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1 General [intro]
1.1 Introduction [intro.intro]

1 C++ has long provided language support for generic programming in the form of templates. However, these
templates are unconstrained, allowing any type or value to be substituted for a template argument, often
resulting in compiler errors. What is lacking is a specification of an interface for a template, separate from
its implementation, so that a use of a template can be selected among alternative templates and checked in
isolation.

2 A concept is a predicate that defines the syntactic and semantic requirements on template arguments. A type
that satisfies these requirements is said to be a model of that concept, or that the type models the concept.
Syntactic requirements specify the set of valid expressions that can be used with conforming types and the
types associated with those expressions. Semantic requirements describe the required behavior of those syn-
tactic requirements and also provide complexity guarantees. Concepts are the basis of generic programming
in C++ and support the ability to reason about generic algorithms and data structures independently of
their instantiation by concrete template arguments.

3 Concepts are not new to C++ or even to C (where Integral and Arithmetic are long-established concepts used
to specify the language rules for types); the idea of stating and enforcing type requirements on template
arguments has a long history, e.g., several methods are discussed in The Design and Evolution of C++
(1994). Concepts were a part of documentation of the STL and are used to express requirements in the
C++ standard, ISO/IEC 14882. For example, Table 106 gives the definition of the STL Iterator concept
as a list of valid expressions and their result types, operational semantics, and pre- and post- conditions.

4 This specification describes a solution to the problem of constraining template arguments in the form “Con-
cepts Lite.” The goals of “Concepts Lite” are to
— allow programmers to directly state the requirements of a set of template arguments as part of a

template’s interface,

— support function overloading and class template specialization based on constraints,

— seamlessly integrates a number of orthogonal features to provide uniform syntax and semantics for
generic lambdas, auto declarations, and result type deduction,

— fundamentally improves diagnostics by checking template arguments in terms of stated intent at the
point of use,

— do all of this without any runtime overhead or longer compilation times, when comparing similar
programs using enable_if.

“Concepts Lite” does not provide facilities for checking template definitions separately from their instantia-
tion, nor does it provide facilities for specifying or checking semantic requirements.

5 This Technical Specification specifies requirements for implementations of an extension to the C++ pro-
gramming language concerning the application of constraints to template arguments, the use of constraints
in function overloading and class template specialization, and the definition of those constraints.

6 International Standard, ISO/IEC 14882, provides important context and specification for this Technical
Specification. This document as written as a set of changes against that specification. Notes in this Tech-
nical Specification indicate how and where new text should be added to or removed from the International
Standard. [Note: The proposal is written against the C++14 specification, whatever its final document
number may be. —end note ]
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1.2 Normative References [intro.refs]
1 The following referenced documents are indispensable for the application of this document. For dated refer-

ences, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.
— ISO/IEC 14882, Programming Language C++

1.3 Terms and Definitions [intro.defs]
For the purpose of this document, the following definitions apply.

1.3.1 [defns.atomic_constr]
atomic constraint
A subexpression of a constraint that is not a logical-and-expression, logical-or-expression, or a concept check.

1.3.2 [defns.assoc_constr]
associated constraints
A conjunction of all constraints on a constrained template declaration that includes constraints on template
parameters, constraints on function parameters, and constraints specified explicitly in a requires-clause.

1.3.3 [defns.concept]
concept
A template declared with the concept declaration specifier.

1.3.4 [defns.concept_check]
concept check
A call to a function concept or a template-id that names a variable concept.

1.3.5 [defns.constraint]
constraint
A constant expression with type bool that evaluates properties of template arguments, determining whether
or not they can be substituted into a template.

1.3.6 [defns.constrained_decl]
constrained declaration
A declaration with associated constraints.

1.3.7 [defns.constr_expr]
constraint expression
A constant expression that evaluates requirements of a template argument.

1.3.8 [defns.generic_fn]
generic function
A function declaration having auto or a constrained-type-name in the type specifier any of its parameters.

1.3.9 [defns.intro_param]
introduced parameters

§ 1.3 2
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A sequence of template parameters that are introduced into the scope of a template declaration by a concept-
introduction.
1.4 Conformance [intro.conform]

Conformance requirements for this specification are the same as those of ISO/IEC 14882. [Note: Con-
formance is defined in terms of the behavior of programs. —end note ]
1.5 Acknowledgements [intro.ack]

1 The design of this specification is based, in part, on a concept specification of the algorithms part of the
C++ standard library, known as “The Palo Alto" TR (WG21 N3351), which was developed by a large group
of experts as a test of the expressive power of the idea of concepts. Despite syntactic differences between
the notation of the Palo Alto TR and this TS, the TR can be seen as a large-scale test of the expressiveness
of this TS.

