavior are said to have narrow contracts. Aggressively validating

function preconditions at runtime—commonly referred to as defensive programming—
can lead to more robust applications by (automatically) detecting out-of-contract use

of defensive library software early in the software development life cycle. Most
classical approaches to such defensive contract validation, however, necessarily
result in suboptimal runtime performance; moreover, when misuse is detected, the

action taken is invariably determined by the library, not the application.

In this proposal, we describe a centralized facility for supporting generalized runtime

validation of function contracts. What makes this overall approach ideally (and
uniquely) suited for standardization is that it allows the application to (1) indicate
coarsely (at compile time) the extent to which contract validation should be enabled

based on how much “defensive” overhead the application (as a whole) can afford, and
(2) specify exactly (at runtime) what action is to be taken should a contract violation

be detected. Moreover, the flexibility of this supremely general solution to contract
validation lends itself to a thorough, yet surprisingly easy-to-use testing strategy,
often called negative testing, for which a supportive framework is also provided.

Finally, this general approach to implementing and validating defensive checks is not
just a good idea: It has been successfully used in production software at Bloomberg

for over a decade, was presented at the ACCU conference in 2011, and is currently
available along with copious usage examples embedded in running library code as
part of Bloomberg’s open-source distribution of the BDE library at

https://github.com/bloomberg/bde.

https://github.com/bloomberg/bde

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 2 of 32

Contents

1 Changes from N3963 .. 2

2 Introduction ... 3

3 Background: Narrow versus Wide Contracts ... 3

3.1 Is Artificially Widening Narrow Contracts a Good Idea? 3

3.2 Summary of Why Artificially Wide Contracts are Bad 6

4 Motivation .. 7

4.1 So what’s the problem? .. 8

4.2 High-Level Requirements .. 9

5 Scope ... 10

6 Existing Practice ... 10

7 Impact on the Standard .. 10

8 Design Decisions .. 10

9 Summary of Proposal for Standardization ... 11

9.1 Defensive Build Modes and Assert Macros .. 11

9.2 Violation Handling ... 12

9.3 Test Macros.. 12

10 Examples .. 12

10.1 Assert a contract precondition in Debug-Build mode 12

10.2 Assert a contract precondition in Safe-Build mode 13

10.3 Throw an exception on a contract violation .. 13

10.4 Install a local contract-violation handler for negative testing 14

10.5 Test that a function correctly asserts its preconditions 15

11 Formal Wording... 16

11.1 Definitions .. 16

11.2 Defensive programming [contract] ... 16

12 Contract-assert-facility reference implementation .. 23

12.1 Overview ... 23

12.2 Implementation ... 24

13 References ... 32

1 Changes from N3963

This proposal is a revision to N3963.

In response to comments at Issaquah, a facility has been added to allow installation
of a scoped, thread-local contract-violation handler. When a handler is installed

using this facility, the handler will be used only by assertions in the thread from
which the handler is installed, and only for the duration of the scope in which the
handler is active. At the end of that scope, the previously installed handler for that

thread will be restored -- i.e., either the previously installed local handler or (if no
local handler was previously installed) the global one.

Additionally, an error in the specified behavior of the contract-assert test macros

(section 11.2.5) has been corrected.

Finally, the formal wording has been extensively revised to increase clarity.

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 3 of 32

2 Introduction

Optimizing quality, cost, and time-to-market are all basic tenets of present-day

application software development. A library feature that purports to significantly
improve any one of these important aspects would make it well worth consideration
for standardization; one that has been demonstrated for over a decade to improve all

three at once in a real-world production setting fairly demands it.

First and foremost, our goal as library software developers must be to ensure that, to
the extent possible, what is produced with our library code behaves as desired and is

implemented without defects. We always try to design library software to be easy to
understand and use, yet hard to misuse. Ideally, we prefer that—all other things

being equal—any misuse be detected at compile time, rather than at runtime.
Unfortunately, such designs are not always practical, or even possible. The standard
library is rife with examples where misuse cannot be detected at compile time (see

section 3).

What we are proposing here is a centralized, application-configurable standard

library facility supporting the runtime detection of misuse of functions where such
misuse cannot reasonably be detected at compile time.

3 Background: Narrow versus Wide Contracts

Some functions naturally have no preconditions apart from adhering to the general

rules of the C++ language. For example, there is no precondition specified in the
contract for

void std::vector::push_back(const TYPE&); // wide

that if violated would result in undefined behavior. The same is true in general for
copy (and move) constructors and assignment operators. Such functions naturally

have what are called wide contracts. On the other hand, both

const TYPE& std::vector::operator[](size_t index) const; // narrow

and

void std::vector::pop_back(); // narrow

would exhibit undefined behavior on an empty vector (which, in general, is simply not

possible to detect at compile time). Such functions are said to have narrow
contracts.

3.1 Is Artificially Widening Narrow Contracts a Good Idea?

Some advocate that widening the defined behavior to cover all combinations of
syntactically valid arguments (and state) is somehow beneficial. Consider the
standard member function

const TYPE& std::vector::at(size_t index) const; // wide

which provides the same behavior as defined for

const TYPE& std::vector::operator[](size_t index) const; // narrow

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 4 of 32

but, instead of being undefined when index >= size(), is required to throw an

std::out_of_range exception. There is no combination of input and state

information for which the behavior is undefined, and therefore could result in

arbitrary behavior. Hence, the contract for the at method of an std::vector is

considered (artificially) wide (we say “artificially” because we would never
intentionally exploit the added behavior, and misuse can be detected more effectively

without it; see below).

There are other ways in which one might widen what would otherwise be a useful

narrow contract. For example, consider a value-semantic [1] date class that
maintains, as one of its object invariants, a valid date value. Now consider a nominal

member function, set_ymd, that sets a date object to have the value represented by

the specified year, month, and day:

class date {

 // ...

 public:

 // ...

 void set_ymd(int year, int month, int day); // narrow

 // Set the value of this object to the specified

 // 'year', 'month', and 'day'. The behavior is

 // undefined unless 'year', 'month', and 'day'

 // together represent a valid/supported date value.

One way to widen this contract would again be to always validate the inputs and
throw an exception if they do not represent a supported date value (incurring a
runtime cost in every build mode). Another possibility would be to validate the

inputs and then promise to silently do nothing if invalid (most likely masking a
defect). A third possibility is to validate the inputs and again do nothing on invalid
input, but return status either way (thus precluding automatic detection of bad date

values in any build mode). Narrow contracts, on the other hand, do not suffer from
any of these problems.

3.1.1 Artificially Widening Contracts is Misguided

We assert (pun intended) that artificially widening an otherwise useful narrow

contract—just to eliminate any undefined behavior—is profoundly misguided for
several reasons:

 Even if we do nothing else, validating input has costs.

 Widening forces us to define, document, and test questionably useful code.

 More code runs slower!

 Wide contracts make backward compatible extension much harder.

 Artificially wide contracts preclude defensive programming.

For example, consider the standard C function

size_t strlen(const char *string);

 // Return the number of characters in the specified (null-terminated)

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 5 of 32

 // 'string'.

