
Document number: N3951
Date: 2014-02-07
Project: Programming Language C++, SG7, Re�ection
Reply-to: Cleiton Santoia Silva <cleitonsantoia@gmail.com> and Daniel Auresco <auresco@gmail.com>

C++ type re�ection via variadic template expansion

Cleiton Santoia Silva and Daniel Auresco

Abstract

From a type T, gather member name and member type information, via variadic template expansion.

Contents

1 Introduction 2

1.1 Keywords . 2
1.2 Simple Sample Code . 2

2 Motivation and Scope 3

3 Impact on standard 3

4 Design Decisions 3

4.1 Initial considerations . 3
4.2 More code . 5
4.3 More considerations . 9

4.3.1 What T can be in typedef<T>...: . 9
4.3.2 Returns of typedef<T>...: . 12
4.3.3 Returns of typename<T>...: . 13

5 Out of proposal important topics 14

6 More complete class use case 15

6.1 Full case . 15
6.2 Weird idioms for serialization . 17

1

1 Introduction

1.1 Keywords

From a type T, obtain static typed re�ection adding 2 language constructs:

1. An instruction typename<T>... that expands members identi�ers of type T into a variadic template. Each
type of n-th element of typename<T>... is a const char* and each n-th value is the identi�er of n-th member
of T, expressed in UTF-8 encoded;

2. An instruction typedef<T>... that expands members of type T into a variadic template (in the same order
of typename<T>...). Each n-th type of typedef<T>... is the type of the n-th member of T and each n-th
value is a pointer to n-th member of T, or a value if member is a constexpr member or enum item;

1.2 Simple Sample Code

1. Given:

using namespace std ;
namespace some_namespace {
struct some_struct {
int x , y ;

} ;
}
vector<s t r i ng> names{ typename<some_namespace : : some_struct > . . . } ;
auto mytuple = make_tuple (typedef<some_namespace : : some_struct > . . .) ;

2. Compiler will turn the last two lines into this:

vector<s t r i ng> names { "some_namespace : : some_struct " , "x" , "y" } ;
auto mytuple = make_tuple (

(some_namespace : : some_struct ∗) nu l lp t r ,
&some_struct : : x ,
&some_struct : : y) ;

3. What it's not:

• we don't need no new keywords

• we don't need no AST control

• no magic namespaces or runtime structures

• all we need by now just another keyword syntax

• some type traits are welcome, but we are not trying to standardize them now

4. That's it.

2

2 Motivation and Scope

The use cases session of [Spe12, N3403] sums this:

• Serialization

• Parallel hierarchies

• Delegates

• Getter/Setter generation

• Generating user interfaces to call functions and constructors

Adding motivation scope from [SC13, N3814]:

• Generation of common functions

• Type transformations

• Compile-time context information

• Enumeration of other entities

Except �Compile-time context information� we can get all of above

3 Impact on standard

1. This is a proposal of static-compile-time-re�ection, totally strongly typed, all work made by compiler using
variadic template expansion language feature;

2. typename<T>... and typedef<T>... will be new ways to use existing keywords, that are not used today, only
typename type and typedef type id are used in C++11;

3. The use of ellipsis here helps to indicate a variadic expansion.

4 Design Decisions

4.1 Initial considerations

1. Clearly, nobody expects to get full power of re�ection just by using new feature in its raw form. Some type
traits is_virtual_base<> see [Spe09, N2965] or is_protected<> or is_inline<> are welcome. Same about
libraries, like std::tuple and BOOST META libraries or future lib of run time structures, possibly some
std::class_info and std:member_info things. Again, it doesn't mean they are not useful, surely they are
and surely they must be standardized as well, but since they are not needed by now, and there is no �current
practice� of C++ introspection, we just didn't give this step yet;

2. An important performance requirement from [Spe12, N3403]: the size of variadic parameter list may be huge,
so we present some expected minimum limits your compiler should handle about classes taken from Annex B
from [ISO13][N3690]

• Data members in a single class [16 384].

• Enumeration constants in a single enumeration [4 096].

• Levels of nested class de�nitions in a single member-speci�cation [256].

• Direct and indirect base classes [16 384].

• Direct base classes for a single class [1 024].

• Members declared in a single class [4 096].

• Final overriding virtual functions in a class, accessible or not [16 384].

3

• Direct and indirect virtual bases of a class [1 024].

• Static members of a class [1 024].

Now, some template limits

• Template arguments in a template declaration [1 024].

• Recursively nested template instantiations, including substitution during template argument deduction
(14.8.2) [1 024].

It doesn't mention directly variadic template parameter expansion but, anyway, one can see a big di�erence,
even if these are �minimum� and in practice we succeeded in compile variadic templates up to 32K parameters on
GCC 4.8.1, would be nice if we had a way of picking from typename<T>... and typedef<T>... what is needed
and skip unnecessary things. We considered an instruction typename<T requires U>... and typedef<T

requires U>... where U is a boolean constexpr like a �concept� that will be applied to each element of T,
to choose if it will be retrieved or not. This way, we really hope to solve the problem hijacking keywords and
semantics from �concepts� without need for another new reserved word.

3. In e�ort to recurrently and orthogonally apply typedef<T>... in wherever item that typedef<T>... returns,
in this document, we reach a point to dig a bit down in some aspects that may be a postponed or ripped o�,
like introspecting functions,constructors, templates and namespaces, but anyway it's better bring these ideas
to appreciation and critique then just skipped and hidden because they are �too problematic�.

