
Document No: WG21 N3956
Date: 2014-02-24
Project: Programming Language C++
References: WG21 N3371, SC22 N4836: ISO/IEC CD14882
Reply to: Barry Hedquist <beh@peren.com>
 INCITS/PL22.16 IR

ISO/IEC CD 14882, C++ 2014
Responses to National Body Comments

Attached is a complete set of the WG21 Responses to National Body Comments in response to
the SC22 Ballot for ISO/IEC CD 14882, Committee Draft of the revision of ISO/IEC
14882:2011, aka C++ 2014.

Document numbers referenced in the ballot comments (Nxxx) are WG21 documents unless
otherwise stated. All of the N numbered documents referenced in these responses can be found
at the following URL:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

The compilation of these responses represents the combined efforts of numerous individuals
representative to SC22/WG21, Heads of Delegations, officers and members of INCITS/PL22.16,
and WG21 Working Group Chairs. A special note of commendation to the following for their
efforts in getting this work accomplished:

Herb Sutter - WG21 Convener
William 'Mike Miller' - Core Working Group Chair
Alisdair Meredith - Library Working group Chair
Bjarne Stroustrup - Evolution Working Group Chair
Stefanus Du Toit - Project Editor
Steve Clamage - PL22.16 Chair

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 18

CH 1 all Ge The active issues on the issues lists (WG21 N3674,
N3682 and N3687) shall be addressed before the
standard becomes final.

 Accepted

CH 2 all Ge C++14 is intended to be a bugfix release with minor
new features.

Remove any new feature if it negatively affects the
quality of the standard.

Accepted
The optional and
dynarray features will be
moved from the Standard to
Technical Specifications.

CH 3 all Ge C++14 is intended to be a bug fix release with minor
new features.

Introduce no breaking changes for C++14.
This applies specifically to 30.3.1 (~thread()) and
30.6.8 (~future() for asyncs).This also applies to
constexpr nonconst member functions, but for this
case the CH NB support is not unanimous.

ACCEPTED with
MODIFICATIONS

The comments regarding
~thread and ~future were
accepted. There was no
consensus to change the
specification of constexpr
as suggested.

See paper N3776.

ES 1 Te N3674 still includes many unsolved core issues Solve all the issues identified in N3674. ACCEPTED with
MODIFICATIONS

Many issues have been
resolved. The unresolved
issues remain in the active
issues list for resolution in a
future revision of the
Standard.

ES 2 Te N3687 still includes many unsolved library issues Solve all the issues identified in N3687. ACCEPTED with
MODIFICATIONS

Many issues have been
resolved. The unresolved
issues remain in the active
issues list for resolution in a
future revision of the
Standard.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3776.pdf

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 18

NL1 te Reconsider adding digit separators, for example as
proposed in N3661.

 ACCEPTED

See paper N3781.

US 14 (library) ge Address open LWG Issues Appropriate action would include making changes
to the CD, identifying an issue as not requiring a
change to the CD, or deferring the issue to a later
point in time.

ACCEPTED

FI 14 [futures] te It is unfortunate that futures sometimes block in their
destructor and sometimes don’t. There have been
recommendations to move the futures when unsure,
and make sure get() is invoked before the destructor.
However, not having a certainly blocking-future in the
standard leads to proliferation of custom solutions to
the same problem. Similarly, the lack of a certainly-
non-blocking future leads to such proliferation.

It seems more future types should be added to
establish reasonable semantics. Note that we do
not support changing the return type of std::async
due to these issues – breaking std::async in any
way is harmful to users who already use it for what
it was designed, and don’t return the futures from it
so that there would be confusion about the
blocking.

ACCEPTED with
MODIFICATIONS

The behavior of ~future()
with std::async was
documented.

See paper N3776.

US 1 All Clauses ed/ge In lists of specifications, the use of anonymous bullets
makes it difficult (in correspondence and speech) to
refer to individual list items. Moreover, the longer the
list, the greater the opportunity to mistake the
structure, most especially in the presence of bullets in
sublists.

In all lists of bulleted items, provide a distinct
numbered or lettered identification in place of each
bullet. Because paragraphs are already numbered,
it seems best to use letters for top-level list items
within paragraphs and then to use Roman numerals
for any sublist items. (A few parts of the Standard
already do this.)

REJECTED

We believe this is, in
principle, a good suggestion,
but the scope of this change
makes it more appropriate to
explore the options for
enumeration of bullets in the
next revision to the
Standard, prior to the
issuance of a Committee
Draft.

US 15 All Library
Clauses

 ed/te Given the adoption of N3655, it is possible to
rephrase uses of the type traits throughout and thus
both simplify and clarify the text.

Replace each occurrence of the form
“cv typename typetrait<…>::type” or the form
“cv typetrait<…>::type” by
”cv typetrait_t<…>”.