What should the behavior be if string is 0? One possibility is that it be defined to

return 0:

size_t strlen(const char *string)

{

 if (!string) { // wide !!!

 return 0;

 }

 // Determine and return the length of 'string'.

}

Doing so, however, would necessarily have a non-zero added cost for everyone,
including those who would never invoke the function on a null pointer. What’s more,

this kind of widening would serve to hide defects. We might instead consider

returning static_cast<size_t>(-1) as a form of status, but that brings with it its

own issues (see below). (Note that simply omitting the check would, in this case, most
likely result in program termination, exposing the bug.) Finally, by artificially

extending the defined behavior to cover null input, we necessarily eliminate the
possibility of the library automatically warning that something is wrong in an
application-customizable manner. The optimal solution is to leave the behavior for

null strings undefined and, in some (but not all) build modes, detect and report
misuse as directed.

Some will argue that correctness is more important than performance, and that

always checking function preconditions is a small price to pay. But what if it’s not?

As a second example, let’s revisit our set_ymd function discussed above. If we widen

the contract to return status (or throw an exception, or even do nothing) on a bad
date value, we will then always have to check the date value—even when we know

that it is valid:

class date {

 short d_year;

 char d_month;

 char d_day;

 // ...

 public:

 // ...

 int set_ymd_if_valid(int year, int month, int day); // wide

 // Set the value of this object to the specified

 // 'year', 'month', and 'day', if 'year', 'month',

 // and 'day' represent a valid/supported date value.

 // Return 0 on success, and a non-zero value if

 // 'year', 'month', and 'day' fail to represent a

 // valid/supported date value.

In the case of a date object that stores its year, month, and day value in three
separate fields, the cost of validation overwhelms the cost of setting the date value:

inline

int date::set_ymd_if_valid(int year, int month, int day) // wide

{

 if (!isvalid_ymd(year, month, day)) { // relatively very expensive

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 6 of 32

 return -1; // error: bad input

 }

 d_year = year;

 d_month = month;

 d_day = month;

 return 0; // success

}

Precisely the same situation applies to throwing from the date value constructor:

inline

date::date(int year, int month, int day) // wide

: d_year(year), d_month(month), d_day(day)

{

 if (!isvalid_ymd(year, month, day)) { // relatively very expensive

 throw std::bad_input;

 }

}

We know from profiling that such redundant checks can increase runtime by several
hundred percent [2].

For anyone who cares about performance, always checking the validity of input

values that the caller supplies is a non-starter because, in many circumstances, the
caller will already know that their input is valid (if not, they are obligated to check it).

In fact, in some cases (such as binary search on a sorted array) the cost of validating
a precondition (that the array is in fact sorted) could be of a higher order complexity
(O[n]) than that of the work done by the function (O[log(n)]). Hard coding the amount

of validation into individual function contracts, and thereby widening them, is simply
not the answer. What is needed is a way of allowing each application to coarsely
indicate the overall runtime overhead it is prepared to dedicate to (redundant)

precondition checking throughout the program.

3.2 Summary of Why Artificially Wide Contracts are Bad

This section provides a concise summary of how an appropriately narrow contract is

superior to a corresponding artificially wide one:

 RUNTIME COST: Validating and/or otherwise analyzing input—even if we do

nothing else—always has a runtime cost: Sometimes that cost is relatively
small, sometimes it is not, and sometimes the cost completely overwhelms that
of accomplishing the useful work the function is intended to perform.

 DEVELOPMENT COST: Artificially defining additional behaviors (i.e., beyond
input validation) requires more up-front effort by library developers to design,

document, implement, and test; the more significant cost, however, is born by
application developers when these added behaviors serve only to mask defects

resulting from library misuse.

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 7 of 32

 CODE SIZE: Implementing the additional behavior will necessarily result in

larger executables. On all real-world computers, more code generally runs
slower—even when that code is never executed!

 EXTENSIBILITY: Artificially defining behavior that is not known to be useful

severely impedes adding backward-compatible extensions should new and truly
useful functionality be discovered in the future.

 DEFENSIVE PROGRAMMING: Eliminating all undefined behavior precludes
robust library implementations from detecting and reporting (in an appropriate

build mode) out-of-contract use. If the local function contract always specifies
the behavior for all possible input/state combinations, we lose the substantial

benefit of this very important, extremely useful quality-of-implementation
feature of robust library software for application development.

4 Motivation

Detecting defects early is widely held to be a goal of any good software development

process. The benefits of so doing affects each of the various metrics—quality, cost,
and schedule—for both library and application software. The sooner we detect a

problem, the sooner and more economically we can repair it, leading to a higher
quality product.

Unit testing is an effective way of ensuring that library software works as advertised
when used properly. Functionality invoked out of contract, however, may accidentally
produce the desired result, making such defects—including those within library

software itself—resistant to detection by unit testing alone. Absent contract
validation by lower-level library functions, the only effective way to detect such

misuse is through detailed code reviews. Such reviews are not only expensive, they
are subject to human error, and—to be fully effective—need to be repeated whenever
an implementation is modified.

Armed with the considerable resources needed to do comprehensive testing and
thorough peer review, it is possible to achieve exemplary quality without contract
validation. In fact, our implementation experience over the past decade shows that

enabling contract validation after library software has been thoroughly reviewed and
tested rarely uncovers new defects within the library software itself. On the other

hand, the time and effort to debug new library software is dramatically reduced when
such contract validation is enabled during development—particularly the initial
application of unit tests. Hence, even library software developers can benefit from

such defensive contract validation.

When it comes to application software, the benefits of contract validation are
unmistakable. Whereas the cost of developing infrastructure libraries can be

amortized over many versions of many separate applications, such is seldom the case
for the applications themselves, and unit testing—where it exists at all—is

notoriously underfunded in many application development environments. Although
contract validation is not a substitute for thorough testing, having a library that
validates the preconditions of its narrow function contracts can—just by itself—go a

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 8 of 32

very long way towards improving quality, reducing development costs, and shortening
time-to-market for application software that takes advantage of it.

In addition to the development benefits discussed above, if the library’s defensive
programming infrastructure can be configured to perform a specific action when it

detects misuse, then it can be employed even beyond the development phase.

Consider a word processing program, such as the one used to write this proposal.
When the program is in beta testing, we expect that there will be some defects.

Nevertheless, we want some customers to use the program for real work as part of
the beta. If the library infrastructure were to detect misuse and then unconditionally
abort the program, it would be unacceptable to the customer, who might wind up

losing hours of valuable work. On the other hand, if the application were to disable
the defensive programming infrastructure and ignore misuse, it might still crash

unexpectedly, or—even worse—corrupt the customer’s document.

It is therefore imperative that the application be able to configure the library
infrastructure to warn when it detects misuse (or possibly even an internal error)

without necessarily terminating the program, so that the application can at least have
the opportunity to save the customer’s data before exiting.