4. About typename<T>...

• Encoding should be utf-8, but remember: utf-8 != ASCII, only chars in range 0x00-0x7f are equal (the
most common C++ ones in english language), utf-8 may expands to 16, 24 and 32bits; see annex E
[charname.allowed] [ISO13, N3690]

• The type of template parameters as const char* may lead to few issues, one important is that parameter
value of this kind of template must have extern linkage �compiler magic string� is the technical proper
name of it, so the names of types and member must be that way;

• Type names must be fully quali�ed, expanding all namespaces to avoid ambiguity if you will create a map
of classes by name. see �simple member function case� code sample 5;

• Member names may not be quali�ed, we don't see the need for full namespaces into each member, that you
already knows what class it belongs to, when you call typename<T>... see code sample �simple member
function case� 5 and see code sample 6 �More complete class use case�;

5. Basically we propose to gather everything from a type, not only members, but base classes, internal classes,
typedefs enums and constant values, it appear to be a mess (may be it is), calling it brings everything in one
shot and then, you pick what you need or by using typedef<T requires U>... explained above on item 2
or using something like Boost::MPL filter_view<s, pred> where pred is some type trait. Otherwise we may
need many keywords, one for base classes, another for members, another for inner classes etc, even if those are
type traits, all of that must return a variadic expansion, its not the intended way of using type traits today
that is: single response, either a boolean for �is...something� traits or a type sanitizer like �remove_cv�;

6. IMHO, comparing to other related documents:

(a) Variadic templates includes all of [TK13, N3815] functionality that enumerate �enums�, and their names,
but in a di�erent way;

• It avoids out-of-bounds problems that enumerators have;
• It gets enum and other types in a same �standard� way;
• A drawback is that template expansion may be huge;

(b) Here we got same basic idea of [Krz13, N3326], but few relevant di�erences, the major is: this is statically
resolved, without the need (or the possibility) of an instance of object to get a re�ection, and no
namespaces needed either. However, you can easily use member pointers returned by typedef<T>... to
get those information, once you have an object instance;

(c) This proposal includes all of [Spe09, N2965] functionality, but;

4

• [Spe09, N2965] has way of get base classes from a class, this feature is clearly easier than what we
are proposing here, but, we steak to the idea to standardize the same �method� for base classes and
other things;

• We did not addressed directly how we get information if a base class is virtual or protected or public,
etc. It would be better to use type traits like new is_virtual_base<> and is_protected_base<>

and so on;

(d) About �From a struct to a struct of arrays� topic in ISOCPP re�ection forums, really interesting idea, we
think that a Boost::MPL filter_view<s, pred> where pred is is_member_object<> can be used to pick
only object members from typedef<T>... and implement a tuple-like class that permit some �empty�
columns for skipped members, to make an struct of arrays or vectors. Passing the barrier of introspection
and making this a �really� re�ection case;

(e) Almost nothing of [BCAS12, N3410] dynamic approach you will �nd here, this is completely di�erent;

7. We think it's important talk about this: We are NOT proposing any kind of run-time structure for deal with
data, let us consider, a replacement for our variadic expansion, a struct like:

template <typename _CharT , typename _MemberT>
struct reflect_member {
typedef _Char id_char_type ;
typedef _MemberT member_type ;

id_char_type i d e n t i f i e r ;
member_type member_ptr ;
} ;

That allows good things like easy-to-use variadic locked expansion, of each member type information together
with member name, but that will impose compiler magic to �ll this particular structure, so all vendors must �
deal with it�.We don't think that's a good idea, so we really prefer not impose any kind of structure and left
vendors choose their own, if it's necessary;

4.2 More code

We used this code fragment in every sample to make code shorter.

Listing 1: Check macro

#include <st r ing>
#include <tuple>
#include <vector>
#include <type_tra i t s>
#include <as s e r t . h>

#define CHECK(expected_ , index_ , tuple_) \
s t a t i c_a s s e r t (std : : is_same<expected_ , \
std : : tuple_element<index_ , dec l type (tuple_)> \
: : type >: : value , "Problem ?")

using namespace std ;

Listing 2: Simple struct use case

namespace space {
struct some_struct {
int count ;
char de l im i t e r ;

} ;

void r e f l e c t_check_st ruc t () {
auto mytuple = make_tuple (typedef<some_struct > . . .) ;

5

CHECK(some_struct ∗ , 0 , mytuple) ;
CHECK(int some_struct : : ∗ , 1 , mytuple) ;
CHECK(char some_struct : : ∗ , 2 , mytuple) ;

vector<s t r i ng> names{ typename<some_struct > . . . } ;

a s s e r t (names [0] == " space : : some_struct ") ;
a s s e r t (names [1] == "count") ;
a s s e r t (names [2] == " de l im i t e r ") ;

}
}

Listing 3: Simple enum case

namespace space {
enum Y : unsigned {
A = 10 ,
B = 88
} ;

enum class Z : int {
A = 33 ,
B = 34
} ;

void reflect_check_enum () {
auto mytupleY = make_tuple (typedef<Y> . . .) ;

CHECK(Y∗ , 0 , mytupleY) ;
CHECK(unsigned , 1 , mytupleY) ;
CHECK(unsigned , 2 , mytupleY) ;

a s s e r t (nu l l p t r == std : : get <0>(mytupleY)) ;
a s s e r t (10 == std : : get <1>(mytupleY)) ;
a s s e r t (88 == std : : get <2>(mytupleY)) ;

vector<s t r i ng> namesY{ typename<Y> . . . } ;

a s s e r t (namesY [0] == " space : :Y") ;
a s s e r t (namesY [1] == " : :A") ; // A i s g l oba l
a s s e r t (namesY [2] == " : : B") ; // B i s g l oba l

auto mytupleZ = make_tuple (typedef<Z> . . .) ;