ACCEPTED

US 4 1.9, 1.10 te Resolve CWG issues 1441, 1466, 1470 on
concurrency. (lower priority).

 ACCEPTED with
MODIFICATIONS

The Committee agreed to
address issues 1441 and
1466; issue 1470 was

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3781.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3776.pdf

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 18

categorized as being “not a
defect.” See N3910 and
N3914.

US 3 1.9,1.10 te The current standard accidentally and gratuitously
restricts signal handlers much more than was
originally intended. Conforming signal handlers
cannot even use local variables. They cannot use
atomic variables to avoid undefined behaviour as was
originally intended.

Correct misstatements, and clarify that atomic<T>
operations can be used to communicate with signal
handlers, and that objects last modified before a
signal handler was installed can be safely
examined in a signal handler, e.g. by adopting
N3633 or a refinement.

ACCEPTED
See paper N3910

US 5 1.10, 29.4,
29.6.5

 Te Resolve LWG issue 2075 on concurency. ACCEPTED

See paper N3927.

FI 1 1-16 te All Core issues with priorities zero or one up to and
including the Core Issues List published in the pre-
Chicago mailing shall be resolved

As viewed fit by the Core Working Group ACCEPTED

See Comment ES 1

US 2 1-16 Te/Ge The active issues identified in WG21 N3539, C++
Standard Core Language Active Issues, must be
addressed and appropriate action taken.

Appropriate action would include making changes
to the CD, identifying an issue as not requiring a
change to the CD, or deferring the issue to a later
point in time.

ACCEPTED

See Comment ES 1

US 6 2.14 Te Provide digit separators. See N3661. ACCEPTED

See paper N3781.

ES 3 2.14.2 Te Reconsider adding digit separators for integer
decimal literals.

Add digit separators for integer decimal literals as
specified in N3661. No counter-example has been
presented for integer octal literals.

ACCEPTED

See paper N3781.

ES 4 2.14.2 Te Add digit separators for integer binary literals. No interaction has been identified with digit
separators for binary literals

ACCEPTED

See paper N3781.

ES 5 2.14.2 Te Reconsider adding digit separators for integer octal
literals

Add digit separators for integer octal literals as
specified in N3661. No counter-example has been
presented for integer octal literals.

ACCEPTED

See paper N3781.

ES 6 2.14.2 Te Reconsider adding digit separator for integer
hexadecimal literals

A different solution can be evaluated for the
conflicting case of digit separators in hexadecimal
literals. This case could be solved by using a
different prefix to indicate the presence of digit

ACCEPTED

See paper N3781.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3910.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3914.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3910.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3927.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3781.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3781.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3781.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3781.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3781.pdf

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 18

separators.

ES 7 2.14.2 Table 6 Ed Header of last columns says:
“Octal or hexadecimal constant”
This does not include binary constants

Modify accordingly table header. ACCEPTED

GB 1 Line 40,
Page 28

2.14.5 Para 8 Te The string literal u8"À" (that is, u8"\u00c0") creates a
"const char[3]" initialized by { 0xc3, 0x80, 0 }.
However, "char" is not guaranteed to be able to
represent 0x80.

Change type of u8 string literals to unsigned char,
or require signed char to be able to represent 0x80.

ACCEPTED

See paper N3914

ES 8 3.7.4 Member operator delete[] may take a second
parameter indicating the size of the object to be
deallocated. However, global operator delete[] does
not support this variant.

Provide a global operator delete[] with an optional
size parameter along the lines of N3663.

ACCEPTED

See paper N3778.

GB 2 Line 8,
Page 78

4.1 Para 2 Te Reconsider resolution of core issue 616.
Under core issue 616, certain lvalue-to-rvalue
conversions on uninitialized objects of type unsigned
char provide an unspecified value with defined
behavior. That is extremely harmful for optimizers,
since they must distinguish between a specific
unspecified value (which would compare equal to
itself, after being copied into another variable) and a
fully-uninitialized value.

Further restrict loads of uninitialized unsigned char
such that the value can only be stored, and the
result of storing it is to make the destination contain
an indeterminate value.

ACCEPTED

See paper N3914.

ES 9 5.1.2 Te Closure objects are never literal types Consider allowing the generation of literal closure
objects.

REJECTED

There was no consensus for
the suggested change.

GB 3 Line 37,
Page 92

5.1.2 Para 11 Te The access of the non-static data member declared
for an init-capture is not specified.

Make the init-capture field unnamed, like other
captures.