2 Lexical conventions [lex]
2.1 Keywords [lex.key]

Add to table 4, the keywords concept and requires.

3 Expressions [expr]
3.1 Primary expressions [expr.prim]
3.1.1 General [expr.prim.general]

Modify the grammar of primary-expression

.

primary-expression:
literal
this
...
requires-expression

Add the following sections.
3.1.2 Lambda expressions [expr.lambda]

Modify paragraph 5.
5 The closure type for a non-generic lambda-expression has a public inline function call operator (ISO/IEC

14882 13.5.4) whose parameters and return type are described by the lambda-expression’s parameter-declaration-
clause and trailing-return-type respectively. For a generic lambda, the closure type has a public inline func-
tion call operator member template (ISO/IEC 14882 14.5.2) whose template-parameter-list consists of one
invented type template-parameter for each occurrence of auto or each unique occurrence of a constrained-
type-name in the lambda’s parameter-declaration-clause, in order of appearance. The invented type template-
parameter is a parameter pack if the corresponding parameter-declaration declares a function parameter pack
(ISO/IEC 14882 8.3.5). The associated constraints of the generic lambda are the conjunction of constraints
introduced by the use of constrained-type-names in the parameter-declaration-clause. The return type and
function parameters of the function call operator template are derived from the lambda-expression’s trailing-
return-type and parameter-declaration-clause by replacing each occurrence of auto in the decl-specifiers of
the parameter-declaration-clause with the name of the corresponding invented template-parameter .

6 All placeholder types introduced using the same concept-name have the same invented template parameter.
3.1.3 Requires expressions [expr.requires]

1 A requires-expression provides a concise way to express syntactic requirements on template constraints.

§ 3.1.3 3
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requires-expression:
requires requirement-parameter-list requirement-body

requirement-parameter-list:
( parameter-declaration-clauseopt)

requirement-body:
{ requirement-list }

requirement-list:
requirement ;
requirement-list requirement

requirement:
simple-requirement
compound-requirement
type-requirement
nested-requirement

simple-requirement:
expression

compound-requirement:
constexpropt{ expression } noexceptopt trailing-return-typeopt

type-requirement:
typename type-id
typename-specifier

nested-requirement:
requires-clause

2 A requires-expression has type bool. [Example:

template<typename T>
concept bool Readable() {

return requires (T i) {
typename Value_type<T>;
{*i} -> const Value_type<T>&;

};
}

The return expression is a requires expression and the statements written within the enclosing braces
denote specific syntactic requirements on the template parameter T. —end example ]

3 A requires-expression shall not appear outside a template declaration.
4 The requires-expression may introduce local arguments via a parameter-declaration-clause. These parameters

have no linkage, storage, or lifetime. They are used only to write requirements within the requirement-body
and are not visible outside the closing } of requirement-body. The requirement-body is a list of requirements
written as statements. These statements may refer to local arguments, template parameters, and any other
declarations visible from the concept definition.

5 The requirement-parameter-list shall not include an ellipsis.
6 A requires-expression evaluates to true if and only if every requirement in the requirement-list evaluates to

true. The semantics of each kind of requirement are described in the following sections.
3.1.3.1 Simple requirements [expr.req.simple]

1 A simple-requirement introduces a requirement that the substitution of template arguments into the ex-
pression will not result in a substitution failure. A simple-requirement has the value true if and only if
substitution succeeds. The expression is an unevaluated operand (ISO/IEC 14882 3.2). [Example:

requires (T a, T b) {
a + b; // A simple requirement.

}
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—end example ]
3.1.3.2 Compound requirements [expr.req.compound]

1 A compound-requirement introduces a set of constraints pertaining to a single expression. A compound-
requirement is true if and only if the substitution of template arguments into the expression does not result
in a substitution failure and all other associated requirements are true. The expression is an unevaluated
operand except in the case when the constexpr specifier is present. These other requirements are described
in the following sections.