CHECK(Z∗ , 0 , mytupleZ) ;
CHECK(int , 1 , mytupleZ) ;
CHECK(int , 2 , mytupleZ) ;

a s s e r t (nu l l p t r == std : : get <0>(mytupleZ)) ;
a s s e r t (33 == std : : get <1>(mytupleZ)) ;
a s s e r t (34 == std : : get <2>(mytupleZ)) ;

vector<s t r i ng> namesZ{ typename<Z> . . . } ;

a s s e r t (namesZ [0] == " space : : Z") ;
a s s e r t (namesZ [1] == "A") ; // A i s l o c a l
a s s e r t (namesZ [2] == "B") ; // B i s l o c a l

}

6

}

Listing 4: Simple function type use case

int foo_int (int va l) {
return va l + 1 ;

}

void re f l ect_check_fun () {
auto mytuple = make_tuple (typedef<foo_int > . . .) ;

CHECK(int ∗ , 0 , mytuple) ;
CHECK(int ∗ , 1 , mytuple) ;

vector<s t r i ng> names{ typename<foo_int > . . . } ;

a s s e r t (names [0] == " : : foo_int ") ;
a s s e r t (names [1] == " va l ") ;

}

Listing 5: Simple member function use case

struct X {
int foo_int (int va l) const {

return va l + 1 ;
}

} ;

struct W : X {
stat ic f loat f oo_f l oa t (int h) {
return h ∗ h ;

}
} ;

void reflect_check_mem_fun () {
auto mytuple = make_tuple (typedef<X: : foo_int > . . .) ;

CHECK(int ∗ , 0 , mytuple) ;
// we need to get the cons tne s s and the func t i on o f member
CHECK(const X∗ , 1 , mytuple) ;
CHECK(int ∗ , 2 , mytuple) ;

s td : : vector<std : : s t r i ng> names{ typename<X: : foo_int > . . . } ;

// name o f func t i on comes in po s i t i o n 0
a s s e r t (names [0] == "X: : foo_int ") ;
// s i n c e i t i s a member funct ion , we should put the c l a s s that i t be longs
// somewhere , commonly under−the−hood , compi l e r s pas s e s ' t h i s ' po in t e r as
// f i r s t parameter to non−s t a t i c member f unc t i on s .
a s s e r t (names [1] == " t h i s ") ;
a s s e r t (names [2] == " va l ") ;

// get foo_int from W, in s t ead o f X
auto mytuple = make_tuple (typedef<W: : foo_int > . . .) ;

CHECK(int ∗ , 0 , mytuple2) ;
CHECK(const X∗ , 1 , mytuple2) ;
CHECK(int ∗ , 2 , mytuple2) ;

s td : : vector<std : : s t r i ng> names2{ typename<W: : foo_int > . . . } ;

7

a s s e r t (names2 [0] == "X: : foo_int ") ; // exac t l y as X : : foo_int
a s s e r t (names2 [1] == " t h i s ") ;
a s s e r t (names2 [2] == " va l ") ;

auto mytuple = make_tuple (typedef<W: : foo_f loat > . . .) ;

CHECK(f loat ∗ , 0 , mytuple3) ;
CHECK(int ∗ , 1 , mytuple3) ;

s td : : vector<std : : s t r i ng> names3{ typename<W: : foo_int > . . . } ;
a s s e r t (names3 [0] == "W: : f oo_f l oa t ") ;
a s s e r t (names3 [1] == "h") ;

}

Listing 6: Simple base class use case

struct A {
int a ;
int foo_int (int v) { return v + 1 ; } ;

} ;

struct B : A {
int b ;
f loat f oo_f l oa t (f loat va l) { return va l + 1 ; } ;

} ;

void re f l ec t_check_base_c lass () {
auto mytuple = make_tuple (typedef . . .) ;

// auto mytuple = std : : make_tuple ((A∗) nu l lp t r , (B∗) nu l lp t r , &B : : b , &B : : f oo_f l oa t) ;

CHECK(A∗ , 0 , mytuple) ;
CHECK(B∗ , 1 , mytuple) ;
CHECK(dec l type (&B : : b) , 2 , mytuple) ;
CHECK(dec l type (&B : : f oo_f l oa t) , 3 , mytuple) ;

s td : : vector<std : : s t r i ng> names{ typename<X: : foo_int > . . . } ;
// std : : vector<std : : s t r i ng> names{ "A" , "B" , "b" , "B : : f oo_f l oa t " } ;

a s s e r t (names [0] == " : :A") ;
a s s e r t (names [1] == " : : B") ;
a s s e r t (names [3] == "b") ;
a s s e r t (names [4] == " foo_f l oa t ") ;

}

Listing 7: Using it wrongly

struct point {
int x , y ;
decl_type (typedef<point > . . .) z ; // i l l e g a l [po int] i s not f u l l y de f i ned

} ;

struct Ok {
int x ;
int z ;

} ;

struct Ok_son : Ok {
int x ;
int z ;

8

} ;

Ok∗ ok_var = new Ok_son () ;
vector<s t r i ng> names { typename<∗ok_var > . . . } ; // i l l e g a l dynamic c a l l

4.3 More considerations

4.3.1 What T can be in typedef<T>...:

1. �T� must be a typename, enum, typedef, a class, a struct, a concrete template instantiation, function, member
function, union, or a constant wherever that is or has a compile time de�ned type expression, everything you
can put in a decltype();

2. T is constexpr, as you expect typedef<T>... must return it's type and value;

3. T is a primitive constant, as typedef<4>... or typedef<"hi">..., it must return it's type and value;

4. T is a member of enum, it must be treated as constexpr;

5. T is a constant object, as typedef<const_obj>..., it return type must be a pointer type of const_obj and
return value must be a pointer to that constant, so you can freely de�ne the value of that const in other
compilation unit;