4.1 So what’s the problem?

Every application is unique, and every application developer has their own viewpoint.
If you ask five application developers how much runtime overhead library software
should incur checking for misuse by its client applications, it is quite possible you

will get five different answers:

 None

 Negligible (e.g., < 5%)

 Not substantial (e.g., 10-20%)

 A constant factor (e.g., 50-300%)

 Bring it on! (e.g., an order of magnitude)

In fact, these answers will vary—depending on the maturity of the application

software at issue. During the early stages of development, it may be that a fairly high
degree of checking is both needed and affordable. Once the application is released to
production, however, all that extra overhead may no longer be acceptable. For some

high-performance applications, even relatively modest overhead may be
unacceptable. In the most extreme case, the application owner may decide to

allocate zero runtime overhead for contract validation. Our goal is that the same
infrastructure library be able to support all these different application needs
throughout all phases of their life cycles.

Even if we were able to get application developers to agree on the level of runtime
contract validation, they would surely disagree on what should happen if a violation

is detected. Some would argue that the program should terminate, since it is known
to be broken and letting it continue is only asking for trouble. Others would say that

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 9 of 32

a function should always throw an exception so that the application has a chance of
catching it and cleaning up before exiting. Still others might want the program to go

into a busy loop, waiting for an operator to attach a debugger and then proceed on.
The possibilities are endless. What should a general-purpose library do?

Standard library components must accommodate a diverse set of needs. We can
absolutely guarantee that the library will not be reused to its full potential if we hard
code either (1) the amount of runtime overhead that a reusable library expends trying

to detect contract violations, or (2) what happens if a violation is detected. What is
needed is a centralized facility that allows library (and even application) developers to

conveniently instrument their software such that application owners are able to
specify coarsely (at compile time) the relative amount of overall contract validation
that is to occur within the program, and also to specify (at runtime) exactly what is to

happen should a violation be detected.

4.2 High-Level Requirements

This section summarizes the essential high-level requirements of any centralized
facility (especially one suitable for standardization) to be used for implementing

application-configurable defensive checks in library software.

Library developers must be able to

 Easily implement defensive checks to be active in an appropriate defensive
build mode.

 Easily test that defensive checks are working as intended.

Each individual application owner (i.e., of main) must separately be able to

 Coarsely specify (at compile time) the overall runtime validation overhead.

 Specify precisely (at runtime) the action to take if an error is detected.

 Link translation units compiled with different levels of runtime validation.

Additionally, we advocate that there should be some bilateral recommendation
provided along with this centralized facility indicating how library and application

developers are encouraged to apportion and assess, respectively, the runtime
checking costs associated with each individual defensive build mode. The coarse
categories suggested in section 3.1 provide a practical guideline consistent with our

experience, which also happens to be closely tied to our heuristic, yet sound, practice

for choosing whether or not to declare a function inline.

Libraries that employ a centralized, application-configurable strategy for detecting
and handling out-of-contract function invocations, as discussed here, have already

demonstrated enormous practical benefit by simultaneously improving quality, cost,
and schedule metrics for application (and even library) developers that use them.

What remains now is to specify a particular implementation of this strategy suitable
for standardization.

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 10 of 32

5 Scope

This facility is intended for ubiquitous use across all library and application software.

Every programmer—from novice to expert—is encouraged to understand and
document the valid range of inputs (and state) for each function, and codify that
information in a way that allows the application owner (as opposed to the immediate

caller) to opine on what should happen if a contract violation is detected. Of all the

headers in our BDE library [5], the one that defines this functionality, bsls_assert.h,

is empirically among the most widely included.

6 Existing Practice

Defensive Programming, in its various guises, is a widely used software technique,

spanning virtually all computer languages. Many C++ developers still use <cassert>

to validate contract conditions (i.e. pre-, post-, and invariant-conditions), knowing that
the runtime overhead can be eliminated in optimized builds. Others, afraid of
aborting, hard code contract validation and then always throw an exception when

contract violations are detected. Neither of these approaches is ideal, failing to
address the flexibility for general purpose, reusable library software.

For more than a decade, Bloomberg’s library infrastructure has employed the
defensive programming strategy advocated here with excellent success across a wide
range of applications and libraries. Copious examples of this strategy’s application

along with the components providing defensive-programming support are freely
available for public scrutiny [5].

7 Impact on the Standard

What we propose requires no new language features. By its very nature, the addition
of the centralized checking facility proposed here would have absolutely no direct
required effect on any other components within the standard library; however,

implementers of standard components would almost certainly want to take advantage
of this facility to provide defensive checks to warn against client misuse.

In order for defensive programing to allow for maximum flexibility, we will want to
avoid artificially defining behavior for standard functions. In particular, we will want

to avoid the use of noexcept on narrow contracts, not only to facilitate negative

testing [3], but also to allow application programs the opportunity to recover from

their own errors and preserve valuable client data. After consideration in Madrid, the
committee agreed with strong consensus on criteria [4] for all functions in the C++11

standard that preclude the use of noexcept on functions having narrow contracts

(where it might impede defensive programming). We presume that all future

standard functions will follow suit.

8 Design Decisions

Our proposed design for standardization addresses all of the high-level requirements
identified in section 3.2. We have made every effort to adapt all of our implementation

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 11 of 32

experience to a facility suitable for standardization, consistent with standard naming
conventions. There is, however, one departure that we feel deserves mention.

In our environment at Bloomberg, we have full control over the precise nature of how

C++ code is rendered (i.e., in terms of .h/.cpp pairs) and therefore are able to provide

some additional diagnostics via our negative testing facility beyond what we have
proposed for standardization. In particular, given our logically and physically

cohesive naming conventions, our bsls_asserttest component is able to determine

automatically, during unit testing, whether a function under test was itself able to
detect misuse rather than accidently relying on contract validation in a (physically)

separate component (.h/.cpp pair) upon which it depends. In order to accommodate

a non-restricted physical rendering style, we have chosen to remove this diagnostic

from what is being proposed for standardized negative-testing support.

9 Summary of Proposal for Standardization

The defensive programming support facility that we are proposing for consideration
for standardization consists of four parts:

 a set of defensive build modes that control how much additional runtime
should be expended on contract validation

 a set of contract-assertion macros that test the validity of predicates

 a violation-handling mechanism that controls what is done when a contract

violation is detected

 a set of test macros that can be used in test drivers to verify that contracts are

being validated properly

9.1 Defensive Build Modes and Assert Macros

This contract-validation facility is based on the principle that the application
developer should have at least coarse control (at compile time) over how much
runtime resource is to be expended on contract validation in a program. This

principle is embodied in three defensive build modes that control which contract-
validation tests are run and which are skipped:

 Safe-Build mode is used when an application developer is willing to expend
considerable resources on contract validation, perhaps slowing down the

program by a constant factor (e.g., 50-300%). In Safe-Build mode, all contract-
validation tests are enabled.

 Debug- (non-optimized) Build mode is used when an application developer is

willing to expend some resources on contract validation, but is not willing to
slow down the program appreciably (e.g., by more than 10-20%). In Debug-

Build mode, more expensive contract-validation tests are skipped.