2 The presence of a trailing-return-type denotes a result type requirement. The result type requirement is
true if and only if the substitution of template arguments into the specified type, and decltype((e)) is
convertible to T, where e is the substituted expression and T is the substituted type (ISO/IEC 14882 4).
[Example:

template<typename T>
concept bool Deref() {

return requires(T p) {
{*p} -> typename T::reference;

};
}

The concept is true when the expression *p and the type name T::reference do not result in substitution
failures when template arguments are substituted, and decltype((*p)) is convertible to T::reference
after substitution. —end example ]

3 If the trailing-return-type is a constrained-type-name, then that concept is applied to the decltype((e))
where e is the substituted expression. The requirement is true if and only if the result of that application
is true. [Example:

template<typename I>
concept bool Iterator() { ... }

template<typename T>
concept bool Range() {

return requires(T x) {
{begin(x)} -> Iterator; // Iterator

};
}

The concept is to true iff the expression begin(x) is a valid expression, and Iterator<decltype((begin(x)))>()
is true. —end example ]

4 If the constexpr specifier is present in the compound-requirement, the requirement is true if and only if the
substituted expression is a constant expression. [Example:

template<typename Trait>
concept bool Boolean_metaprogram() {

return requires (Trait t) {
constexpr {Trait::value} -> bool;
constexpr {t()} -> bool;

};
}

When substituted into, the concept is true only when the nested value member and function call operator
must be constant expressions. Otherwise, the concept is false. —end example ]

5 If the noexcept specifier is present, in the compound-requirement the requirement is true when noexcept(e))
is true, where e is the substituted expression. [Example:

template<typename T>
concept bool Nothrow_movable() {

§ 3.1.3.2 5
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return requires (T x) {
{T(std::move(x))} noexcept;
{x = std::move(x)} noexcept -> T&;

};
}

When template arguments are substituted into the requirement, the move constructor and move assign-
ment operator selected by overload resolution must not propagate exceptions. If either of the instantiated
expressions does propagate exceptions, the concept is not satisfied. —end example ]
3.1.3.3 Type requirements [expr.req.type]

1 A type-requirement introduces a requirement that an associated type-id can be formed when template argu-
ments are substituted into the type. The requirement is true if and only if substitution does not result in
a substitution failure. [Note: The typename may be part of a typename-specifier . —end note ]

template<typename T>
concept bool Input_range() {

return requires(T range) {
typename T::value_type; // Required typename-specifier
typename Iterator_type<T>; // Required alias template

};
}

—end example ]
3.1.3.4 Nested requirements [expr.req.nested]

1 A nested-requirement introduces additional constraints to be evaluated as part of the requires-expression. The
requirement is true if and only if the required expression evaluates to true. [Example: Nested requirements
are generally used to provide additional constraints on associated types within a requires-expression.

template<typename T>
concept bool Input_range() {

return requires(T range) {
typename Iterator_type<T>;
requires Input_iterator<Iterator_type<T>>();

};
}

—end example ]

§ 3.1.3.4 6
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4 Declarations [dcl.dcl]
4.1 Specifiers [dcl.spec]

Modify the grammar of decl-specifier .
1 The specifiers that can be used in a declaration are

decl-specifier:
. . .
concept

4.1.1 Simple type specifiers [dlt.type.simple]
Modify the grammar of type-name.

1 The simple type specifiers are
simple-type-specifier:

. . .
type-name

type-name:
. . .
constrained-type-name

constrained-type-name:
concept-name
partial-concept-id

concept-name:
identifier

partial-concept-id:
concept-name < template-argument-list >

4.1.2 auto specifier [dcl.spc.auto]
Insert a new paragraph after 3

3 If the auto type-specifier appears as one of the decl-specifiers in the decl-specifier-seq of a parameter-
declaration of a function declarator, then the function is a generic function (5.1.1).
4.1.3 Constrained type specifiers [dcl.spec.constr]

1 When an identifier is a concept-name, it refers to a function concept or variable concept (4.1.4).
2 A constrained-type-name introduces constraints for a template-parameter or placeholder type depending on

the context in which it appears. A constrained-type-name can be used in the type-specifier of template
parameters, a result-type-requirement in a compound-requirement, or wherever the auto specifier is used,
except
— as part of the type of a variable declaration,

— as part of a function’s result type or trailing-result-type,

— in the place of auto within decltype(auto), or

— as part of a conversion-function-id.
3 A constrained-type-name that refers to a non-type concept shall not be used as part of a type-specifier that

introduces a placeholder type. [Note: Non-type concepts can be used as type specifiers of non-type template
parameters and template template parameters. —end note ] [Example:

§ 4.1.3 7
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template<int N>
concept bool Prime() { ... }

void f(Prime n) // Error

template<Prime P> // Ok
void g();

—end example ]

4.1.3.1 Constraint formation [dcl.constr.form]
1 When a template-parameter or parameter-declaration is declared using a constrained-type-name in its type-

specifier, a new constraint expression is synthesized and associated with the template declaration. The rules
for forming that constraint depend on whether the type specifier is a concept-name or partial-concept-id.
Both cases require the synthesis of a template-id referring that refers to a specialization of the named concept.
The template argument list is formed using the following rules.