ACCEPTED

GB 4 Line 21,
Page 111

5.3.4 Para 8 Te We are concerned that the change in N3664 may
change a small memory leak into a large one.
Consider
class P {
 int x;
};
class Q {

 ACCEPTED with
MODIFICATIONS

See paper N3914.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3914.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3778.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3914.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3914.html

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 5 of 18

public:
 Q(){ throw 42; }
private:
 int x[LARGE_NUMBER];
};

{
 P* p1 = new P();
 Q* q1 = new Q(); // bang :-(
 // don't get here
 delete q1;
 delete p1;
}
We fear, if the freedom of N3664 is exercised, that
this code block leaks a memory of size at least
sizeof(P) + sizeof(Q).
The C++11 code would only leak the allocation for p1,
of size closer to sizeof(P).
This could result in programs with an insignificant
memory leak becoming ones with a more serious
leak.

ES 10 7.6 Te [[deprecated]] attribute is missing from the CD. Apply N3394 to the CD. ACCEPTED

See paper N3760.

US 8 7.6 Te Paper N3394, "[[deprecated]] attribute," was intended
to be included in the CD, but it was unintentionally
omitted due to administrative issues.

Incorporate the changes from that paper for the
final draft.

ACCEPTED

See paper N3760.

US 10 8.3.4 1 te The next bullet item appears to the reference the
"Size of an object" limit in Annex B. However, in
many implementations, object size limits on the stack
are quite different from other object size limits, and
the limit is very dynamic (especially in the presence of
recursion). A check against an fixed (and arbitrary)
limit will only cover a subset of the size values that
are problematic. In total, we throw on:

Do not check at runtime whether the allocated array
would exceed the implementation-defined limit on
object size.

ACCEPTED with
MODIFICATIONS

The feature was moved from
the Standard to a Technical
Specification.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3760.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3760.html

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 6 of 18

 - negative values and zero (first bullet)

 - object sizes above the limit

We do not throw for:

 - object sizes which can be allocated successfully

 - object sizes which cannot be allocated successfully
on the stack, but are less than the object size limit

The second item creates significant unpredictability
for programmers. Existing VLA implementations for C
and C++ lack fully deterministic stack size checks.
Obtaining stack is fairly difficult in widely deployed
environments (both in terms of availability of the
metric and high-performance access to it). An exact
check against the dynamic limit is difficult to
implement, and would not even cover other causes of
stack overflow.

US 9 8.3.4 1 te The draft currently requires that if a runtime bound
evaluates to 0 at run-time, and exception is thrown.
This means that correct C99 code that is also well-
formed C++14 code, and has worked fine under the
widespread VLA extensions to C++, will fail at
runtime; affected code was encountered immediately
after the proposal was implemented in G++.

A check for negative values makes sense and can be
avoided by the programmer by using an unsigned
type for the expression. The check against 0 would
still be required by the current draft, and is not
required by typical VLA usage (because the code
deals correctly with this boundary case). It is also
surprising because operator new[] lacks such a
check.

This is a VERY CRITICAL ISSUE..

Allow an array of runtime bound that evaluates to 0
at run-time.

ACCEPTED with
MODIFICATIONS

The feature was moved from
the Standard to a Technical
Specification.

US 11 8.3.4
[dcl.array],
etc.

 ed Two distinct terms of art, bound and extent, are now
used to denote an array’s number of elements. For
both consistency and improved technical accuracy, a
single term of art should be adopted and used

Because extent is the user-visible term used in the
Library’s interface, its consistent use would avoid
breaking existing programs. See the wording
proposed in N3549.

REJECTED

The term “bound” is widely
used and understood and
provides a point of

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the IS
2 Type of comment: ge = general te = technical ed = editorial

Page 7 of 18

O/CS editing unit are identified by **)

throughout the standard. compatibility with C for
features shared by both
languages. There was no
consensus to make this
change.

CH 4 8.3.4,
23.3.4

 te VLAs without dynarray is giving wrong direction, and
dynarray without full allocator support is just wrong.

Add full allocator support to dynarray or remove
both, dynarray and VLAs completely.

ACCEPTED with
MODIFICATIONS

The feature will be moved
from the Standard to a
Technical Specification.

 CH 5 8.4.1 p8 te It’s unclear from the text that __func__ is allowed in
non function context lambda expressions, i.e.,
namespace level lambda expressions in initializers.

Specify that __func__ is allowed in such contexts. ACCEPTED

US 12 12.8 31 Te std::move inhibits copy elision, and so can be a
pessimization

Ignore calls to std::move, std::move_if_noexcept,
and casts to rvalue reference type when
determining whether copy elision is permitted

REJECTED

There was no consensus for
the suggested change.

US 13 12.8 32 Returning a local variable should always imply move
semantics.

In return statement, when the expression is the
name of a non-volatile automatic object, the
expression should be treated as an rvalue for
purposes of overload resolution, even if it does not
have the same cv-unqualified type as the function
return type.