 Optimized-Build mode is used when an application developer is not willing to

expend any appreciable resources on contract validation. In Optimized-Build

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 12 of 32

mode, only the most inexpensive (e.g., overhead < 5%) and critical contract-
validation tests are performed.

A matching assert macro is provided for each defensive build mode, allowing the
library developer to express how expensive it is to test each contract condition.

Extremely expensive tests would be performed using the Safe-Mode assert macro,
moderately expensive tests would be performed using the (non-optimized) Debug-
Mode assert macro, and only very inexpensive and/or critical tests would be

performed using the Optimized-Mode assert macro.

Once the library developer has implemented contract validation using the appropriate

assert macros, the application developer can control the amount of runtime
resources expended on checking by choosing the appropriate defensive build mode in
which to compile the translation unit. Note that translation units compiled with

different assertion levels may be linked together resulting in (typically benign)
violations of the ODR.

9.2 Violation Handling

Another principle of the assertion facility is that the application developer should

have full and complete control (at run time) over what happens when a contract
violation is detected. A configurable violation-handler mechanism is provided so that

the application owner (i.e., the owner of main) can choose to abort the program, throw

an exception, or otherwise respond to the violation as they see fit.

9.3 Test Macros

A contract-checking facility is not fully useful unless the checks it supports can be
tested. A set of test macros is provided to allow library developers to easily test that

(a) no violation is detected when all contract conditions are met, (b) a violation is
detected when any contract condition is not met, and (c) each contract condition is
active in only the appropriate defensive build modes. Note that our implementation

experience shows that test actions resulting in in-contract calls should always be
honored, whereas out-of-contract calls should occur only when in a defensive build

mode enabling a precondition check that can respond to the particular contract
violation.

10 Examples

10.1 Assert a contract precondition in Debug-Build mode

In this example, a strlen-like function, other_strlen, enforces a narrow contract.

The function contract has a precondition that str must not be null, and the function

uses CONTRACT_ASSERT to check the precondition in Debug- and Safe-Build modes.

#include <experimental/contract_assert>

std::size_t other_strlen(const char *str)

{

 CONTRACT_ASSERT(str);

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 13 of 32

 // ... return string length

}

10.2 Assert a contract precondition in Safe-Build mode

In this example, a simple inline array-lookup function, get_int_array_element,

enforces a narrow contract that is relatively expensive to check when compared to the

cost of performing the look-up. The function contract has a precondition that index

must be greater than or equal to 0 and less than length. Because checking this

precondition is relatively expensive, we use CONTRACT_ASSERT_SAFE, so that we will

pay the runtime cost only in Safe-Build mode.

#include <experimental/contract_assert>

int get_int_array_element(int *array, int length, int index)

{

 CONTRACT_ASSERT_SAFE(0 <= index);

 CONTRACT_ASSERT_SAFE(index < length);

 return array[index];

}

10.3 Throw an exception on a contract violation

In this example, a program defines and installs a contract-violation-handler function,

handle_violation, that throws an exception of type contact_violation_error. When

the program later calls a function, some_function, that unconditionally asserts a

contract violation in Debug- or Safe-Build mode, the program can print a diagnostic
message before exciting normally.

#include <experimental/contract_assert>

struct contract_violation_error

{

 contract_violation_error(

 const std::experimental::contract_violation_info& info);

 std::experimental::contract_violation_info info;

};

contract_violation_error::contract_violation_error(

 const std::experimental::contract_violation_info& info)

: info(info)

{

}

void throw_on_contract_violation(

 const std::experimental::contract_violation_info& info)

{

 throw contract_violation_error(info);

}

int some_function()

{

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 14 of 32

 CONTRACT_ASSERT(false); // throws contract_violation_error

}

int main()

{

 std::experimental::set_handle_contract_violation(

 throw_on_contract_violation);

 try

 {

 some_function();

 }

 catch (contract_violation_error)

 {

 std::cout << "A contract violation was detected." << std::endl;

 }

 catch (...)

 {

 std::cout << "An unexpected exception was caught." << std::endl;

 }

 return 0;

}

Note that contract_violation_error does not inherit from std::exception. An

exception thrown by a contract-violation handler should not be related to any
exceptions used elsewhere in the program so as to minimize the possibility that the

program’s usual exception-handling facilities will intercept and hide the exception
reporting the contract violation.

Also note that the contract-violation handler is installed using

set_handle_contract_violation; hence, this handler will be the default handler for

all threads.

10.4 Install a local contract-violation handler for negative testing

The same contract-violation handler used in Example 2 could be used to incorporate

simple negative testing of other_strlen into a larger test driver by using a

handle_contract_violation_guard instead of set_handle_contract_violation.

int run_negative_tests()

{

 std::experimental::handle_contract_violation_guard

 guard(throw_on_contract_violation);

 try

 {

 other_strlen(nullptr);

 }

 catch (contract_violation_error)

 {

 return 0;

 }

 return 1;

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 15 of 32

}

int main()

{

 int num_test_failures = 0;

 // Possibly spawn other threads.

 // ...

 num_test_failures += run_negative_tests();

 // Call other functions.

 // ...

 if (num_test_failures > 0)

 {

 std::cout << num_test_failures << " tests failed." << std::endl;

 }

 else

 {

 std::cout << "All tests passed." << std::endl;

 }

 return num_test_failures;

}

Note that any other threads spawned by main will default to using the global

contract-violation handler, even after run_negative_tests installs its local handler;

run_negative_tests will not be affected by any other local handlers installed in other

threads. Similarly, other functions called in the main thread will also not be affected

by the local handler installed in run_negative_tests since that local handler will be

uninstalled when guard goes out of scope.

10.5 Test that a function correctly asserts its preconditions

In this example, a program makes both in-contract and out-of-contract calls to

other_strlen, and uses the TEST_CONTRACT_ASSERT_* macros to validate that

other_strlen checks its precondition in the appropriate defensive build modes.

#include <experimental/contract_assert_test>

int main()

{

 if (TEST_CONTRACT_ASSERT_PASS(other_strlen("a string")))

 {

 std::cout << "Correctly detects no contract violation.\n";

 }

 else

 {

 std::cout << "Incorrectly detects contract violation.\n";

 }

 if (TEST_CONTRACT_ASSERT_FAIL(other_strlen(nullptr)))

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 16 of 32

 {

 std::cout << "Successfully detects contract violation.\n";

 }

 else

 {

 std::cout << "Fails to detect contract violation.\n";

 }

 return 0;

}

11 Formal Wording

11.1 Definitions

Add three new definitions to clause 17.3:

17.3.X [defns.contract]

contract

A contract is the behavioral specification, including parameters, requirements, and
observable behavior, for a function, macro, or template.

17.3.Y [defns.contract.narrow]

narrow contract

A narrow contract is a contract that, for some subset of its possible inputs,
documents undefined behavior.

17.3.Z [defns.contract.wide]

wide contract

A wide contract is a contract that, for all possible inputs permitted by the language,
documents no undefined behavior.