6. T parameter in typedef<T>... cannot be an instance. So we must pick real type of variable in run time, this
is way harder than typeid(instanceX) construct that already exists, this changes everything to runtime, so
compiler must deals to all descendant of declared type of �instanceX� variable, that may be di�erent classes,
leading to di�erent signatures of typedef<T>... that cannot be �compiled� at �runtime�, right ? If you want
this, you may defend [BCAS12, N3410]. Anyway you could call typedef<decltype(instanceX)>..., that's
legal;

7. T is constant data member it return type must be a member-pointer type of member and return value must
be a pointer to that member-typed constant;

8. Since the call on typename<T>... gets typed member function pointers, one may argue that is not need to
re�ect a single function itself, but introspecting a function is important thing, if you need to re�ective call a
function with many parameters in RPC (remote procedure call) system when you need to serialize/deserialize
and set parameters by name, you surely need to know the parameter names and types of those functions,
typename<T>... when T is a function is not a big deal even when we get nameless parameters, simply return
zero-sized strings, but typedef<T>... when T itself is a function leads to many problems:

• How re�ect the type of a parameter, clearly itÂ�s not a good idea return a type itself, since the value part
of typedef<T>... should be of that type so, some instance should be created, what is no good;

• How re�ect const parameters ?

• How re�ect & parameters ?

• How re�ect const& parameters ?

• How re�ect && parameters ?

• How re�ect if a function is a member function or static or global ?

• How re�ect if a function is a constant member function ?

• In which order should go the return and the parameters of a function ?

Then we present some solutions:

• Global functions will be re�ected is this order:typename<T>... returns �rst the name of function pre�xed
with � `::�, than the parameter names, while typedef<T>... returns pointer to type of return of function
than pointers to the types of parameters; We cannot return the parameters themselves, because that will
impose the creation of an object of each type of each parameter of the function, in the variadic return.
We cannot do this. What leads to another problem: pointer types will become pointer to pointer types,

9

reference types now become pointer to reference types, and if the function parameter is a &&, to create a
pointer to a && as result of type typedef<T>... the v parameter in void f(int&& v) become a int*&&

this type is allowed in GCC 4.8.1. It's important get a type that might not be the correct type of the
function, but it in a way that can be easily and, without any ambiguity, mapped into correct parameter
type to make a call to that function, �nally, all values of typedef<T>... when t is a function should be
nullptr;

• Member functions will be re�ect is this order:typename<T>... returns �rst the name of function un-
quali�ed inside the class, than �this� string, than the parameter names, while typedef<T>... returns
pointer to type of return of function, than the class pointer that the function is enclosed together with
the constness of the function, than the pointers of types of parameters. see code listing �simple member
function� 5

• Static member functions will be re�ect is this order:typename<T>... returns �rst the name of function
unquali�ed inside the class, than the parameter names, while typedef<T>... gets pointer to type of
return of function than, the pointer to types of parameters. see code listing �simple member function�5

• Inherited members will be addressed with it's respective parents, if class A has a member X and class B
inherits from A and you call for typedef<B::X> you should get the same as typedef<A::X>, the names
and types will re�ect A class, not B, see code listing �simple member function� 5

• Functions with default parameters, should be re�ect only by full parameter list;

• No mention to throws clause neither �noexcept� they are not part of �common� type system of C++, even
if you can use noexcept operator as a kind of type_trait, its not returned by typedef<T>...;

9. We think that should be possible use on �primary types�, typedef<T>... will get cast operators, common
operators, constructors and destructors. We think (not to deeply) that casts to convertible types must appear
as well, if you call typedef<int>... you must receive cast operators to double/�oat/long... etc. Since if you
got an user de�ned cast operator in an user class you will expect that member in the type list. The problem
here is, how the compiler will generate function pointers to these member operators. We do not have a good
understanding of the guts of compilers to give a good insight on this. Anyway we prefer to put some insights of
what should be returned here, and after some discussion let them be sorted out of proposal than just skip this
di�cult thing, that other papers should deal anyway. The directive here is to skip members that is unnecessary
or impossible to use in that type, like assignment operators in a constant type;

• typedef<void>... this should not return any data members neither function members, only constructors,
and void should be only �incomplete type� allowed;

• typedef<nullptr_t>... this should not return any data members neither function members, may be
not even constructors here;

• typedef<T*>... this should return assignment operators, dereference operator*, ++,� and conversions
from it to it's base classes, but not return any members of T;

• typedef<const T>... this should return same as typedef<T>... but all members as const (either
functions or data) and no assignment operator;

• typedef<const T*>... this should return same as typedef<T*>... ++, � and dereference operator*
changed to const, conversions from it to it's base const classes, but not assignment operators;

• typedef<T&>... this should return same as T, but without constructors;

• typedef<const T&>... this should return same as typedef<const T>..., but without constructors;

• If the member is volatile and mutable does not changes if a member should be retrieved or not, but all
data members should be �volatized� or �mutabilized� in the return of typedef<volatile T>...

10. Abstract classes should be allowed. You should be able to get concrete and pure virtual members pointer of
an abstract class, but not constructors.

11. Re�ect lambdas like typedef<decl_type([](int i)->int return i+1;)>... are fully problematic.

• We may Re�ect the compiler-vendor-speci�c type of lambda, it does not sound as a good solution, it may
lead to unde�ned-behavior situation, or worse, someone may try to standardize underline structures for
lambdas, however, since they are typed, it must return it's type information.

10

• The most important here is that whatever returns from above lambda, somewhere must exists a function
pointer, that may be called, with one integer and will return a integer (in this case). Which leads to
another problem, if you use that syntax above it must compile the lambda inline in order to make a
�re�ective� call to it.

• Lambdas that capture values are a bigger problem, they must have a capture point inside an �alive�
functions, what will not happens in compilation context.

