

N3916: Polymorphic Memory Resources - r2 Page 1 of 40

Doc No: N3916
Date: 2014-02-14

Author: Pablo Halpern

 phalpern@halpernwightsoftware.com

Polymorphic Memory Resources - r2

Abstract

A significant impediment to effective memory management in C++ has been the
inability to use allocators in non-generic contexts. In large software systems, most of

the application program consists of non-generic procedural or object-oriented code
that is compiled once and linked many times. Allocators in C++, however, have

historically relied solely on compile-time polymorphism, and therefore have not been
suitable for use in vocabulary types, which are passed through interfaces between
separately-compiled modules, because the allocator type necessarily affects the type

of the object that uses it. This proposal builds upon the improvements made to
allocators in C++11 and describes a set of facilities for runtime polymorphic memory

resources that interoperate with the existing compile-time polymorphic allocators. In
addition, this proposal improves the interface and allocation semantics of some

library classes, such as std::function, that use type erasure for allocators.

Contents

1 Proposal history.. 2

1.1 Target .. 2

1.2 Changes from N3816 .. 2

1.3 Changes from N3726 .. 3

1.4 Changes from N3525 .. 3

2 Document Conventions .. 4

3 Motivation .. 4

4 Usage Example ... 5

5 Summary of Proposal ... 8

5.1 Namespace std::pmr ... 8

5.2 Abstract base class memory_resource ... 9

5.3 Class Template polymorphic_allocator<T> ... 9

5.4 Aliases for container classes ... 9

5.5 Class template resource_adaptor<Alloc> ... 10

5.6 Function new_delete_resource() .. 10

5.7 Function null_memory_resource() .. 10

5.8 Functions get_default_resource() and set_default_resource() 10

5.9 Standard memory resources ... 10

5.9.1 Classes synchronized_pool_resource and

unsynchronized_pool_resource .. 11

5.9.2 Class monotonic_buffer_resource.. 11

N3916: Polymorphic Memory Resources - r2 Page 2 of 40

5.10 Idiom for type-Erased Allocators ... 12

6 Impact on the standard .. 12

7 Implementation Experience .. 12

8 Formal Wording – new classes .. 12

8.1 Utility Class erased_type .. 13

8.2 Polymorphic Memory Resources ... 13

8.2.1 Header <experimental/memory_resource> synopsis 13

8.2.2 Class memory_resource .. 15

8.2.3 Class template polymorphic_allocator ... 17

8.2.4 Class-alias template resource_adaptor .. 21

8.2.5 Program-wide memory_resource objects ... 23

8.3 Classes synchronized_pool_resource and

unsynchronized_pool_resource ... 23

8.4 Class monotonic_buffer_resource .. 28

8.5 String Aliases Using Polymorphic Allocators ... 30

8.6 Containers Aliases Using Polymorphic Allocators .. 31

8.7 Type-erased allocators .. 34

9 Formal wording – Changes to classes in the standard 35

9.1 Type-erased allocator for function .. 36

9.2 Type-erased allocator for promise .. 37

9.3 Type-erased allocator for packaged_task ... 38

10 Appendix: Template Implementation Policy (Section 4.3 from N1850) 38

11 Acknowledgements .. 40

12 References ... 40

1 Proposal history

1.1 Target

The original version of this proposal (N3525) was first discussed in the Library
Evolution Working Group during the April 2013 meeting of WG21 in Bristol, UK. A
revised version of the proposal, N3726, was brought back to the LEWG at the

September 2013 meeting in Chicago. A straw poll of the LEWG both in Bristol and in
Chicago indicated strong support for the concepts in this proposal and a decision was
made to target these ideas for inclusion a forthcoming Library Fundamentals

Technical Specification (TS).

1.2 Changes from N3816

 Removed a number of tuning parameters from pool_options.

 Added a diagram of an example implementation of pool resources.

 Changed formal wording in the “Changes to classes in the standard” section to

conform to recent decisions for how such changes should be described in the
TS.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3525.pdf

N3916: Polymorphic Memory Resources - r2 Page 3 of 40

 Numerous small changes in response to a detailed technical review by the

library working group.

1.3 Changes from N3726

 Added rationale in a few places to justify design choices. Removed guidance

requests that have been already been addressed by the LEWG.

 Reorganized the formal wording into two sections: new classes and changes to

standard classes. The intention is that both would go into the TS, even though
the second section is not a pure extension.

 Moved all new classes and nested namespaces into the std::experimental

namespace.

 Changed allocator_resource to use the public-non-virtual-function-calls-

protected-virtual-function idiom.

 Clarified wording for various do_allocate and do_deallocate functions.

Specifically, changed alignment requirements to reflect the conditionally-

supported nature of superalignment. Also clarified that do_deallocate must

be called on a block that was allocated from the same (or equal) resource.

 Made resource_allocator_imp constructor explicit.

 Added a synchronized_pool_resource class in addition to the previously-

described unsynchronized_pool_resource class.

 Added some algorithmic description to the pool resources classes and added a

few tuning parameters so that users can determine when their use is
appropriate.

