Extending static_assert, v2

Document #: WG21 N3928

Date: 2014-02-14

Revises: None

Project: JTC1.22.32 Programming Language C++

Reply to: Walter E. Brown <webrown.cpp@gmail.com>
Contents
1 Introduction 1 4 Bibliography 3
2 Proposed wording 3 5 Document history 3
3 Feature-testing macro 3

Abstract

Following EWG guidance, this paper proposes wording to permit a default string literal for
static_assert.

1 Introduction

In reflector message [ct++std-core-18466], Daniel Kriigler writes, in part:

[Plrogrammers with Boost experience have long lived with the reduced functionality
of BOOST_STATIC_ASSERT which does not provide the luxury of the message text. For
convenience, if static_assert is available for the corresponding compiler, it is just
mapped to

#define BOOST STATIC_ASSERT (B) static_assert (B, #B)

This looks IMO pretty like an ideal default and is well understood for everyone who has
seen a runtime assert ;-)

It looks like a shame to me that programmers would favour to use BOOST_STATIC_ASSERT
or their own home-grown macro with similar capability.

This feature, a default text message for static_assert, has been requested and suggested
many times over the past several years; see, for example, reflector messages c++std-core-18466
and c++std-ext-11896, as well as numerous C++ newsgroup messages. Further, near-identical
macro-based versions (such as BOOST_STATIC_ ASSERT, shown above) of the feature have been
independently invented and reinvented in several code bases, under several different names.

While there appears to be significant support, there are also some different viewpoints, includ-
ing competing approaches. Here, in no particular order, are some representative opinions from
several perspectives:

e “I... believe usability of static_assert could be improved by providing a default message”
[Peter Sommerlad, c++std-core-24257].
e “This would indeed be convenient” [Faisal Vali, c++std-core-24259].

¢ “I can’t imagine why we wouldn’t support it” [Ville Voutilainen, c++std-core-24260].

Copyright © 2014 by Walter E. Brown. All rights reserved.

1

mailto:webrown.cpp@gmail.com

2 N3928: Extending static_assert, v2

e “While I sympathize with the proposal, this seems more like something that should be done
by the preprocessor, through a macro like [BOOST_STATIC_ASSERT]. Being a core feature,
static_assert should not mess with stringizing tokens, an operation that should occur in
an early phase of translation” [Alberto Ganesh Barbati, c++std-core-18476].

e “It sounds like special pleading. And too late” [Bjarne Stroustrup, c++std-core-18485].

¢ “I would not oppose a version of this proposal that made the text of the diagnostic output
implementation-defined, rather than specifying that it must contain the tokens of the
expression. I also would not oppose introduction of a standard macro whose expansion used
the stringized version of the expression as the string argument” [Mike Miller, c++std-ext-

14628].

¢ “I would strongly object to macro-based alternatives/solutions.... Let those who deeply care
about the preprocessor tokens handle those through macros” [Gabriel dos Reis, c++std-ext-
14629].

e “‘Let those who deeply care about a single-argument static_assert handle it through
macros.” But I'd be willing to accept a single-argument version with an implementation-
defined diagnostic” [Mike Miller, c++std-ext-14630].

¢ “I prefer to see higher-level, human language messages in static_assertions. Can anyone
provide specific examples in which

#define STATIC_ASSERT (B) static_assert (B, #B)
is genuinely more significant or useful in practice than
#define STATIC_ASSERT (B) static_assert (B, "ouch")?

[...] I would support a form of static_assert that tests the assertion and has no default
message. I regret that this form was not a part of the original proposal” [Robert Klarer,
c++std-ext-14657].

e “The main reason I want [the proposed feature] is to apply DRY (Don’t Repeat Yourself). [...]
I'd like to see what was being tested instead of hoping that the message never gets out of
sync with the assertion, especially given that these kinds of things are long enough to get
copied and pasted instead of retyped” [Nevin Liber, c++std-ext-14658].

e “Ideally static_assert should print not one optional message but a variadic list of constant
expressions, strings, and typenames. All implementations already have facilities to print
types and values in diagnostics, and the lack of this feature in static_assert often requires
falling back on older template tricks (performing time-consuming manual source code
adjustment and re-running a potentially long compiler job). No message at all is merely the
case of an empty list, and considered as such, the aesthetic desire to specify something in
place of the ‘missing’ string goes away” [David Krauss, personal communication, 2013-12-30].

We have also privately heard that a print£-style static_assert message extension would be
most welcome.

During the 2014 Issaquah meeting, EWG reviewed the previous version of this paper and
obtained strong consensus (14-1-1-0-0) endorsing Robert Klarer’s vision (cited above) for such
an extension. This paper therefore proposes wording that is consistent with only the chosen
direction.

N3928: Extending static_assert, v2 3

2 Proposed wording'

Augment [dcl.dcl] (Clause 7) paragraph 1 as indicated:

1 Declarations generally specify how names are to be interpreted. Declarations have the form

static_assert-declaration:
static_assert (constant-expression) ;
static_assert (constant-expression , string-literal) ;

Augment [dcl.dcl] (Clause 7) paragraph 4 as indicated:

4 In a static_assert-declaration the constant-expression shall be a constant expression (5.19) that
can be contextually converted to bool (Clause 4). If the value of the expression when so converted
is true, the declaration has no effect. Otherwise, the program is ill-formed, and the resulting
diagnostic message (1.4) shall include the text of the string-literal, if one is supplied, except that
characters not in the basic source character set (2.3) are not required to appear in the diagnostic
message. [Example: ... —end example]

3 Feature-testing macro

For the purposes of SG10, we recommend any of the following macro names: (a) __cpp_static_
assert_extended, (b) _ cpp_static_assert_optional, or (c) _ cpp_static_assert_option
al_message.

4 Bibliography

[N3797] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N3797 (post-Chicago mailing), 2013-10-13. http://www.open-std.org/
jtc1l/sc22/wg21/docs/papers/2013/n3797.pdf.

5 Document history

Version Date Changes
1 2014-01-01 e Published as N3846.
2 2014-02-14 e Excised discussion of possible criteria for evaluating competing proposals. e Adjusted

proposed wording per EWG guidance @ Issaquah. e Published as N3928.

LAll proposed additions and deletions are relative to the post-Chicago Working Draft [N3797]. Editorial notes are
displayed against a gray background.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf

	Title
	Contents
	Abstract
	1 Introduction
	2 Proposed wording
	3 Feature-testing macro
	4 Bibliography
	5 Document history