2 Letting X be the declared template-parameter or the invented type of a parameter-declaration in a generic
function or generic lambda:
— If the constrained-type-name is a concept-name, the synthesized template argument list contains only

X.

— If the constrained-type-name is a partial-concept-id whose template argument list contains the argu-
ments Y1, Y2, ..., Yn, the synthesized template argument list contains the sequence X, Y1, Y2, ...,
Yn.

3 If the constrained-type-name refers to a function concept, then the synthesized constraint is a call expression
with no function arguments.

4 [Example: The following unary and binary concepts are defined as variables and functions.
template<typename T>

concept bool V1 = ...;

template<typename T, typename U>
concept bool V2 = ...;

template<typename T>
concept bool F1() { return ...; }

template<typename T, typename T2>
concept bool F2() { return ...; }

Suppose X is a template parameter being declared, either explicitly or as an invented template parameter of
a parameter-declaration in a generic function or generic lambda. The synthesized constraints corresponding
to each declaration are:

V1 X // becomes V1<T>
V2<Y> X // becomes V2<X, Y>
F1 X // becomes F1<X>()
F2<Y> X // becomes F2<X, Y>()

—end example ]

4.1.3.2 The meaning of constrained type specifiers [dcl.constr.meaning]
1 The meaning of a constrained type specifier depends on the context in which it is used. The different

meanings of constrained type specifiers are enumerated in this clause.
— If a constrained-type-name is used as the type-specifier of a template-parameter , the constraint is formed

by applying the declared parameter to the constrained-type-name.

§ 4.1.3.2 8
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— When a constrained-type-name is used as part of the type-specifier of a parameter-declaration, the pa-
rameter’s type is formed by replacing the constrained-type-name with auto, creating a generic function
or generic lambda. The introduced constraint is formed by applying the declared parameter to the
invented template parameter to the constrained-type-name.

— When a constrained-type-name is used as part of a type-specifier in a result-type-requirement, the
constraint is introduced as a nested-requirement that applies the constrained-type-name to the result
type of the required expression.

4.1.4 The concept specifier [dcl.concept]
1 The concept specifier shall be applied to only the definition of a function template or variable template. A

function template definition having the concept specifier is called a function concept. A variable template
definition having the concept specifier is called a variable concept.

2 Every concept definition is also a constexpr declaration (ISO/IEC 148827.1.5).
3 A function concept has the following restrictions:

— The template must be unconstrained.

— The result type must be bool.

— The declaration shall have a parameter-declaration-clause equivalent to ().

— The declaration shall be a definition.

— The function shall not be recursive.

— The function body shall consist of a single return statement whose expression is a constraint-expr .

[Example:
template<typename T>

concept bool C1() { return true; } // OK

template<typename T>
concept int c2() { return 0; } // error: must return bool

template<typename T>
concept bool C3(T) { return true; } // error: must have no parameters

concept bool p = 0; // error: not a template

—end example ]
4 A variable template has the following restrictions:

— The template must be unconstrained.

— The declared type must be bool.

— The declaration must have an initializer.

— The initializer shall be a constraint-expr .

[Example:
template<typename T>

concept bool Integral = is_integral<T>::value; // OK

template<typename T>
concept bool C = 3 + 4; // Error: initializer is not a constraint
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template<Integral T>
concept bool D = is_unsigned<T>::value; // Error: constrained concept definition

—end example ]
5 If a program declares a non-concept overload of a concept definition with the same template parameters and

no function parameters, the program is ill-formed. [Example:
template<typename T>

concept bool Totally_ordered() { ... }

template<Graph G>
constexpr bool Totally_ordered() // error: subverts concept definition
{ return true; }

—end example ]
6 A program that declares an explicit or partial specialization of a concept definition is ill-formed. [Example:

template<typename T>
concept bool C = is_iterator<T>::value;

template<typename T>
concept bool C<T*> = true; // Error: partial specialization of a concept