 Removed threshold for monotonic_buffer_resource.

 Added noexcept to operator== and operator!=. Changes static const to

constexpr.

1.4 Changes from N3525

 Simplified alignment requirements for memory_resource::allocate().

 Renamed the polyalloc namespace to pmr (Polymorphic Memory Resource).

 Simplified new_delete_resource and gave more leeway to the

implementation.

 Added null_memory_resource() function.

 Borrowed some ideas from Mark Boyall’s N3575 and mixed them with some

ideas from Bloomberg’s BSL project to yield the monotonic_buffer_resource

and unsynchronized_pool_resource concrete manifestations of polymorphic

memory resources.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3575.html
https://github.com/bloomberg/bsl

N3916: Polymorphic Memory Resources - r2 Page 4 of 40

 Specified allocator behavior for promise and packaged_task.

 There were some design changes proposed during discussion at the April 2013
meeting in Bristol. Although I elected not to make a number of those changes,

I did investigate each of them and, for those ideas that were rejected, I added
rationale for why they are the way they are.

 Wording improvements, especially in type-erased allocator section.

 Complete description of aliases for containers using polymorphic allocators.

2 Document Conventions

For the parts of this document that refer to changes in existing standard classes,
section names and numbers are relative to the October 2013 Working Draft, N3797.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with red

strikeouts for deleted text and green underlining for inserted text within the indented blue original text. When

describing the addition of entirely new sections, the underlining is omitted for ease of reading.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for committee opinions and guidance appear with light (yellow) shading. It

is expected that changes resulting from such guidance will be minor and will not
delay acceptance of this proposal in the same meeting at which it is presented.

3 Motivation

Back in 2005, I argued in N1850 that the C++03 allocator model hindered the

usability of allocators for managing memory use by containers and other objects that
allocate memory. Although N1850 conflated them, the proposals in that paper could

be broken down into two separate principles:

1. The allocator used to construct a container should also be used to construct
the elements within that container.

2. An object’s type should be independent of the allocator it uses to obtain
memory.

In subsequent proposals, these principles were separated. The first principle
eventually became known as the scoped allocator model and is embodied in the

scoped_allocator_adaptor template in Section [allocator.adaptor] (20.12) of the

2011 standard (and the same section of the current WP).

Unfortunately, creating a scoped allocator model that was compatible with C++03
and acceptable to the committee, as well as fixing other flaws in the allocator section

of the standard, proved a time-consuming task, and library changes implementing
the second principle were not proposed in time for standardization in 2011.

This paper proposes new library facilities to address the second principle. Section
4.3 of N1850 (excerpted in the appendix of this paper) gives a detailed description of
why it is undesirable to specify allocators as class template parameters. Key among

the problems of allocator template parameters is that they inhibit the use of

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3797.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1850.pdf

N3916: Polymorphic Memory Resources - r2 Page 5 of 40

vocabulary types by altering the type of specializations that would otherwise be the

same. For example, std::basic_string<char, char_traits<char>,

Alloc1<char>> and std::basic_string<char, char_traits<char>,

Alloc2<char>> are different types in C++ even though they are both string types

capable of representating the same set of (mathematical) values.

Some new vocabulary types introduced into the 2011 standard, including function,

promise, and future use type erasure (see [jsmith]) as a way to get the benefits of

allocators without the allocator contaminating their type. Type erasure is a powerful

technique, but has its own flaws, such as that the allocators can be propagated
outside of the scope in which they are valid and also that there is no way to query an

object for its type-erased allocator. More importantly, even if type erasure were a
completely general solution, it cannot be applied to existing container classes
because they would break backwards compatibility with the existing interfaces and

binary compatibility with existing implementations. Moreover, even for programmers
creating their own classes, unconstrained by existing usage, type-erasure is a

relatively complex and time-consuming technique and requires the creation of a

polymorphic class hierarchy much like the memory_resource and

resource_adaptor class hierarchy proposed for standardization below. Given that

type erasure is expensive to implement and not general even when it is feasible, we
must look to other solutions.

Fortunately, the changes to the allocator model made in 2011 (especially full support

for stateful allocators and scoped allocators) make this problem with allocators
relatively easy to solve in a more general way. The solution presented in this paper is

to create a uniform memory allocation base class, memory_resource, suitable for use

by template and non-template classes alike, and single allocator template,

polymorphic_allocator that wraps a pointer to a memory_resource and which

can be used ubiquitously for instantiating containers. The polymorphic_allocator

will, as its name suggests, have polymorphic runtime behavior. Thus objects of the
same type can have different effective allocators, achieving the goal of making an

object’s type independent of the allocator it uses to obtain memory, and thereby
allowing them to be interoperable when used with precompiled libraries.

