LWG Issue 2168 is NAD

Document #: WG21 N3926

Date: 2014-02-14

Revises: None

Project: JTC1.22.32 Programming Language C++

Reply to: Walter E. Brown <webrown.cpp@gmail .com>
Contents
1 Introduction 1 3 Revision history 2
2 Analysis and recommendation . . 1

Abstract

LWG issue 2168 reports a perceived inconsistency between two parts of the library’s specification
for uniform_real_distribution. This paper argues that there is no inconsistency and that
the issue should therefore be closed as NAD.

1 Introduction

Library Working Group issue 2168 says:

uniform_real says in 26.5.8.2.2 [rand.dist.uni.real] p1:

A uniform_real_distribution random number distribution produces ran-
dom numbers x, a < X < b,

but also that (26.5.8.2.2 [rand.dist.uni.real] p2):

explicit uniform_real_ distribution (RealType a=0.0, RealType b=1.0);
-2- Requires: a < b and b - a < numeric_limits<RealType>: :max ().

If you construct a uniform real_ distribution<RealType>(a, b) where there are
no representable numbers between 'a’ and 'b’ (using RealType’s representation) then
you cannot satisfy 26.5.8.2.2 [rand.dist.uni.real]. An obvious example is when a ==

Despite the perceived inconsistency reported by the issue, we will argue in the next section that
there is in fact no defect, and that the issue should therefore be closed as NAD.

2 Analysis and recommendation

The most recent change to the behaviorial specification of uniform_real_distribution seems
to have been in 2006. Before that change, the requirement on the operator () functions was that
they produce values x such that ¢ < < b. Since then, we have instead required a < x < b, as the
issue correctly cites. We had made that change in order to cater to requests from programmers
who, at least in our C++ world, tend to be more comfortable with half-open intervals than they are
with the fully open intervals that statisticians and mathematicians often prefer.!

Copyright © 2014 by Walter E. Brown. All rights reserved.
I And we are after all, programmers!

mailto:webrown.cpp@gmail.com

10

2 N3926: LWG Issue 2168 is NAD

Please note that under no circumstances would we ever, ever, ever consider having a closed
interval here. Sadly, the issue quotes the C++ standard out of context on this point, failing to cite
the adjoining mathematics that carefully specifies the requirement on the associated probability
density function, amely that it have the constant value given by 1/(b — a). This means that users
must ensure that a # b whenever operator () is called, else the resulting behavior is as undefined
as is mathematical division by zero.? This is not an accident, and must not be changed.?

However, we don’t need the same strict ¢ # b requirement when constructing an object of a
uniform real distribution type. Such an object can live perfectly well with equal values of a
and b. (Actually, we could have even permitted b < a, but that would have incurred unnecessary
complexity and performance cost for implementations when calculating the behind-the-scenes
scale factor. Based on this engineering assessment, we carefully crafted the user requirement to
allow implementations to use the simple and cheap subtraction b — a.)

It can, of course, be argued that an object having a = b is inherently impotent, since it can
never satisfy the precondition of its operator () and hence ought never be called. However, we
had this argument many years ago, and it turns out to be false: It may be less well known, but
there is in fact a well-specified overload of operator () that ignores the values with which the
invoking object was constructed.

Consider the following code fragment, which ought to compile happily after supplying appropri-
ate header, namespace, and other context:

using dist_t = uniform_real_ distribution<>;
using parm_t = typename dist_t::param_type;

default_random_engine ef{};

dist_t d{0.0, 0.0}; // so far so good

auto variate = d(e, parm_t{4.5, 6.78});
// in this call, ignore the distribution param values
// that were supplied via d’s c’tor, and instead use
// the param values supplied here via parm t’s c’tor

There seems no reason to forbid such code, as it is perfectly well-formed, well-specified, well-
behaved, and incredibly useful in applications whose distribution’s parameters are in flux over
time. 4 Moreover, the respective specified preconditions for constructing and for invoking such a
distribution object are consistent with each other.

We therefore recommend that the cited issue report be closed as Not A Defect, with the
discussion simply pointing to this paper by way of rationale.

3 Revision history

Version Date Changes
1 2014-02-14 e Published as N3926.

2 “Black holes are where God divided by zero.” — Steven Wright ©

3 Implementors should therefore simply follow their existing/prevailing policy re users who violate a documented
precondition: terminate (), or assert () first, or throw, or enter an infinite loop, or return a predetermined out-of-
bandwidth value, or do whatever. But such actions are at best a courtesy to users; as we all know, the C++ standard
does not specify what happens when a precondition is violated.

4 Algorithm std: :shuffle exhibits such behavior, for example, although it employs uniform int_distribution
rather than uniform real distribution.

	Title
	Contents
	Abstract
	1 Introduction
	2 Analysis and recommendation
	3 Revision history