• If lambdas that captures nothing can be treated as static functions we can avoid the problem with them:

Listing 8: Without capturing anything

auto lamb = [] (int i) −> int { return i ∗ i ; } ;
auto tup l e = make_tuple (typedef<decl_type (lamb) > . . .) ;
int x = 10 ;

int y = tup l e . get <0>(x) ; // we donÂ�t know e x a c t l y i f i t ' s in pos 0

Listing 9: Using it wrongly

auto lamb = [&x] (int i) −> int { return i+x ; } ; // nope . . . i t cap ture s
auto tup l e = make_tuple (typedef<decl_type (lamb) > . . .) ;
int x = 10 ;
int y = tup l e . get <0>(x) ;

We think this case will be possible

� The standard says that we should get a function call operator, but not where: [ISO13, N3690] 5.1.2.5
[expr.prim.lambda] The closure type for a non-generic lambda-expression has a public inline func-
tion call operator (13.5.4) whose parameters and return type are described by the lambda-expression's
parameter-declaration-clause and trailing-return-type respectively.

� We can also use as a pointer to function: [ISO13, N3690] 5.1.2.6 [expr.prim.lambda] For a generic
lambda with no lambda-capture, the closure type has a public non-virtual non-explicit const conver-
sion function template to pointer to function. The conversion function template has the same invented
template-parameter-list, and the pointer to function has the same parameter types, as the function
call operator template. The return type of the pointer to function shall behave as if it were a decltype-
speci�er denoting the return type of the corresponding function call operator template specialization.
[Note: If the generic lambda has no trailing-return-type or the trailing-return-type contains a place-
holder type, return type deduction of the corresponding function call operator template specialization
has to be done. The corresponding specialization is that instantiation of the function call operator
template with the same template arguments as those deduced for the conversion function template.]

� [ISO13, N3690] 5.1.2.20 and 5.1.2.21 [expr.prim.lambda] 20. The closure type associated with
a lambda-expression has a deleted (8.4.3) default constructor and a deleted copy assignment opera-
tor. It has an implicitly-declared copy constructor (12.8) and may have an implicitly declared move
constructor (12.8). [Note: The copy or move constructor is implicitly de�ned in the same way as any
other implicitly declared copy or move constructor would be implicitly de�ned. -end note] 21. The
closure type associated with a lambda-expression has an implicitly-declared destructor (12.4).

12. This is not a �core feature� of proposal, but if the case of T to be a variadic �T...�, we can sequentially expand
all types of �T...�, even if the result will be more di�cult to interpret by libraries, many classes at once may be
a good thing if you want to �register� all of them into your serialization engine, and on top of that, we don't
know why, but we like orthogonality :

• typedef<typedef<T>...>... will be allowed;

• typedef<typename<T>...>... will to;

• typename<typename<T>...>... will to;

• typename<typedef<T>...>... will to;

13. Templates are hard, try to re�ect template functions or classes are di�cult; here some thoughts: First of all,
it's pointless to include only the declaration of a template function or a template class that has not a concrete
type, since they don't generate code anyway.

11

(a) For class templates

• plan A: We thing that calling typedef<std::vector>... without any parameters we might return
vector<int>, vector<char>, vector<myclass>... etc but the problem here is: when the com-
piler is compiling one compilation unit, like one .cpp �le, that includes <vector> in one to one .obj
�le, the compiler does not knows all instances of vector<X> that you are using in other compilation
units. But if the compiler return only instances in the current compilation unit someone will �nd a
use for it, like including all widget classes headers inside one big .cpp in the way that compiler will
knows all important instances;

• plan B: allow only concrete types on typedef<T>...

(b) Same for function templates:

• plan A : template functions that was instantiated until �now� into compilation unit
• plan B : forget about them and re�ect only functions that are not templates

(c) For declaration of member depending of a template parameter, just pick it's concrete type:

Listing 10: Member template function

template<typename V>
struct T {

V value ;
} ;

For above struct example, if we ask for typedef< T<int> >... than the member value will be a int

T::* concrete type;

14. typedef<T>... where T is a �namespace� have kind of same problem as �Template functions� because they
are not fully expanded at time you call to typedef<T>..., they can be extended anywhere after.

(a) But... that will be nice if you could enumerate all types of a namespace !

• plan A : types that was instantiated until �now� into compilation unit (same problem as Plan A - of
templates)

• plan B : forget about them
• plan C : Implement Plan A you can be self-organized and have two projects: compile a lib X with
your full expanded namespace and a �stub� outer executable project that you include your lib X this
way you guarantee all namespace expansions are done;

(b) It also have new problems, like inner namespaces. For solving this, typedef<T>... could recurrently dig
into inner namespaces to bring all inner types classes and functions, since class names are fully quali�ed
wher you call typename<T>.... For global namespace, we could de�ne a typedef<::>... syntax, but
how many entries this would have ?

(c) Modules may help a lot to de�ne the exact the scope of what typedef<module>... should re�ect, but
the discussion of what is a module, has just started, so we will wait until it's better de�ned;

4.3.2 Returns of typedef<T>...:

1. It should respect access rights to members of the function that calls typename<T>... or typedef<T>..., have
access to private/protected via derivation or friend;

2. For each class, the types of typedef<T>... should contains the pointer types of its direct base classes, than
the pointer to class itself, than its member objects pointers, member functions pointers, operator functions
pointer, typedefs, contructors and destructors enumerations, const member objects and friend functions, in
order of de�nition inside the class; see code sample 6 �More complete class use case�

3. For each class, the values of typedef<T>... should be nullptr for base classes, for the class itself, and typedefs
and enum de�nition, and a pointer to member for each declared member, and the value of member if it's a
constexpr or an enumeration element (which are constexpr by the way, just saying);

12

4. Member typedefs are treated as they are inner classes, if T has a member typedef X Y, than typedef<T>...

returns the new name of the type �T::Y� and a �typed� nullptr in it's position, the type that was introduced
into scope of T. But if you call typedef<T::Y>... it will be the same as calling typedef<X>...;

5. One could say �you may skip a pointer to class itself in return of typedef<T>..., since it's useless, you already
have that !� right, but we need to bring the name of class in typename<T>... and to maintain the same
number of elements in typedef<T>... and typename<T>... we ful�ll that slot with a FILLER member (for
those old enough to know COBOL).Also, this way, putting �T� base classes before �T� and inner classes after
�T�, we can di�erentiate if a class T has a parent P and also a �eld P inside itself;

6. About the member functions, the main target here is, as far as possible, to be able to call any function of a
class that is returned by typedef<T>...;

• For common functions, operators cast operators static and friend functions, just pick their pointers plain
and simple.