11.2 Defensive programming [contract]

11.2.1 In general [contract.general]

The header <experimental/contract_assert> defines macros, functions, and

types that support defensive runtime validation of function contracts. A contract
assertion is a conditionally evaluated test of an expression, using one of the contract-
assert macros defined in [contract.assertions], that is intended to express a
requirement of a function contract. When a contract assertion is evaluated and fails,
a contract violation is detected. The conditions under which contract assertions are

evaluated for a given translation of a program are controlled by defensive build
modes. A program that utilizes the defensive programming facility relies on a global

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 17 of 32

contract-violation-handler function to be called when a contract violation is detected.
Additionally, each thread in such a program may install its own local handler, which

will be used instead of the global handler when a contract violation is detected in that
thread.

The header <experimental/contract_assert_test> defines contract-assert test

macros that provide a way to check that a contract violation is detected, due to
appropriate use of contract assertions, if and only if a function is called out of

contract. These macros make use of a contract-assert test context having a thread-
local state indicating either success or failure. When first established, a contract-

assert test context has a success state.

The following subclauses describe the assert macros, assert macro state flags,

assertion handlers, and assert test macros comprised by this contract-assertion
facility.

Header <experimental/contract_assert> synopsis

// contract-assert macros

#define CONTRACT_ASSERT_OPT(condition_expression) // see below

#define CONTRACT_ASSERT_DBG(condition_expression) // see below

#define CONTRACT_ASSERT_SAFE(condition_expression) // see below

#define CONTRACT_ASSERT(condition_expression) \

 CONTRACT_ASSERT_DBG(condition_expression)

#define CONTRACT_ASSERT_OPT_IS_ACTIVE // conditionally defined, see below

#define CONTRACT_ASSERT_DBG_IS_ACTIVE // conditionally defined, see below

#define CONTRACT_ASSERT_SAFE_IS_ACTIVE // conditionally defined, see below

#define CONTRACT_ASSERT_IS_ACTIVE // defined when

 // CONTRACT_ASSERT_DBG_IS_ACTIVE

 // is defined

namespace std {

namespace experimental {

// types

enum class contract_assert_mode

{

 opt,

 dbg,

 safe

};

struct contract_violation_info;

using handle_contract_violation_handler =

 void (*)(const contract_violation_info&);

// handler manipulators

handle_contract_violation_handler

set_handle_contract_violation(handle_contract_violation_handler handler) noexcept;

handle_contract_violation_handler get_handle_contract_violation() noexcept;

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 18 of 32

// handler invoker

[[noreturn]] void handle_contract_violation(const contract_violation_info& info);

// thread-local contract-violation handler installation

struct handle_contract_violation_guard;

} // namespace experimental

} // namespace std

Header <experimental/contract_assert_test> synopsis

#include <experimental/contract_assert>

// contract-assert test macros

#define TEST_CONTRACT_ASSERT_OPT_FAIL(test_expression) // see below

#define TEST_CONTRACT_ASSERT_DBG_FAIL(test_expression) // see below

#define TEST_CONTRACT_ASSERT_SAFE_FAIL(test_expression) // see below

#define TEST_CONTRACT_ASSERT_FAIL(test_expression) \

 TEST_CONTRACT_ASSERT_DBG_FAIL(test_expression)

#define TEST_CONTRACT_ASSERT_OPT_PASS(test_expression) // see below

#define TEST_CONTRACT_ASSERT_DBG_PASS(test_expression) // see below

#define TEST_CONTRACT_ASSERT_SAFE_PASS(test_expression) // see below

#define TEST_CONTRACT_ASSERT_PASS(test_expression) \

 TEST_CONTRACT_ASSERT_DBG_PASS(test_expression)

11.2.2 Defensive build mode selection [contract.modes]

At any point during the translation of a program, at most one of the four defensive
build modes described in Table 1 is in effect. Initially, no defensive build mode is in

effect.

Table 1

Defensive Build Mode Description

disabled No contract conditions are validated.

optimized Only the least expensive contract conditions are
validated.

debug Up to moderately expensive contract conditions are
validated.

safe All contract conditions are validated.

Each successive defensive build mode listed in Table 1 validates no fewer contract

conditions than the defensive build modes that precede it, and can be said to be
stronger (no weaker) than the preceding defensive build modes.

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 19 of 32

Each defensive build mode has an associated preprocessor token, referred to as a
defensive build-mode-selection token, defined in Table 2.

Table 2

Defensive Build Mode Defensive Build-Mode-Selection Token

disabled CONTRACT_ASSERT_LEVEL_NONE

optimized CONTRACT_ASSERT_LEVEL_ASSERT_OPT

debug CONTRACT_ASSERT_LEVEL_ASSERT_DBG

safe CONTRACT_ASSERT_LEVEL_ASSERT_SAFE

The program is ill-formed (diagnostic required) if <contract_assert> is included and

multiple build-mode-selection tokens are defined. Each time <contract_assert> is

included, if one of these tokens is defined, the corresponding build mode comes into
effect, replacing any build mode that was under effect up to that point. If none of the

build-mode-selection tokens are defined when <contract_assert> is included, the

‘debug’ build mode comes into effect.

11.2.3 Contract-assert macros [contract.assertions]

There are three contract-assert macros:

#define CONTRACT_ASSERT_OPT(condition_expression)

#define CONTRACT_ASSERT_DBG(condition_expression)

#define CONTRACT_ASSERT_SAFE(condition_expression)

In addition, there is one alias macro:

#define CONTRACT_ASSERT(condition_expression) \

 CONTRACT_ASSERT_DBG(condition_expression)

The alias macro provides a convenient abbreviation for CONTRACT_ASSERT_DBG.

Each contract-assert macro corresponds to one defensive build mode, and has an

associated mode value of the enum type contract_assert_mode, as defined in Table 3.

A contract-assert macro is active only if the defensive build mode corresponding to
the macro (or a yet stronger mode) is currently in effect.

Table 3

Contract-Assert Macro Build Mode Mode Value

CONTRACT_ASSERT_OPT(condition_expression) optimized opt

CONTRACT_ASSERT_DBG(condition_expression) debug dbg

CONTRACT_ASSERT_SAFE(condition_expression) safe safe

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 20 of 32

Note that no macro corresponds to ‘disabled’, which is the weakest defensive build
mode. When the ‘disabled’ build mode is in effect, no contract-assert macros are

active.

The condition_expression of a macro is not evaluated unless the macro is active in

the defensive build mode currently in effect.

A condition_expression supplied to an active macro shall be contextually convertible

to bool. A contract violation is detected if such an expression is evaluated to false

when contextually converted to bool.

When a contract violation is detected due to evaluation of a condition_expression in

a contract-assert macro, the implementation will call

std::experimental::handle_contract_violation with a contract_violation_info

structure, each member of which will be initialized to the values described in Table 4.

Table 4

Data Member Value

mode initialized to the mode value corresponding to the macro that

triggered the contract violation.

expression_text initialized to the stringification of the condition_expression that

triggered the contract violation.

filename initialized to the value of __FILE__ at the location of the macro

that triggered the contract violation.

line_number initialized to the value of __LINE__ at the location of the macro

that triggered the contract violation.