ACCEPTED

CH 6 13.5.8 p8 ed float operator ""E(const char*);// OK should be float
operator ""E(const char*);// OK, but reserved
(17.6.4.3.5) [usrlit.suffix].

Change the example accordingly. ACCEPTED

FI 2 17-30 te All Library issues up to and including the Library
Issues List published in the pre-Chicago mailing shall
be resolved

As viewed fit by the Library Working Group ACCEPTED with
MODIFICATIONS

Many issues have been
resolved. The unresolved
issues remain in the active
issues list for resolution in a
future revision of the
Standard.

GB 5 Line 22,
Page 485

20.2.3 Para 1 Ed The wording describes example code including the
call of a move constructor, but there is no requirement
stated that T be move constructible.

We would like to add a new Para 1 before existing
paragraph:
 Requires: Type T shall be MoveConstructible

REJECTED

The requirements are

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 8 of 18

(Table 20) and MoveAssignable (Table 22).
However the MoveAssignable concept currently
does not cover cases where the source and
destination types may differ.

implicit, according to
17.5.1.4 paragraph 4.
Repeating them here would
be redundant.

ES 11 20.4.2.4 5-6 Te forward_as_tuple is not currently constexpr Make forward_as_tuple constexpr. ACCEPTED

CH 7 20.5.1 p2 ed The example uses the names “index_sequence” and
“make_index_sequence” whereas the following
sections define “integer_sequence” and
“make_integer_sequence”.

Change the names in the example accordingly. ACCEPTED with
MODIFICATIONS

The current wording is
correct. A clarifying note will
be added.

ES 12 20.6.4 Te Without operator != users need to evaluate
expressions like !(a==b) instead of (a!=b)

Add operator!= for optional<T> ACCEPTED with
MODIFICATIONS

The feature will be moved
from the Standard to a
Technical Specification.

US 16 20.9.1.3 te Resolve LWG issue 2118 on unique_ptr. ACCEPTED with
MODIFICATIONS

The issue remains open on
the active issues list for
resolution in a future revision
of the Standard.

ES 13 20.10.11.2 Te Polymorphic function wrappers do not take move-only
callable types in their constructor.

Provide a mechanism to pass move-only callable
types to polymorphic function wrappers.

REJECTED

There was no consensus to
add this new feature at this
time.

US 17 20.10.11.2
&
30.6.9

 te Provide a way to pass a packaged_task<T()> to a
function accepting function<void()> or another type-
erasing callable-wrapper.

This is important for concurrency constructs where we
need to pass tasks between threads using queues.
These queues must store a type general enough to
represent any task, which includes a task for filling in
a future<>. However, function<> currently doesn't
accept move-only types like packaged_task<>, so it's
not sufficient for the value-type of these queues.

Either change function<> to accept move-only
callable types, probably by refcounting the callable,
or provide a separate class to turn a move-only
callable into a copyable callable.

REJECTED

There was no consensus to
add this new feature at this
time.

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 9 of 18

US 18 20.11.4.3
[meta.unary.
prop]

¶ 6 te/ed The trait is_constructible<T, Args...> is defined in
terms of a helper template, create<>, that is identical
to std::declval<> except for the latter’s noexcept
clause.

If the absence of noexcept is critical to this
definition, insert a Note of explanation; otherwise,
excise create<> and reformulate in terms of
declval<> the definition of is_constructible.

ACCEPTED

US 19 21.2.3 te Resolve LWG issue 2232 Proposed Change: Add constexpr to char_traits
functions. As a second- best option, resolve LWG
issue 2013 to allow libraries to do this as an
extension.

REJECTED

There was no consensus for
this change. Concerns were
expressed regarding efficient
portable implementation.

ES 14 21.2.3.1,
21.2.3.2,
21.2.3.3,
21.2.3.4

 Te The following functions are not constexpr in
char_traits specializations for char, char16_t,
char32_t, and wchar_t:
compare()
length()
find()
However, with the addition N3652 a recursive
implementation is not needed. Thus they can be
easily and efficiently made constexpr.

Make those functions constexpr for the mentioned
specializations.

REJECTED

There was no consensus for
this change. Concerns were
expressed regarding efficient
portable implementation.

GB 6 Line 17,
Page 689

22.4.1 Ed 17.5.2.3 [objects.within.classes] defines the use of
"exposition only" in the library:
 The declarations for such member objects and the
definitions of related member types are followed by a
comment that ends with exposition only,
22.4.1 [category.ctype] has members which are
preceded (not followed) by a comment ending
"exposition only".
and 28.12.1 [re.regiter] and 28.12.2 [re.tokiter]

Reformat to follow 17.25.2.3 REJECTED

The use of “exposition only”
in [category.ctype] applies to
constants, not members, and
the members themselves are
explicitly not exposition-only
members. Therefore, the
formatting rules laid out in
[objects.within.classes] do
not apply in this case.