—end example ]
7 [Note: The prohibitions against overloading and specialization prevent users from subverting the constraint

system by providing a meaning for a concept that differs from the one computed by evaluating its constraints.
—end note ]
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5 Declarators [dcl.decl]
Modify paragraph 4.

declarator:
ptr-declarator
noptr-declarator parameters-and-qualifiers trailing-return-type requires-clauseopt

Add the following paragraphs.
6 A declarator having a requires-clause is a constrained declaration. A declarator that declares a constrained

variable or type is ill-formed.
5.1 Meaning of declarators [dcl.meaning]
5.1.1 Functions [dcl.fct]

Add the following paragraphs.
15 A generic function is a function template whose template-parameter-list has a parameter-declaration whose

type-specifier is either auto or a constrained-type-name. [Example:

auto f(auto x); // Ok
void sort(Sortable& c); // Ok (assuming Sortable names a concept)

—end example ]
16 The declaration of a generic function has a template-parameter-list that consists of one invented type

template-parameter for each occurrence of auto or each unique occurence of a constrained-type-name in the
function’s parameter-declaration-clause, in order of appearance. The invented type of template-parameter is
a parameter pack if the corresponding parameter-declaration declares a function parameter pack (ISO/IEC
14882 8.3.5). The associated constraints of the generic function are the conjunction of constraints introduced
by the use of constrained-type-name s in the parameter-declaration-clause.

[Example: The generic function declared below

auto f(auto x, const Regular& y);

Is equivalent to the following declaration

template<typename T1, typename T2>
requires Regular<T2>()

auto f(T1 x, const T2& y);

—end example ]
17 All placeholder types introduced using the same concept-name have the same invented template parameter.

[Example: The generic function declared below

auto gcd(Integral a, Integral b);

Is equivalent to the following declaration:

template<Integral T>
auto gcd(T a, T b);

—end example ]

§ 5.1.1 11
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18 If an entity is declared by an abbreviated template declaration, then all its declarations must have the same
form.

6 Templates [temp]
1 A template defines a family of classes or functions or an alias for a family of types.

template-declaration:
template < template-parameter-list > requires-clauseopt declaration
concept-introduction declaration

requires-clause:
requires constraint-expression

Add the following paragraphs.

7 A constrained template declaration is a template-declaration with associated constraints. The associated
constraints of a constrained template declaration are the conjunction of the associated constraints of all
constrained-parameters in the template-parameter-list (6.1) and all constraint-expressions introduced by
requires-clause in the template-declaration and subsequent declaration. [Note: A function or member func-
tion may have a requires-clause in its declarator. These constraints are also part of the associated constraints
of the template declaration. —end note ]

8 The associated constraints of a concept-introduction are those required by the referenced concept definition.
[Example:

template<typename T>
concept bool Integral() { return is_integral<T>::value; }

template<Integral T>
requires Unsigned<T>()

T binary_gcd(T a, T b);

The associated constraints of binary_gcd are denoted by the conjunction Integral<T>() && Unsigned<T>().
—end example ]

9 A constrained template declaration’s associated constraints must be satisfied (6.5) to allow instantiation
of the constrained template. The associated constraints are satisfied by substituting template arguments
into the constraints and evaluating substituted expression. Constraints are satisfied when the result of that
evaluation is true. Class template, alias template, and variable template constraints are checked during
name lookup (6.2); function template constraints and class template partial specialization constraints are
checked during template argument deduction (6.4.4.1).

10 Any usage of a constrained template in a template declaration is ill-formed unless the associated constraints
of the constrained template are subsumed by the associated constraints of template parameter. No diagnostic
is required.

6.1 Template parameters [temp.param]

1 The syntax for template-parameters is:
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template-parameter:
type-parameter
parameter-declaration
constrained-parameter

constrained-parameter:
constraint-id ...opt identifier
constraint-id ...opt identifier = constrained-default-argument

constraint-id:
concept-name
partial-concept-id

constrained-default-argument:
type-id
template-name
expression

Add the following paragraphs.
16 A constrained-parameter defines its identifier to be a template parameter. The declared template parameter

matches that of the first template parameter, called the prototype parameter , of the concept referred to by
the constraint-id. [Note: The rules for declaring the parameter are:

— If the prototype parameter is a type-parameter that is a class or typename, then then introduced
template parameter is a class or typename parameter.

— If the prototype parameter is a template-declaration, then the introduced parameter is a template-
declaration having the same number of kinds of template parameters.