11.2.4 Contract-assert-macro state flags [contract.flags]

There are three contract-assert-macro state flags, zero or more of which will be
defined depending on the defensive build mode currently in effect:

#define CONTRACT_ASSERT_OPT_IS_ACTIVE

#define CONTRACT_ASSERT_DBG_IS_ACTIVE

#define CONTRACT_ASSERT_SAFE_IS_ACTIVE

In addition, there is one alias macro:

#define CONTRACT_ASSERT_IS_ACTIVE // defined when

 // CONTRACT_ASSERT_DBG_IS_ACTIVE

 // is defined

The alias macro provides a convenient abbreviation for

CONTRACT_ASSERT_DBG_IS_ACTIVE.

Each contract-assert macro state flag corresponds to a defensive build mode, as
defined in Table 5, and is not defined unless the defensive build mode currently in

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 21 of 32

effect is the macro’s corresponding defensive build mode or a stronger defensive build
mode.

Table 5

Contract-Assert-Macro State Flag Defensive Build Mode

CONTRACT_ASSERT_OPT_IS_ACTIVE optimized

CONTRACT_ASSERT_DBG_IS_ACTIVE debug

CONTRACT_ASSERT_SAFE_IS_ACTIVE safe

11.2.5 Contract-assert test macros [contract.test.macros]

There are two kinds of contract-assert test macros: contract-assert test-fail macros,

which validate that out-of-contract calls detect a contract violation, and contract-
assert test-pass macros, which validate that in-contract calls do not detect a contract

violation.

There are three contract-assert test-fail macros:

#define TEST_CONTRACT_ASSERT_OPT_FAIL(test_expression)

#define TEST_CONTRACT_ASSERT_DBG_FAIL(test_expression)

#define TEST_CONTRACT_ASSERT_SAFE_FAIL(test_expression)

In addition, there is one alias macro:

#define TEST_CONTRACT_ASSERT_FAIL(test_expression) \

 TEST_CONTRACT_ASSERT_DBG_FAIL(test_expression)

The alias macro provides a convenient abbreviation for

TEST_CONTRACT_ASSERT_DBG_FAIL.

Each contract-assert test-fail macro corresponds to a defensive build mode and mode
value, as defined in Table 6. A contract-assert test-fail macro is active only in the

macro’s corresponding defensive build mode, or a stronger one.

Table 6

Contract-Assert Test-Fail macro
Defensive Build
Mode Mode Value

TEST_CONTRACT_ASSERT_OPT_FAIL(test_expression) optimized opt

TEST_CONTRACT_ASSERT_DBG_FAIL(test_expression) debug dbg

TEST_CONTRACT_ASSERT_SAFE_FAIL(test_expression) safe safe

The test_expression is not evaluated unless the macro is active in the defensive

build mode currently in effect. If, after evaluating the test_expression, the contract-

assert test context is in a failure state, and the mode value passed to

std::experimental::handle_contract_violation matches the mode value for the

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 22 of 32

contract-assert test-fail macro, the macro expands to an expression that evaluates to

true; otherwise it expands to one that evaluates to false.

There are three matching contract-assert test-pass macros, and one alias, providing

in-contract tests paired with the out-of-contract tests performed by the contract-
assert test-fail macros:

#define TEST_CONTRACT_ASSERT_OPT_PASS(test_expression)

#define TEST_CONTRACT_ASSERT_DBG_PASS(test_expression)

#define TEST_CONTRACT_ASSERT_SAFE_PASS(test_expression)

#define TEST_CONTRACT_ASSERT_PASS(test_expression) \

 TEST_CONTRACT_ASSERT_DBG_PASS(test_expression)

Each contract-assert test-pass macro evaluates the test_expression within a

contract-assert test context. If, after evaluating the test_expression, the contract-

assert test context is in a failure state, the macro expands to an expression that

evaluates to false; otherwise it expands to one that evaluates to true.

11.2.6 Contract-assert-handler functions [contract.handler]

handle_contract_violation_handler

using handle_contract_violation_handler =

 void (*)(const contract_violation_info&);

The type of a contract-violation-handler function to be called when a contract
violation is detected.

Required behavior: A handle_contract_violation_handler shall not return

normally to the caller. [Note: A handler may throw an exception. — end note]

Default behavior: The implementation’s default global

handle_contract_violation_handler calls std::abort().

handle_contract_violation

handle_contract_violation_handler

set_handle_contract_violation(handle_contract_violation_handler handler) noexcept;

Effects: Establishes the function designated by handler as the current global

contract-violation handler.

Remarks: A null pointer value designates the default contract-violation-handler

function. The behavior is undefined unless every evaluation of a call to

set_handle_contract_violation inter-thread happens before

[intro.multithread] any evaluation of a call to handle_contract_violation.

Returns: The previous global contract-violation-handler function.

handle_contract_violation_handler get_handle_contract_violation() noexcept;

Returns: The (address of the) current global contract-violation-handler function.

[Note: This address value can be null (indicating the default handle). – end note
]

[[noreturn]] void handle_contract_violation(const contract_violation_info& info);

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 23 of 32

Remarks: Called by the implementation when any of the contract-assert

macros fail. [Note: The handle_contract_violation function may also be

called directly by a program. – end note]

Effects: Call the currently installed local contract-violation handler, if any. If
there is no installed local contract-violation handler, call the global contract-

violation handler instead. [Note: A default

handle_contract_violation_handler is always considered a callable handler in

this context. — end note]

struct handle_contract_violation_guard

An object of type handle_contract_violation_guard controls the installation of

a local contract-violation handler for the current thread within a scope.

explicit

handle_contract_violation_guard(handle_contract_violation_handler handler);

Effects: handler becomes the local contract-violation handler for the calling

thread.

~handle_contract_violation_guard();

Effects: The local contract-violation handler for the calling thread is restored to
the state it had before this object was constructed.

Remarks: Must be called from the same thread that called the guard’s
constructor.

12 Contract-assert-facility reference implementation

12.1 Overview

The contract-assert-facility reference implementation consists of the following parts:

 Contract-Assert Component:

1. A mechanism to ensure that only one of the defensive build-mode-selection

tokens is defined on entry into the experimental/contract_assert header.

2. Definitions of the contract-assert macros for each defensive build mode.

3. Definitions of the global functions and types stipulated by the formal

wording: contract_assert_mode, contract_violation_info,

handle_contract_violation_handler, set_handle_contract_violation,

get_handle_contract_violation, handle_contract_violation.

4. Definitions of two contract-violation handlers: a global contract-violation

handler and a thread-specific local contract-violation handler.

5. Definition of a handle_contract_violation_guard type that performs the

following tasks:

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 24 of 32

 On construction, store the existing local contract-violation handler,
and install a user-supplied contract-violation-handler function as the

current thread’s local contract-violation handler.

 On destruction, restore the stored contract-violation-handler function

as the current thread’s local contract-violation handler.