GB 7 Line 34,
Page 732

23.2.1 Para 4 Ed Table 98 refers to a and b without defining them.
Obviously they are the same as in Tables 96 and 97
but paragraph 23.2.1 / 4 fails to mention Table 98.

Add Table 98 to the scope of paragraph 23.2.1 / 4:
In Tables 96, 97 and 98, X denotes ...

ACCEPTED

ES 15 23.2.4 8 Ed Terminology for table 102 states that “u denotes an
identifier”, yet u is not further referred to.

Delete “,u denotes an identifier”. ACCEPTED

ES 16 23.2.4 8 Te The condition “X::key_compare::is_transparent exists”
does not specify that the type be publicly accessible.

Consider the public accessibility of
X::key_compare::is_transparent and whether its

ACCEPTED

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB ody / NC = National Committee (enter the IS ents from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 10 of 18

 = Member b O 3166 two-letter country code, e.g. CN for China; comm

potential inaccesibility should be banned for a
compliant key_compare type.

GB 8 Line 11,
Page 770

23.3.4 Te The current spec for std::dynarray is contradictory
and broken, these open issues should be addressed:
 - LWG 2253
 - LWG 2254
 - LWG 2255
 - LWG 2264

See related LWG issues at
http://cplusplus.github.io/LWG/lwg-active.html

ACCEPTED with
MODIFICATIONS

The feature will be moved
from the Standard to a
Technical Specification.

ES 17 23.4.4.5,
23.4.5.4

 Te Sections are redundant with general associative
container requirements at 23.2.4, table 102.

Delete sections. ACCEPTED

ES 18 24.4 Te Current standard stream does not provide a
mechanism for synchronized I/O

Provide a simple mechanism for performing
synchronized I/O in multithreaded environments.

See N3678

REJECTED

There was no consensus for
this change.

US 20 Clause 26
[numerics]

 ed/te The Bristol meeting postponed consideration of
N3648 because it was assumed that, if adopted, the
proposal could be issued in some future Technical
Specification. However, N3648 proposes to merge
ISO/IEC 29124 into C++14, and it is unclear whether
this would even be possible in a TS. Further, such
merger is time-sensitive, since ISO/IEC 29124 will be
up for review in 2015 and, if merged into C++14, can
be retired (“withdrawn”) at that time.

Review and adopt for C++14 the proposal in N3648
(or in a successor document, if any).

REJECTED

There was no consensus for
this change.

CH 8 26.4 te Specify user-defined literals for standard complex
types.

Accept ISO/IEC JTC1 SC22 WG21 N3660 with the
modification to use operator""if for complex.

ACCEPTED

See paper N3779.

US 22

 27.4.1 4 Te Enable standard stream synchronization. See N3535, N3665, N3678 REJECTED

There was no consensus for
this change.

GB 9 Line 14,
Page
1086

27.9.2 Table 134 Te C11 no longer defines the dangerous gets() function.
Even if we still refer to C99, which includes gets(), it
would be preferable to strike std::gets() from <cstdio>

- Remove gets from Table 134 and Table 153.
- Add a note to [c.files] saying the C function gets()
is not part of C++
- Add the removal of gets to Annex C.3.

ACCEPTED

GB 10 Line 14,
Page

28.7 Para 12 Te The current wording is totally broken. Even if the
whole proposed resolution at http://www.open-

Accept the proposed resolution. ACCEPTED

http://cplusplus.github.io/LWG/lwg-active.html#2253
http://cplusplus.github.io/LWG/lwg-active.html#2254
http://cplusplus.github.io/LWG/lwg-active.html#2255
http://cplusplus.github.io/LWG/lwg-active.html#2264
http://cplusplus.github.io/LWG/lwg-active.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3779.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2018

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the IS ents from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 11 of 18

O 3166 two-letter country code, e.g. CN for China; comm

1103 std.org/jtc1/sc22/wg21/docs/lwg-active.html#2018
isn't accepted the "bitwise or" part must be fixed.

GB 11 Line 4,
Page
1128;
Line 12,
Page
1131

28.12 Para 1 and 2 Ed 17.5.2.3 [objects.within.classes] defines the use of
"exposition only" in the library:
 The declarations for such member objects and the
definitions of related member types are followed by a
comment that ends with exposition only,
28.12.1 [re.regiter] and 28.12.2 [re.tokiter] have
members which are preceded (not followed) by a
comment ending "exposition only".

Reformat to follow 17.25.2.3 ACCEPTED

US 23 29 Te Resolve LWG issues 2130, 2138, 2159, 2165 on
atomics.

 ACCEPTED

Library issue 2165 is
addressed by core language
issue 1778.