— If the prototype parameter is a parameter-declaration, then the introduced parameter is a parameter-
declaration with the same type-specifier .

—end note ]
17 If prototype parameter is a parameter pack, then the constrained parameter shall also be declared as a

parameter pack. [Example:

template<typename... Ts>
concept bool Same_types() { ... }

template<Same_types Args> // error: Must be Same_types...
void f(Args... args);

—end example ]
18 The associated constraints of the constrained template parameter are synthesized according to the rules

defined in 4.1.3.1.
19 The kind of constrained-default-argument shall match that of the declared constrained-parameter .

6.2 Template names [temp.names]
Modify paragraph 6.

6 A simple-template-id that names a class template specialization is a class-name. The template-arguments
shall satisfy the associated constraints of the primary template, if any. [Example:

template<Object T, int N> // T must be an object type
class array;

array<int&, 3>* p; // error: int& is not an object type
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—end example ] [Note: This guarantees that a partial specialization cannot be less specialized than a
primary template. This requirement is enforced during name lookup, not when the partial specialization is
declared. —end note ]
6.3 Template arguments [temp.arg]
6.3.1 Template template arguments [temp.arg.template]

Modify paragraph 3.
3 A template-argument matches a template template-parameter (call it P) when each of the template parameters

in the template-parameter-list of the template-argument’s corresponding class template or alias template
(call it A) matches the corresponding template parameter in the template-parameter-list of P. The associated
constraints of P shall subsume the associated constraints of A (6.5). [Example:

template<typename T>
concept bool Object = is_object<T>::value;

template<typename T>
concept bool Copyable = is_copyable<T>::value;

template<typename T>
concept bool Regular = Copyable<T> && ...;

template<template<Copyable> class C>
class stack { ... };

template<Regular T> class list1;
template<Object T> class list2;

stack<list1> s1; // error: Regular is more strict than Copyable
stack<list2> s2; // Ok: Object is not more strict than Copyable

—end example ]
6.4 Template declarations [temp.decls]
6.4.1 Class templates [temp.class]
6.4.1.1 Member functions of class templates [temp.mem.func]

Add the following paragraphs.
6 A member function of a class template can be constrained by writing a requires-clause after the member

declarator. [Example:
template<typename T>

class S {
void f() requires Integral<T>();

};

—end example ] The requires-clause introduces the following expression as an associated constraint of the
member function. A member function of a class template with an associated constraint is a constrained
member function.

7 Constraints on member functions are instantiated as needed during overload resolution (ISO/IEC 14882 14.7.1).
[Note: Constraints on member functions do not affect the declared interface of a class. That is, a constrained
copy constructor is still a copy constructor, even if it will not be viable for all instantiations of the class.
—end note ]

8 A destructor shall not be constrained.
9 During overload resolution, if a candidate member function is an instantiation of a constrained member

function template, then those constraints must be satisfied (6.5) before it is considered viable. Constraints
are checked by substituting the template arguments of member function’s corresponding class template
specialization into the associated constraints of the constrained member function template and evaluating
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the substituted expression. If the result of that evaluation is bool, then member function is a viable
candidate.
6.4.2 Friends [temp.friend]

Add the following paragraphs.
10 A constrained friend is a friend of a class template with associated constraints. A constrained friend can

be a constrained class template, constrained function template, or an ordinary (non-template) function.
Constraints on template friends are written using shorthand, introductions, or a requires clause following
the template-parameter-list. Constraints on non-template friend functions are written after the result type.
[Example: All of the following are valid constrained friend declarations:

template<typename T>
struct X {

template<Integral U>
friend void f(X x, U u) { }

template<Object W>
friend struct Z { };

friend bool operator==(X a, X b) requires Equality_comparable<T>()
{

return true;
}

};

—end example ]
11 A non-template friend function shall not be constrained unless the function’s parameter or result type

depends on a template parameter. [Example:
template<typename T>

struct S {
friend void f(int n) requires C<T>(); // Error: cannot be constrained

};

—end example ]
12 A constrained non-template friend function shall not declare a specialization. [Example:

template<typename T>
struct S {

friend void f<>(T x) requires C<T>(); // Error: declares a specialization

friend void g(T x) requires C<T>() { } // OK: does not declare a specialization
};

—end example ]
13 As with constrained member functions, constraints on non-template friend functions are not instantiated

during class template instantiation.
6.4.3 Class template partial specializations [temp.class.spec]
6.4.3.1 Matching of class template partial specializations [temp.class.spec.match]