6. Definition of a default contract-violation-handler function that terminates
the program.

 Contract-Assert-Test Component:

1. Definition of a contract-violation-exception type.

2. Definition of a contract-violation-handler function that throws the contract-
violation exception.

3. Definition of the function test_contract_assert_imp, which performs the

following tasks:

 Create a handle_contract_violation_guard that installs the

exception-throwing contract-violation-handler function as the current
thread’s local contract-violation handler for the duration of

test_contract_assert_imp’s scope.

 Evaluate the expression under test inside a try/catch block.

 Catch the contract-violation exception and verify that it was indeed

expected to be thrown.

 Uninstall the local contract-violation handler.

12.2 Implementation

The reference implementation below presents an instructive example implementation

of <experimental/contract_assert> and <experimental/contract_assert_test>. In

addition, a small sample program is provided to exercise the facilities. It is assumed

that when the sample program is built, the CONTRACT_ASSERT_LEVEL_ASSERT_DBG

macro will be set by the build system.

12.2.1 experimental/contract_assert

#include <cstdlib>

// macros

#undef CONTRACT_ASSERT_OPT_IS_ACTIVE

#undef CONTRACT_ASSERT_DBG_IS_ACTIVE

#undef CONTRACT_ASSERT_SAFE_IS_ACTIVE

#undef CONTRACT_ASSERT_IS_ACTIVE

#undef CONTRACT_ASSERT_OPT

#undef CONTRACT_ASSERT_DBG

#undef CONTRACT_ASSERT_SAFE

#undef CONTRACT_ASSERT

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 25 of 32

#if !defined(CONTRACT_ASSERT_LEVEL_NONE) && \

 !defined(CONTRACT_ASSERT_LEVEL_ASSERT_OPT) && \

 !defined(CONTRACT_ASSERT_LEVEL_ASSERT_DBG) && \

 !defined(CONTRACT_ASSERT_LEVEL_ASSERT_SAFE)

#define CONTRACT_ASSERT_LEVEL_ASSERT_DBG

#elif 1 != \

 defined(CONTRACT_ASSERT_LEVEL_NONE) + \

 defined(CONTRACT_ASSERT_LEVEL_ASSERT_OPT) + \

 defined(CONTRACT_ASSERT_LEVEL_ASSERT_DBG) + \

 defined(CONTRACT_ASSERT_LEVEL_ASSERT_SAFE)

#error "Cannot define more than one CONTRACT_ASSERT_LEVEL_* macro at one time"

#endif

#ifdef CONTRACT_ASSERT_LEVEL_ASSERT_OPT

#define CONTRACT_ASSERT_OPT_IS_ACTIVE

#endif // CONTRACT_ASSERT_LEVEL_ASSERT_OPT

#ifdef CONTRACT_ASSERT_LEVEL_ASSERT_DBG

#define CONTRACT_ASSERT_OPT_IS_ACTIVE

#define CONTRACT_ASSERT_DBG_IS_ACTIVE

#define CONTRACT_ASSERT_IS_ACTIVE

#endif // CONTRACT_ASSERT_LEVEL_ASSERT_DBG

#ifdef CONTRACT_ASSERT_LEVEL_ASSERT_SAFE

#define CONTRACT_ASSERT_OPT_IS_ACTIVE

#define CONTRACT_ASSERT_DBG_IS_ACTIVE

#define CONTRACT_ASSERT_SAFE_IS_ACTIVE

#define CONTRACT_ASSERT_IS_ACTIVE

#endif // CONTRACT_ASSERT_LEVEL_ASSERT_SAFE

#ifdef CONTRACT_ASSERT_OPT_IS_ACTIVE

#define CONTRACT_ASSERT_OPT(...) \

 do \

 { \

 if (!(__VA_ARGS__)) \

 { \

 std::experimental::handle_contract_violation({ \

 std::experimental::contract_assert_mode::opt, \

 #__VA_ARGS__, \

 __FILE__, \

 __LINE__ \

 }); \

 } \

 } while (0)

#else

#define CONTRACT_ASSERT_OPT(...) do {} while(0)

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 26 of 32

#endif // CONTRACT_ASSERT_OPT_IS_ACTIVE

#ifdef CONTRACT_ASSERT_DBG_IS_ACTIVE

#define CONTRACT_ASSERT_DBG(...) \

 do \

 { \

 if (!(__VA_ARGS__)) \

 { \

 std::experimental::handle_contract_violation({ \

 std::experimental::contract_assert_mode::dbg, \

 #__VA_ARGS__, \

 __FILE__, \

 __LINE__ \

 }); \

 } \

 } while (0)

#else

#define CONTRACT_ASSERT_DBG(...) do {} while(0)

#endif // CONTRACT_ASSERT_DBG_IS_ACTIVE

#ifdef CONTRACT_ASSERT_SAFE_IS_ACTIVE

#define CONTRACT_ASSERT_SAFE(...) \

 do \

 { \

 if (!(__VA_ARGS__)) \

 { \

 std::experimental::handle_contract_violation({ \

 std::experimental::contract_assert_mode::safe, \

 #__VA_ARGS__, \

 __FILE__, \

 __LINE__ \

 }); \

 } \

 } while (0)

#else

#define CONTRACT_ASSERT_SAFE(...) do {} while(0)

#endif // CONTRACT_ASSERT_SAFE_IS_ACTIVE

#define CONTRACT_ASSERT(...) CONTRACT_ASSERT_DBG(__VA_ARGS__)

#ifndef INCLUDED_CONTRACT_ASSERT

#define INCLUDED_CONTRACT_ASSERT

namespace std {

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 27 of 32

namespace experimental {

// types

enum class contract_assert_mode

{

 opt,

 dbg,

 safe

};

struct contract_violation_info

{

 contract_assert_mode mode;

 const char *expression_text;

 const char *filename;

 size_t line_number;

};

using handle_contract_violation_handler =

 void (*)(const contract_violation_info&);

// handler manipulators

handle_contract_violation_handler

set_handle_contract_violation(handle_contract_violation_handler handler) noexcept;

handle_contract_violation_handler get_handle_contract_violation() noexcept;

// handler invoker

[[noreturn]] void handle_contract_violation(const contract_violation_info& info);

// local precondition violation handler installation

struct handle_contract_violation_guard

{

 explicit

 handle_contract_violation_guard(handle_contract_violation_handler handler);

 ~handle_contract_violation_guard();

 handle_contract_violation_guard(

 const handle_contract_violation_guard&) = delete;

 handle_contract_violation_guard&

 operator=(const handle_contract_violation_guard&) = delete;

 handle_contract_violation_handler old_handler;

};

} // namespace experimental

} // namespace std

#endif // INCLUDED_CONTRACT_ASSERT

12.2.2 experimental/contract_assert.cpp

#include <experimental/contract_assert>

#include <atomic>

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 28 of 32

namespace std {

namespace experimental {

namespace detail {

void abort_handler(const contract_violation_info&)

{

 std::abort();

}

std::atomic<handle_contract_violation_handler> handler{abort_handler};

thread_local

handle_contract_violation_handler installed_local_handler{nullptr};

} // namespace detail

handle_contract_violation_handler

set_handle_contract_violation(handle_contract_violation_handler handler) noexcept

{

 if (handler)