US 27 30 Te Resolve LWG issues 2080, 2097, 2100, 2104, 2120,
2135, 2142, 2185, 2186, 2190 on threads.

Accepted ACCEPTED

US 28 30 Te Resolve LWG issues 2095, 2098, 2140, 2202 on
threads. (lower priority)

 ACCEPTED with
MODIFICATIONS

Issues 2098 and 2140 have
been addressed. The other
two issues have been left
open for possible future
action.

ES 19 30.3.1.3 Te std::thread destructor calls terminate() if the thread
has not been joined. Changing this behaviour is
unacceptable for existing code.

A different compatible class or wrapper should be
provided to support RAII pattern and joining on
destruction.

ACCEPTED with
MODIFICATIONS

The Committee agreed not
to change the referenced
behavior, but there was no
consensus for introducing an
RAII wrapper.

US 25

 30.3.1.3 te (Small defect) It is a defect that the thread destructor
calls terminate() if the thread has not been joined.
Thread is an RAII type and if the user is required to
explicitly call .join() or similar in all cases if it has not
been called already, this should be done

A resolution along the lines of that proposed in
paper WG21/N3636 or similar would be acceptable.

REJECTED

There was no consensus for
this change.

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2018

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 12 of 18

automatically.

US 24 30.6 te (Severe defect) Like iterators, futures are essential
vocabulary types whose major benefit is to permit
composability between various providers (containers,
async launchers) and consumers (algorithms, async
consumers). To be usable as such, they must work
predictably.

It is a serious defect that ~future and ~shared_future
might block unpredictably, depending only on whether
the provider was launched with std::async. In all
cases in the standard except where the provider is
launched with std::async, ~future does not block; if it
is launched with std::async, it may block.

We understand there are desirable reasons to block
(such as to achieve structured resource lifetime
control) and not block (such as to achieve responsive
nonblocking concurrency), but this decision should be
up to each consumer of a given future to select
explicitly, not baked inscrutably into an unpredictably
dual-mode single future object whose consumer
cannot select the appropriate behavior and
furthermore the current workarounds to do so are
effectively unusable.

Futures may or may not block in their destructor,
depending on how they were created. Many clients
must rely on one behavior or the other, making it
impossible to use futures as the general
communication mechanism they would like to be.

A resolution along the lines of that proposed in
paper WG21/N3637 or similar would be acceptable.

ACCEPTED

See paper N3776.

GB 12 Line 4,
Page
1198

30.6.6 Para 9 Te Make it explicit that ~future and ~shared_future may
block if the future originates from std::async.

Add notes to 30.6.6p9, 30.6.6p10, 30.6.7p11,
30.6.7p12 and 30.6.7p14 after the "releases any
shared state" part of the effects saying
 "[Note: If this is the last reference to the shared
state from a call to std::async with a policy of
std::launch::async, then this will wait for the async
task to complete (30.6.8p5) —End Note]"
Add a note to the first bullet of 30.6.4p5:
"[Note: this may cause the function that released

ACCEPTED

See paper N3776.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3776.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3776.pdf

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 13 of 18

the shared state to block if this is the last reference
to the shared state from a call to std::async with a
policy of std::launch::async (30.6.8p5) —End Note]"

US 26 30.6.8 Te Deprecate std::async due to the inability to reconcile
the blocking semantics of the destructor of the
returned values with the growing expected semantics
of std::future's destruction. The problems of this
inconsistency are outlined in N3630, but the solutions
there didn't work. Another solution was proposed in
N3637 which also did not satisfy people. Thus, we
request to simply deprecate the problematic feature
without changing any behavior in the library, and pave
a path forward with new functionality that addresses
these concerns.

Mark std::async as deprecated to help discourage
its use and to reconcile the necessity of advising
programmers to never pass or return the std::future
received from std::async across an interface
boundary.

Change either 3.6.6p9 to specify that the std::future
destructor does not block except when the value is
one returned by the deprecated std::async function
(or change 3.6.4p5 to specify the equivalent in
terms of the shared state).

ACCEPTED with
MODIFICATIONS

The behavior of ~future()
with std::async was
documented.

See paper N3776.

FI 15 [basic.life] paragraph 7 te See
https://groups.google.com/a/isocpp.org/d/msg/std-
proposals/93ebFsxCjvQ/myxPG6o_9pkJ
It seems that the restrictions of class types with
reference members potentially cause a very hard
implementation problem. It’s palatable to re-fetch
pointers and references, but how does one “refresh” a
named reference to storage that was destroyed and
re-initialized with placement new?
In Ivchenkov’s example, is it sufficient to destroy the
storage_ union and re-initialize the whole union,
instead of just its value member?

Clarify what poor programmers need to do if they
want to destroy+placement-new-initialize an object
of class type, avoiding problems with reference
members. Alternatively, consider the solutions
presented by Ivchenkov. Our preference leans
towards the direction of solutions 5 and 6.