Modify paragraph 2.
2 A partial specialization matches a given actual template argument list if the template arguments of the

partial specialization can be deduced from the actual template argument list (ISO/IEC 14882 14.8.2), and
the deduced template arguments satisfy the constraints of the partial specialization, if any (6.5).
6.4.3.2 Partial ordering of class template specializations [temp.class.order]

Modify paragraph 1.
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1 For two class template partial specializations, the first is at least as specialized as the second if, given the
following rewrite to two function templates, the first function template is at least as specialized as the second
according to the ordering rules for function templates (ISO/IEC 14882 14.5.6.2):
— the first function template has the same template parameters and constraints as the first partial

specialization and has a single function parameter whose type is a class template specialization with
the template arguments of the first partial specialization, and

— the second function template has the same template parameters and constraints as the second partial
specialization and has a single function parameter whose type is a class template specialization with
the template arguments of the second partial specialization.

New text.
[Example:

template<typename T>
concept bool Integer = is_integral<T>::value;

template<typename T>
concept bool Unsigned_integer = Integer<T> && is_unsigned<T>::value;

template<typename T> class S { };
template<Integer T> class S<T> { }; // #1
template<Unsigned_integer T> class S<T> { }; // #2

template<Integer T> void f(S<T>); // A
template<Unsigned_integer T> void f(S<T>); // B

The partial specialization #2 will be more specialized than #1 for template arguments that satisfy both
constraints because B will be more specialized than A. — end example ]

6.4.4 Function templates [temp.fct]
6.4.4.1 Template argument deduction [temp.deduct]

Modify paragraph 2.
2 When an explicit template argument list is specified, the template arguments must be compatible with the

template parameter list and must result in a valid function type as described below; otherwise type deduc-
tion fails. Specifically, the following steps are performed when evaluating an explicitly specified template
argument list with respect to a given function template:
— The specified template arguments must match the template parameters in kind (i.e., type, non-type,

template). There must not be more arguments than there are parameters unless at least one parameter
is a template parameter pack, and there shall be an argument for each non-pack parameter. Otherwise,
type deduction fails.

— Non-type arguments must match the types of the corresponding non-type template parameters, or must
be convertible to the types of the corresponding non-type parameters as specified in 14.3.2, otherwise
type deduction fails.

— If the function template is constrained, the specified template arguments are substituted into the
associated constraints and evaluated. If the result of the evaluation is false, type deduction fails.

— The specified template argument values are substituted for the corresponding template parameters as
specified below.
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6.4.4.2 Function template overloading [temp.over.link]
Modify paragraph 1.

1 A function template can be overloaded either by (non-template) functions of its name or by (other) function
templates of the same name. When a call to that name is written (explicitly, or implicitly using the operator
notation), template argument deduction (14.8.2), and checking of any explicit template arguments (14.3),
and checking of associated constraints 6.5 are performed for each function template to find the template
argument values (if any) that can be used with that function template to instantiate a function template
specialization that can be invoked with the call arguments. For each function template, if the argument
deduction and checking succeeds, the template-arguments (deduced and/or explicit) are used to synthesize
the declaration of a single function template specialization which is added to the candidate functions set to
be used in overload resolution. If, for a given function template, argument deduction fails, no such function
is added to the set of candidate functions for that template. The complete set of candidate functions includes
all the synthesized declarations and all of the non-template overloaded functions of the same name. The
synthesized declarations are treated like any other functions in the remainder of overload resolution, except
as explicitly noted in 13.3.3.

Modify paragraph 6.
6 Two function templates are equivalent if they are declared in the same scope, have the same name, have

identical template parameter lists, and have return types, and parameter lists, and constraints (6.5) that are
equivalent using the rules described above to compare expressions involving template parameters.
6.4.4.3 Partial ordering of function templates [temp.func.order]

Modify paragraph 2.
Partial ordering selects which of two function templates is more specialized than the other by transforming

each template in turn (see next paragraph) and performing template argument deduction using the function
type. The deduction process determines whether one of the templates is more specialized than the other.
If so, the more specialized template is the one chosen by the partial ordering process. If the two templates
have identical template parameter lists and equivalent return types and parameter lists, then partial ordering
selects the template whose associated constraints subsume but are not equivalent to the associated constraints
of the other. (6.5). A constrained template is always selected over an unconstrained template.
6.5 Template constraints [temp.constr]