 {

 return std::atomic_exchange(&detail::handler, handler);

 }

 else

 {

 return std::atomic_exchange(&detail::handler, detail::abort_handler);

 }

}

handle_contract_violation_handler get_handle_contract_violation() noexcept

{

 return std::atomic_load(&detail::handler);

}

[[noreturn]] void handle_contract_violation(const contract_violation_info& info)

{

 [[noreturn]]

 handle_contract_violation_handler handler = detail::installed_local_handler;

 if (handler)

 {

 handler(info);

 }

 handler = get_handle_contract_violation();

 if (handler)

 {

 handler(info);

 }

 std::abort();

}

handle_contract_violation_guard::handle_contract_violation_guard(

 handle_contract_violation_handler handler)

: old_handler(detail::installed_local_handler)

{

 detail::installed_local_handler = handler;

}

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 29 of 32

handle_contract_violation_guard::~handle_contract_violation_guard()

{

 detail::installed_local_handler = old_handler;

}

} // namespace experimental

} // namespace std

12.2.3 experimental/contract_assert_test

#ifndef INCLUDED_CONTRACT_ASSERT_TEST

#define INCLUDED_CONTRACT_ASSERT_TEST

#include <experimental/contract_assert>

// macros

#undef TEST_CONTRACT_ASSERT_OPT_PASS

#undef TEST_CONTRACT_ASSERT_DBG_PASS

#undef TEST_CONTRACT_ASSERT_SAFE_PASS

#undef TEST_CONTRACT_ASSERT_PASS

#undef TEST_CONTRACT_ASSERT_OPT_FAIL

#undef TEST_CONTRACT_ASSERT_DBG_FAIL

#undef TEST_CONTRACT_ASSERT_SAFE_FAIL

#undef TEST_CONTRACT_ASSERT_FAIL

#define TEST_CONTRACT_ASSERT_OPT_PASS(...) \

 std::experimental::detail::test_contract_assert_imp(\

 std::experimental::contract_assert_mode::opt, true, \

 [&]{ (__VA_ARGS__); })

#ifdef CONTRACT_ASSERT_OPT_IS_ACTIVE

#define TEST_CONTRACT_ASSERT_OPT_FAIL(...) \

 std::experimental::detail::test_contract_assert_imp(\

 std::experimental::contract_assert_mode::opt, false, \

 [&]{ (__VA_ARGS__); })

#else

#define TEST_CONTRACT_ASSERT_OPT_FAIL(...) (true)

#endif // CONTRACT_ASSERT_OPT_IS_ACTIVE

#define TEST_CONTRACT_ASSERT_DBG_PASS(...) \

 std::experimental::detail::test_contract_assert_imp(\

 std::experimental::contract_assert_mode::dbg, true, \

 [&]{ (__VA_ARGS__); })

#ifdef CONTRACT_ASSERT_DBG_IS_ACTIVE

#define TEST_CONTRACT_ASSERT_DBG_FAIL(...) \

 std::experimental::detail::test_contract_assert_imp(\

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 30 of 32

 std::experimental::contract_assert_mode::dbg, false, \

 [&]{ (__VA_ARGS__); })

#else

#define TEST_CONTRACT_ASSERT_DBG_FAIL(...) (true)

#endif // CONTRACT_ASSERT_DBG_IS_ACTIVE

#define TEST_CONTRACT_ASSERT_SAFE_PASS(...) \

 std::experimental::detail::test_contract_assert_imp(\

 std::experimental::contract_assert_mode::safe, true, \

 [&]{ (__VA_ARGS__); })

#ifdef CONTRACT_ASSERT_SAFE_IS_ACTIVE

#define TEST_CONTRACT_ASSERT_SAFE_FAIL(...) \

 std::experimental::detail::test_contract_assert_imp(\

 std::experimental::contract_assert_mode::safe, false, \

 [&]{ (__VA_ARGS__); })

#else

#define TEST_CONTRACT_ASSERT_SAFE_FAIL(...) (true)

#endif // CONTRACT_ASSERT_SAFE_IS_ACTIVE

#define TEST_CONTRACT_ASSERT_PASS(...) TEST_CONTRACT_ASSERT_DBG_PASS(__VA_ARGS__)

#define TEST_CONTRACT_ASSERT_FAIL(...) TEST_CONTRACT_ASSERT_DBG_FAIL(__VA_ARGS__)

namespace std {

namespace experimental {

namespace detail {

struct contract_error

{

 explicit contract_error(contract_assert_mode mode);

 contract_assert_mode mode;

};

[[noreturn]] void exception_handler(const contract_violation_info& info);

template <typename LAMBDA>

bool test_contract_assert_imp(contract_assert_mode mode,

 bool expect_pass,

 LAMBDA lambda)

{

 handle_contract_violation_guard guard{exception_handler};

 try

 {

 lambda();

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 31 of 32

 // The assert passed; return true if it was expected to pass.

 return expect_pass;

 }

 catch (const contract_error& error)

 {

 // The assert failed; return true if it was not expected to pass,

 // and the mode is correct.

 return error.mode == mode && !expect_pass;

 }

}

} // namespace detail

} // namespace experimental

} // namespace std

#endif // INCLUDED_CONTRACT_ASSERT

12.2.4 experimental/contract_assert_test.cpp

#include <experimental/contract_assert_test>

namespace std {

namespace experimental {

namespace detail {

contract_error::contract_error(contract_assert_mode mode)

: mode{mode}

{

}

[[noreturn]] void exception_handler(const contract_violation_info& info)

{

 throw contract_error(info.mode);

}

} // namespace detail

} // namespace experimental

} // namespace std

12.2.5 Simple test driver for experimental/contract_assert

#include <experimental/contract_assert>

#include <experimental/contract_assert_test>

#include <cstddef>

#include <iostream>

std::size_t other_strlen(const char *str)

{

 CONTRACT_ASSERT(str);

 std::size_t length = 0;

 while (*str) {

 ++length;

 ++str;

 }

N3997: Centralized Defensive-Programming Support for Narrow Contracts Page 32 of 32

 return length;

}

// simple testing macro for use with a naive test harness

#define MY_ASSERT(expression) \

do { if (!(expression)) { \

 std::cerr << "Testing failure on expression at (" << __LINE__ \

 << "): " << # expression << std::endl; \

 std::exit(EXIT_FAILURE); \

} } while (0)

int main()

{

 // Run some test test scenarios.

 MY_ASSERT(TEST_CONTRACT_ASSERT_PASS(other_strlen("a string")));

 MY_ASSERT(TEST_CONTRACT_ASSERT_FAIL(other_strlen(nullptr)));

 // If all things succeed, report success.

 return EXIT_SUCCESS;

}

13 References

[1] N2479 - Normative Language to Describe Value Copy Semantics

[2] N3344 - Toward a Standard C++ 'Date' Class

[3] N3248 - noexcept Prevents Library Validation

[4] N3279 - Conservative use of noexcept in the Library

[5] Bloomberg BDE Library, open-source distribution.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2479.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3344.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf
https://github.com/bloomberg/bde