REJECTED

The Committee did not feel
that this issue could be
safely resolved in time for
this revision of the Standard.
However, it remains open for
resolution in a future revision
of the Standard.

 FI 6 [class.ctor] paragraph 8 te In a function returning void, "return E;" where E is of
type void is permitted. In contrast, for constructors
and destructors, this is not allowed, which is an
arbitrary restriction for a corner case.

Remove the prohibition for "return E;" where E is of
type void in constructors and destructors.

REJECTED

There was no consensus for
the suggested change.

CH 9 D.7 te strstream is dangerous to use and the interface does
not fulfill current library requirements.

Delete D.7 from the standard.
The CH NB is aware that this proposed change
conflicts with the comment to not introduce any
breaking changes. So the CH NB support for this
comment is not unanimous.

REJECTED

There was no consensus to
remove this feature at this
time.

FI 13 [dcl.attr.gram
mar]

 te It seems that a [deprecated] attribute fell between the
cracks in the EWG->CWG workflow.

Flush the pipeline and add the [deprecated]
attribute as proposed in N3394.

ACCEPTED

See paper N3760.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3776.pdf
https://groups.google.com/a/isocpp.org/d/msg/std-proposals/93ebFsxCjvQ/myxPG6o_9pkJ
https://groups.google.com/a/isocpp.org/d/msg/std-proposals/93ebFsxCjvQ/myxPG6o_9pkJ
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3760.html

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 14 of 18

FI 3 [dcl.spec.auto

]
paragraph 6 te As proposed in N3681, an auto specifier should not

result in an initializer_list when used with a braced-
init-list.

Adopt the solution proposed in N3681, make auto
not deduce an initializer_list from a braced-init-list
of a single element, make auto with a braced-init-
list of multiple elements ill-formed

REJECTED

There was no consensus for
the suggested change.

FI 4 [dcl.spec.auto
]

paragraph 2 te Function return type deduction also covers
conversion functions, that is "operator auto". This is
undesirable, because the whole point of a conversion
function is to have an explicit (not implicitly deduced)
return type. Also, only a single "operator auto"
conversion function can exist in a class, limiting its
utility.

Exclude conversion functions from return type
deduction. Strike conversion-function-id from
paragraph 2.

REJECTED

There was no consensus for
the suggested change. The
corresponding core
language issue, 1670,
remains open to clarify the
handling or reconsider the
decision in a future revision
of the Standard.

FI 5 [dcl.spec.auto
]

paragraph 2 te Function return type deduction avoids the need to
repeat the function body to specify the return type in
function templates, e.g. the "-> decltype(x1+x2)"
below is redundant:
 template<class T>
 auto f(T x1, T x2) -> decltype(x1+x2) { return x1+x2;
}
However, that syntax does not cover exception
specifications, again necessitating to repeat the
function body:
 template<class T>
 auto f(T x1, T x2) noexcept(noexcept(x1+x2)) {
return x1+x2; }
The specification machinery is readily available with
core issue 1351, and the concerns about instantiating
definitions to determine properties of the declaration
have already been addressed with the introduction of
function return type deduction.

Reconsider noexcept(auto), or extend the meaning
of "auto" return types to cause exception
specification deduction, or find another syntactic
means to express deduction of exception
specifications.

REJECTED

There was no consensus for
the suggested change at this
time, but there was interest
in exploring the possibility for
a future revision.

FI 8 [expr.prim.la
mbda]

 te A closure object is not of a literal type, the function
call operator of a closure object type is not ever
constexpr. These restrictions mean that lambdas

Allow lambdas to be used in constant expressions,
if the captures of the lambda are of literal type, and
if the call operator of the closure object type fulfils

REJECTED

There was no consensus for
the suggested change.

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 15 of 18

cannot be used in constant expression. It seems
unfortunate that lambdas and constant expressions
do not work together. One of the benefits of relaxing
the restrictions of constant expressions was that that
relaxation allows writing template code that can be
constexpr but is not sub-optimal at run-time and vice
versa. It would seem reasonable to allow lambdas to
be used in such code.

the requirements for a constant expression
otherwise.

FI 9 [optional.relo
ps]

 te It is unacceptable that optional doesn’t have an
operator!=.

Define operator!= as the negation of operator== ACCEPTED with
MODIFICATIONS

The feature will be moved
from the Standard to a
Technical Specification.

FI 10 [optional.relo
ps]

 te It is unacceptable that optional doesn’t have
operator>, operator<= etc. relational operators in
addition to operator<.

Define relational operators as they are defined for
tuple and containers. In addition, adopt FI 7 to add
a specialization of std::less for optional<T*>.

ACCEPTED with
MODIFICATIONS

The feature will be moved
from the Standard to a
Technical Specification.