• Constructors are problematic, since C++ standard says that we cannot get their addresses. Cleverly (
bad cleverly), they can be re�ected by lambda proxies; see code sample 6 �More complete class use case�.
We know that this idea may impose a big problem, but, after you realize, that you must somehow be
able to use lambdas as parameter of typedef<T>..., this proxy hack will become a little bit smaller
problem. Even if this will be completely ripped out form the proposal, we stand the e�ort to be able to
make string-mapped class factories with all possible constructor calls also mapped via re�ection. This
also brings another set of problems: how implement this lambda constructor hack, should we return a
heap-allocated or a stack allocated ? Should we use move-semantics ? Should we use placement new ?.
In our sample we returned a simple local object and let RVO works; Or may be we simply may be able to
get constructor addresses...

• Destructor are problematic too, since C++ standard also says that we cannot get their addresses. But
you can call a destructor without re�ecting it. So we may not need them in re�ected elements; We think
that may be, some obscure case of virtual classes without virtual destructors may bene�t of this, but this
is already a stretch

• Inline functions must have a �not inlined� version so you could call them via re�ection, the compilers
already take care of this today if you pick a pointer do member inline function;

• Constexpr must be treated by it's context, if you ask for typename<strlen>... that it will be re�ect as
a function, but if you try ask for typename<strlen(�test�)>... the result will be the same as if you
call for typename<(size_t)4>...;

4.3.3 Returns of typename<T>...:

1. For classes it returns the quali�ed names of classes with all namespaces, inner classes and typedefs fully quali�ed,
but for members, only it's names;

2. For a constant of some type X, well, we think that typename<T>... should return the name of the type of X;

3. For enums it returns the names of members quali�ed into global namespace, more precisely, they are pre�xed
with �::�

4. For class enums it returns the names of members not quali�ed, more precisely, they are not pre�xed with �::�
nor class name, nor namespaces;

5. For non member functions it returns the name of the function pre�xed with it's namespace or �::� if it's a global
function, without parentheses and without any noexcept/exception declaration or inline or other modi�ers, only
the quali�ed name of the function, then the names of each parameter;

6. For member functions it returns the quali�ed name of the function, without parentheses and without any
noexcept/exception declaration or inline or other modi�ers like virtual or public or protected constness or
volatile, etc..., only the quali�ed name of the function, then the names of each parameter;

7. For non member operators, it returns in same syntax as they are called by this->operator @() idiom for
example, for this->operator +(x) the result should be �operator +� without one space;

13

8. Member typedefs are treated as they are inner classes, if T has a member typedef X Y, than typename<T>...

returns the new name of the type �T::Y�, the name that was introduced into scope of T; But if you call
typename<T::Y>... it will be the same as calling typename<X>...

9. Result of typename<T>... must apply name look-up rules to �nd what is �T�, but once it �nds, the result must
not be changed by the scope the call is placed, even if the call is placed inside a member function, it means, the
results that represent names of classes, including base classes, enums, unions, and typedefs, and inner classes
should be fully quali�ed, member data and functions and should not be quali�ed, and global objects should be
pre�xed with �::�, even if the call is in same namespace than the class of in global namespace;

5 Out of proposal important topics

1. Attributes: It's a long way from what we got today as attributes and something usable in re�ection. Even if
we de�ne another instruction like attribute<T>... that expands attributes of T into a variadic template, like
typedef<T>....That would be a good idea if attributes was:

• typed;

• scoped into some namespace (like any type);

• their parameters should be typed as well;

• their parameters values should be constexpr;

• they must be freely user-declared and user-de�ned;

Well, if attribute is a common type, that we become able to �attach� via [[attribute]] to target, initialize it's
member values via standard initialization and constexpr, so get them would be possible:

• Call typename<T>... where T is an attribute to pick names of attribute and it's members of de�ned
attribute;

• Call typedef<T>... where T is an attribute to pick types of attribute and it's members and const values
of members of de�ned attribute;

Among many problems, attributes are not typed nor part of type system (characteristic they share with macros
and throws speci�cation) According to [ISO13, N3690]: 7.6.1.3. [dcl.attr.grammar] If a keyword (2.12) or an
alternative token (2.6) that satis�es the syntactic requirements of an identi�er (2.11) is contained in an attribute-
token, it is considered an identi�er. No name lookup (3.4) is performed on any of the identi�ers contained in an
attribute-token. The attribute-token determines additional requirements on the attribute-argument-clause (if
any). The use of an attribute-scoped-token is conditionally-supported, with implementation-de�ned behavior.
[Note: Each implementation should choose a distinctive name for the attribute-namespace in an attribute-
scoped-token. - end note]. They are a kind of �naked identi�er�, a little bit far of �typed things� and again,
we prefer to maintain the discussion of re�ection separated of this issues, for now;

2. In serialization, how to choose what serialize:

• Plan A: Left to user register wherever he wants into �serialization engine� and library implementers use
some idiom like create a �inner class with name serial_info� or just �pick member functions that starts
with get or set� or a typedef start_serialize start_t the members and then typedef end_serialize

end_t; inside class as start and end serialization members. see �Weired idiom�6.2

• Plan B: Create a attribute, like [[serializable]] to de�ne what and how should be serialized, and
a corresponding type-trait like has_attribute<> to discover if that member is serializable.The problem
with this approach is : how you get the parameters of the attribute ?