1 Certain contexts require expressions that satisfy additional requirements as detailed in this sub-clause.
Expressions that satisfy these requirements are called constraint expressions or simply constraints.

constraint-expression:
logical-or-expression

2 A logical-or-expression is a constraint-expression if it is a constant-expression of type bool whose operands
to logical operators in its sub-expressions, when substituted have type bool. [Note: The required contextual
conversion to bool in a constraint-expression prevents user-defined overloads of logical operators from being
selected during overload resolution. —end note ] [Note: A constraint-expression defines a subset of constant
expressions over which certain logical implications can be proven during translation. —end note ]

3 [Example:

template<typename T>
requires is_integral<T>::value && is_signed<T>::value

void f(T x);

constexpr int Fn() { return 1; }

template<typename T>
requires Fn() // Error: Fn() is not a valid constraint

void g(T x);

—end example ]
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4 A subexpression of a constraint-expression that calls a function concept or refers to a variable concept
4.1.4. is a concept check. When processing a constraint containing a concept check, that concept check is
replaced by the concept’s definition, forming a new expression. For checks against function concepts, the
replacement is done by substituting the explicit template arguments into the return expression. For checks
against variable concepts, the definition is formed by substituting the template arguments into the variable’s
initializer. [Example:

template<typename T>
concept bool C() { return sizeof(T) >= 4; }

template<typename T>
concept bool D = C<T>();

template<typename X>
requires C<X>() // Processed as sizeof(X) >= 4

void f();

template<typename Q>
requires D<Q> // Processed as sizeof(Q) >= 4

void g();

—end example ]
5 Certain subexpressions of a constraint-expression are considered atomic constraints. A constraint is atomic

if it is not a logical-and-expression, a logical-or-expression, or a concept check. [Note: The partial ordering of
constraints requires the decomposition of constraint expressions into lists of atoms. —end note ] [Example:
The expression x == y && is_integral<T>::value has two atoms: x == y and is_integral<T>::value.
—end example ]

6 Given two constraints P and Q depending on template parameters T1, ..., Tn, P is said to subsume Q if for any
template arguments substituted for T1, ..., Tn, the constraint Q is true, then P is also true. [Example: Let
P be the constraint is_integral<T>::value && sizeof(T) == 4, and let Q be the constraint sizeof(T)
== 4. Then P subsumes Q, but Q does not subsume P. —end example ]

7 Two constraint-expressions P and Q are equivalent if and only if P subsumes Q and Q subsumes P.
8 A constraint is satisfied if it evaluates to true. Otherwise, the constraint is unsatisfied.

6.6 Concept introductions [con.intro]
Add this section as 14.9.

1 A concept-introduction allows the declaration of template and its associated constraints in a concise way.
template-declaration:

template < template-parameter-list > requires-clauseopt declaration
concept-introduction declaration

concept-introduction:
concept-name { introduction-list }

introduction-list:
identifier
introduction-list , identifier

2 The concept-introduction names a concept and a list of identifiers to be used as template parameters, called
the introduced parameters in the declaration. The number of identifiers in the introduction-list must match
the number of template parameters in the named concept. [Example:

template<typename I1, typename I2, typename O>
concept bool Mergeable() { ... };

Mergeable{First, Second, Out} // OK
Out merge(First, First, Second, Second, Out);
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Mergeable{X, Y} // Error: not enough parameters
void f(X, Y);

—end example ]
3 The introduced parameters are the template parameters of the declaration, and they match the template

parameters in the declaration of the named concept. The associated constraints of the declaration are formed
by applying the introduced parameters as arguments to the named concept 4.1.3.1. [Example: The following
declaration

Mergeable{X, Y, Z}
Z merge(X, X, Y, Y, Z);

is equivalent to the declaration below.
template<typename X, typename Y, typename Z>

requires Mergeable<X, Y, Z>()
Z merge(X, X, Y, Y, Z);

—end example ]
4 If a constrained declaration is introduced by a concept introduction, then all its declarations must have the

same form.
5 The sequence of introduced parameters in a concept-introduction shall have the same number of template

parameters as the referenced concept. [Example:
template<typename T1, typename T2, typename T3 = T2>

concept bool Ineffable() { ... };

Ineffable{X, Y} void f(); // Error: does not introduce all parameters
Ineffable{X, Y, Z} void g(); // Ok

—end example ] [Note: Allowing default arguments to be deduced in a concept-introduction would cause
the introduction of an unnamed, unusable template parameter in the template declaration. —end note ]
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