FI 7 [pairs.spec],
[tuple.special]
,
[container.req
uirements.ge
neral],
[comparisons
]

 te std::less is specialized for pointer types so that it
yields a total ordering. It seems that utility classes and
containers in the library fail to establish the same total
ordering, so eg. tuple<T*> or pair<T*, U*> or
vector<T*> will not have a guaranteed total ordering,
since there’s no std::less specialization for them and
the default std::less will invoke operator< which will
use the operator< of the underlying type, hence failing
to establish a total ordering.

Specialize std::less for pair, tuple, optional and
containers for pointer types.

REJECTED

There was no consensus for
this change at this time.

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 16 of 18

FI 16 [support.dyna
mic]

paragraph 1 te According to N3396, “In this example, not only is an
implementation of C++11 not required to allocate
properly-aligned memory for the array, for practical
purposes it is very nearly required to do the allocation
incorrectly; in any event, it is certainly required to
perform the allocation by a process that does not take
the specified alignment value into account.

This represents a hole in the support for alignment in
the language, which really needs to be filled.”

Adopt the solution in N3396. REJECTED

There was no consensus for
this change.

FI 12 [temp.func.or
der]

 te In [c++std-ext-14217], Andrew Sutton writes:
If I have two functions:

template<typename... Args> void f() { } // #1
template<typename T, typename U> void f() { } // #2

Should overload resolution be able to distinguish
these? What I want is this:

f<int, int>() // Calls #2
f<char>() // Calls #1
f<int, char, float>() // Calls #1

What I get is, "no matching function" (using an older
revision of GCC-4.8). I haven't thoroughly searched
the standard for an answer, but I suspect the answer
will also be "no".
If those are template parameters reflect function
parameters, then the overloads can be distinguished.

template<typename... Args> void f(Args...);
template<typename T, typename U> void f(T, U);

It seems like this fact could be extended to non-

Make non-deduced function templates with pack
arguments less viable than function templates
without packs, that is, partially order currently
equal/ambiguous candidates so that a pack is a
worse match than no pack.

REJECTED

There was no consensus for
a change in this revision of
the Standard, but the idea is
not ruled out for a future
revision.

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 17 of 18

deduced arguments as well. Just curious.

The question/proposal would seemingly allow
metaprogramming techniques that, in conjunction with
decltype, allow extracting types from packs without
having to resort to traits-like classes with nested
typedefs.

FI 11 [thread.threa
d.destr]

paragraph 1 te It is most unfortunate that there is no RAII thread type
in the standard. The lack of it leads to proliferation of
custom solutions.

We do not support modifying ~thread to join; it has
shipped in C++11, and people rely on the
terminate() in it. It would be better to introduce a
thread_guard that joins the underlying thread
automatically upon destruction of the guard.

REJECTED

There was no consensus for
introducing an RAII thread
type.

US 7 3.7, 5.3, 12.5,
17.6, 18.6,
Annex C

 te Enable sized deallocation. See N3663 ACCEPTED

See paper N3778.

US 21 26.5 [rand],
Annex D
[depr], etc.

 te The Bristol meeting postponed consideration of
N3647 because it was assumed that, if adopted, the
proposal could be issued in some future Technical
Specification. However, N3647 proposes some
deprecations, and it is unclear what it would mean to
issue any deprecation in TS form.

Review and adopt for C++14 at least the
deprecations proposed by N3647 (or by a
successor document, if any). Preferably adopt the
entire document, as its proposals are intertwined.

ACCEPTED with
MODIFICATIONS

The deprecations will be
added to the Standard.

H:\cc51\Public\SC 22 Project\4850\ISO_IEC 14882_2011_PDAM 1_BSI.doc: Collation successful
H:\cc51\Public\SC 22 Project\4850\ISO_IEC 14882_2011_PDAM 1_NEN.doc: Collation successful
H:\cc51\Public\SC 22 Project\4850\ISO_IEC 14882_2011_PDAM 1_SFS.doc: Collation successful
H:\cc51\Public\SC 22 Project\4850\ISO_IEC 14882_2011_PDAM 1_SNV.doc: Collation successful
H:\cc51\Public\SC 22 Project\4850\ISO_IEC 14882_2011_PDAM 1_ANSI.doc: Collation successful
H:\cc51\Public\SC 22 Project\4850\ISO_IEC 14882_2011_PDAM 1_AENOR.doc: Collation successful
Collation of files was successful. Number of collated files : 6
SELECTED (number of files): 6 .
FILES IN THIS GROUP(number of files): 6.
PASSED TEST (number of files): 6.
FAILED TEST (number of files): 0.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3778.html

Template for comments and secretariat observations Date:2014-02-23 Document: WG21 N3956 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 18 of 18