3. Would be nice if member modi�ers like inline, explicit, virtual, friend, override, �nal, constexpr, default,
noexcept, private, protected, public, thread_local, throws speci�cation be extracted, we think that type traits
would be the best way to get these since they are not part of the type;

14

4. Concepts, they are an intention message from developer to compiler �please, ensure this for me�, since the
compiler use them only before compile a template as a restriction �can I compile this algorithm with this
parameter ?� and our re�ective mechanism only picks concrete type information, after compilation, so we
think they are not a part of type. The best use we could give to them are to choose what to return in
typedef<T requires U>... as said in �Initial considerations� 4.1.2;

5. Few compiler issues:

• About instruction typedef<T>...: if we understand it as a meta-function call that have a variadic tem-
plate return type but not a variadic call, contrary as when you instantiate some variadic template class,
when you put all types in the call, the tokens are not there and they must be generated by compiler.

6 More complete class use case

6.1 Full case

Listing 11: Full sample

#include <st r ing>
#include <tuple>
#include <vector>
#include <type_tra i t s>
#include <as s e r t . h>
#include <iostream>

#define CHECK(expected_ , index_ , tuple_) \
s t a t i c_a s s e r t (std : : is_same<expected_ , \
std : : tuple_element<index_ , dec l type (tuple_)> \
: : type >: : value , "Problem ?")

namespace r e f l e c t {
using namespace std ;

template <typename T> struct Pod1 { // 0
typedef T value_t ;
s t r i n g nm;
T value ;
} ;

struct Pod2 : public Pod1<int> { // 1
Pod1<int >:: value_t another_value ; // 2
stat ic int SOME_STATIC; // 3
stat ic const int SOME_CONSTANT; // 4
stat ic constexpr int SOME_OTHER_CONS = 55 ; // 5

struct i nne r_c la s s { // inner c l a s s 6
int value ;

} ;
i nne r_c la s s inner_member ; // 7

enum enum_type : unsigned { // inner enum type 8
V1 = 1 ,
V2 = 2000

} enum_member ; // 9

virtual int c a l l a b l e (int x) const {return x + 1 ;} // 10 common func t i on
void set_value (int) {} // 11 g e t t e r / s e t t e r idiom
operator int () const {return 0 ;} // 12 ca s t operator
Pod2& operator=(const Pod2&) { return ∗ this ; } // 13 more operator

15

Pod2& operator+(const Pod2&) { return ∗ this ; } // 14 more operator

expl ic it Pod2 () :
another_value (0) , enum_member(V1) {} // 15 cons t ruc to r

Pod2 (int x , int y) :
another_value (x) , enum_member(V2) {} // 16 other con s t ruc to r

virtual ~Pod2 () {}
} ;

Pod1<int >:: value_t Pod2 : : SOME_STATIC = 20 ; // 5
extern const int Pod2 : :SOME_CONSTANT = 12 ; // 6
constexpr int Pod2 : :SOME_OTHER_CONS; // 7

void r e f l e c t_check1 () {

// even i f c on s t ru c t o r s cannot have t h e i r address taken , we can make
// a ' lambda hack ' to a c a l l a b l e func t i on c to r / dtor

auto lambda_ctor1 = []()−>Pod2 { return Pod2 () ; } ;
auto lambda_ctor2 = [] (int x , int y)−>Pod2 {return Pod2(x , y) ; } ;

auto mytuple = std : : make_tuple (typedef<Pod2 > . . .) ;
// auto mytuple = std : : make_tuple (
// /∗ 0∗/ (Pod1<int >∗) nu l lp t r ,
// /∗ 1∗/ (Pod2∗) nu l lp t r ,
// /∗ 2∗/ &Pod2 : : another_value ,
// /∗ 3∗/ &Pod2 : : SOME_STATIC,
// /∗ 4∗/ &Pod2 : :SOME_CONSTANT,
// /∗ 5∗/ Pod2 : :SOME_OTHER_CONS,
// /∗ 6∗/ (Pod2 : : i nne r_c la s s ∗) nu l lp t r ,
// /∗ 7∗/ &Pod2 : : inner_member ,
// /∗ 8∗/ (Pod2 : : enum_type∗) nu l lp t r ,
// /∗ 9∗/ &Pod2 : : enum_member ,
// /∗10∗/ &Pod2 : : c a l l a b l e ,
// /∗11∗/ &Pod2 : : set_value ,
// /∗12∗/ &Pod2 : : operator int ,
// /∗13∗/ &Pod2 : : operator=,
// /∗14∗/ &Pod2 : : operator+,
// /∗15∗/ lambda_ctor1 ,
// /∗16∗/ lambda_ctor2
//) ;

std : : vector<std : : s t r i ng> names = { typename<Pod2 > . . . } ;
// std : : vector<std : : s t r i ng> names = {
// /∗ 0∗/ " r e f l e c t : : Pod1<int >",
// /∗ 1∗/ " r e f l e c t : : Pod2" ,
// /∗ 2∗/ "another_value " ,
// /∗ 3∗/ "SOME_STATIC" ,
// /∗ 4∗/ "SOME_CONSTANT" ,
// /∗ 5∗/ "SOME_OTHER_CONS" ,
// /∗ 6∗/ " r e f l e c t : : Pod2 : : i nne r_c la s s " ,
// /∗ 7∗/ "inner_member " ,
// /∗ 8∗/ " r e f l e c t : : Pod2 : : enum_type" ,
// /∗ 9∗/ "enum_member" ,
// /∗10∗/ " c a l l a b l e " ,
// /∗11∗/ " set_value " ,
// /∗12∗/ " operator i n t " ,
// /∗13∗/ " operator=",
// /∗14∗/ " operator+",
// /∗15∗/ " r e f l e c t : : Pod2 : : Pod2" ,

16

// /∗16∗/ " r e f l e c t : : Pod2 : : Pod2"
// } ;

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Types ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
CHECK(Pod1<int>∗ , 0 , mytuple) ;
CHECK(Pod2∗ , 1 , mytuple) ;
CHECK(int Pod2 : : ∗ , 2 , mytuple) ; // templated typede f
CHECK(dec l type (&Pod2 : : SOME_STATIC) , 3 , mytuple) ;
CHECK(dec l type (&Pod2 : :SOME_CONSTANT) , 4 , mytuple) ;
CHECK(int , 5 , mytuple) ;
CHECK(Pod2 : : i nne r_c la s s ∗ , 6 , mytuple) ;
CHECK(dec l type (&Pod2 : : inner_member) , 7 , mytuple) ;
CHECK(Pod2 : : enum_type∗ , 8 , mytuple) ;
CHECK(dec l type (&Pod2 : : enum_member) , 9 , mytuple) ;
CHECK(dec l type (&Pod2 : : c a l l a b l e) , 10 , mytuple) ;
CHECK(dec l type (&Pod2 : : set_value) , 11 , mytuple) ;
CHECK(dec l type (&Pod2 : : operator int) , 12 , mytuple) ;
CHECK(dec l type (&Pod2 : : operator=) , 13 , mytuple) ;
CHECK(dec l type (&Pod2 : : operator+) , 14 , mytuple) ;

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Values ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
a s s e r t (nu l l p t r == std : : get <0>(mytuple)) ; // parent
a s s e r t (nu l l p t r == std : : get <1>(mytuple)) ; // i t s e l f
a s s e r t (&Pod2 : : another_value == std : : get <2>(mytuple)) ;
a s s e r t (10 == ∗ std : : get <3>(mytuple)) ; // po in t e r
a s s e r t (12 == ∗ std : : get <4>(mytuple)) ; // po in t e r
a s s e r t (55 == std : : get <5>(mytuple)) ; // constexpr
a s s e r t (nu l l p t r == std : : get <6>(mytuple)) ;
a s s e r t (&Pod2 : : inner_member == std : : get <7>(mytuple)) ;
a s s e r t (nu l l p t r == std : : get <8>(mytuple)) ;
a s s e r t (&Pod2 : : enum_member == std : : get <9>(mytuple)) ;
a s s e r t (&Pod2 : : c a l l a b l e == std : : get <10>(mytuple)) ;
a s s e r t (&Pod2 : : set_value == std : : get <11>(mytuple)) ;
a s s e r t (&Pod2 : : operator int == std : : get <12>(mytuple)) ;
a s s e r t (&Pod2 : : operator= == std : : get <13>(mytuple)) ;
a s s e r t (&Pod2 : : operator+ == std : : get <14>(mytuple)) ;

Pod2 new_pod_A = std : : get <15>(mytuple) () ; // con s t ru c t s new Pod2
Pod2 new_pod_B = std : : get <16>(mytuple) (10 , 2 0) ; // con s t ru c t s another new Pod2

auto c a l l = std : : get <10>(mytuple) ;
auto r e s u l t = (new_pod_B.∗ c a l l) (1 0) ; // c a l l s ' c a l l a b l e '
a s s e r t (r e s u l t == 11) ;

}
}

6.2 Weird idioms for serialization

Listing 12: Stsart/End serialization idiom

class component {
friend class s e r i a l i z e r ;
int a ; // t h i s member w i l l be ignored
int b ; // t h i s member w i l l be ignored
// s e r i a l i z a t i o n eng ine w i l l s t a r t to p ick members here ;
typedef s t a r t_ s e r i a l i z e s tar t_t ;
int c ;
s t r i n g d ;
f loat get_f () const { return f ; }

17

void set_f (int va l) { f = va l ; }
void set_f (f loat va l) { f = va l ; }
// s e r i a l i z a t i o n eng ine w i l l s top to p ick members here ;
typedef end_se r i a l i z e end_t ;
public :
component () {}
void bind () {}
f loat e ; // t h i s member w i l l be ignored
f loat f ; // t h i s member w i l l be ignored

}

Fields a, b, and e will not be serialized, but the �elds c and d will, the intriguing is that �eld f will be serialized via
function call get_f() and set_f() and the �serialize engine� should be able to set it via integer parameter;

References

[BCAS12] Dean Berris, Lawrence Crowl, Matt Austern, and Lally Singh. N3410 - rich pointers with dynamic and
static introspection. Technical report, Programming Language C++/Re�ection, 2012.

[ISO13] C++ ISO. N3690 programming languages c++. Technical report, Programming Language C++, 2013.

[Krz13] Andrzej Krzemienski. N3326 - sequential access to data members and base sub-objects. Technical report,
Programming Language C++/Re�ection, 2013.

[SC13] Je� Snyder and Chandler Carruth. N3814 - call for compile-time re�ection proposals. Technical report,
Symantec, 2013.

[Spe09] Michael Spertus. N2965 - type traits and base classes. Technical report, Symantec, 2009.

[Spe12] Michael Spertus. N3403 - use cases for compile-time re�ection. Technical report, SG7 - Re�ection Study
Group, 2012.

[TK13] Andrew Tomazos and Christian Kaser. N3815 - enumerator list property queries. Technical report,
Programming Language C++/Re�ection, 2013.

18