4 Usage Example

Suppose we are processing a series of shopping lists, where a shopping list is a

container of strings, and storing them in a collection (a list) of shopping lists. Each
shopping list being processed uses a bounded amount of memory that is needed for a

short period of time, while the collection of shopping lists uses an unbounded
amount of memory and will exist for a longer period of time. For efficiency, we can
use a more time-efficient memory allocator based on a finite buffer for the temporary

shopping lists. However, this time-efficient allocator is not appropriate for the longer
lived collection of shopping lists. This example shows how those temporary shopping

lists, using a time-efficient allocator, can be used to populate the long lived collection
of shopping lists, using a general purpose allocator, something that would be
annoyingly difficult without the polymorphic allocators in this proposal.

http://www.cplusplus.com/forum/articles/18756/

N3916: Polymorphic Memory Resources - r2 Page 6 of 40

First, we define a class, ShoppingList, that contains a vector of strings. It is not a

template, so it has no Allocator template argument. Instead, it uses

memory_resource as a way to allow clients to control its memory allocation:

#include <polymorphic_allocator>

#include <vector>

#include <string>

class ShoppingList {

 // Define a vector of strings using polymorphic allocators. polymorphic_allocator is scoped,

 // so every element of the vector will use the same allocator as the vector itself.
 typedef std::pmr::string string_type;

 typedef std::pmr::vector<string_type> strvec_type;

 strvec_type m_strvec;

 public:

 // This type makes uses_allocator<ShoppingList, memory_resource*>::value true.

 typedef std::pmr::memory_resource* allocator_type;

 // Construct with optional memory_resource. If alloc is not specified, uses pmr::get_default_resource().
 ShoppingList(allocator_type alloc = nullptr)

 : m_strvec(alloc) { }

 // Copy construct with optional memory_resource.

 // If alloc is not specified, uses pmr::get_default_resource().
 ShoppingList(const ShoppingList& other) = default;

 ShoppingList(std::allocator_arg_t, allocator_type a,

 const ShoppingList& other)

 : m_strvec(other, a) { }

 allocator_type get_allocator() const

 { return m_strvec.get_allocator().resource(); }

 void add_item(const string_type& item){ m_strvec.push_back(item); }

 ...

};

bool operator==(const ShoppingList &a, const ShoppingList &b);

There was some discussion in LEWG as to whether it was appropriate to use

allocator_type as an alias for something that is not, strictly speaking, an allocator.

At the time, I sympathized with this objection and set out to see what the ripple effect

would be if a different typedef name were chosen in cases where a class uses

memory_resource directly. Unfortunately, the ripple effect is too large, in my

opinion, to justify this change. In particular, every class function or constructor that
propagates its allocator to a member or element would need to be reworded to use

argument names like allocator_or_resource and descriptions with duplicate

wording based on whether an allocator or resource pointer were passed in. In effect,
we would be undoing in English what we so carefully created in the interface, which
is the nearly complete interchangeability of allocators and memory resource pointers.

N3916: Polymorphic Memory Resources - r2 Page 7 of 40

Next, we create an allocator resource, FixedBufferResource, that allocates memory

from a fixed-size buffer supplied at construction. The FixedBufferResource is not

responsible for reclaiming this externally managed buffer, and consequently its

deallocate method and destructor are no-ops. This makes allocations and

deallocations very fast, and is useful when building up an object of a bounded size

that will be destroyed all at once (such as one of the short lived shopping lists in this
example).

class FixedBufferResource : public std::pmr::memory_resource

{

 void* m_next_alloc;

 std::size_t m_remaining;

 public:

 FixedBufferResource(void* buffer, std::size_t size)

 : m_next_alloc(buffer), m_remaining(size) { }

 protected:

 virtual void* do_allocate(std::size_t sz, std::size_t alignment)

 {

 if (std::align(alignment, sz, m_next_alloc, m_remaining))

 {

 void* ret = m_next_alloc;

 m_next_alloc = static_cast<char*>(m_next_alloc) + sz;

 return ret;

 }

 else

 throw std::bad_alloc();

 }

 virtual void do_deallocate(void*, std::size_t, std::size_t) { }

 virtual bool do_is_equal(std::pmr::memory_resource& other) const

 noexcept

 {

 return this == &other;

 }

};

Now, we use the ShoppingList and FixedBufferResource defined above to

demonstrate processing a short-lived shopping list into a collection of shopping lists.

We define a collection of shopping lists, folder, that will use the default allocator.

The temporary shopping list temporaryShoppingList will use the

FixedBufferResource to allocator memory, since the items being added to the list

are of a fixed size.

Note that the memory-resource library is designed so that the ShoppingList

constructor accepts a pointer to a memory_resource rather than a reference to a

memory_resource. It was noted that one common practice is to use references

rather than pointers in situations where a null pointer is out of contract. However,

there is a more compelling practice of avoiding constructors that take objects by
reference and store their addresses. We also want to avoid passing non-const

N3916: Polymorphic Memory Resources - r2 Page 8 of 40

references, as that, too, is usually considered bad practice (except in overloaded
operators).

std::pmr::list<ShoppingList> folder; // Default allocator resource

{

 char buffer[1024];

 FixedBufferResource buf_rsrc(&buffer, 1024);

 ShoppingList temporaryShoppingList(&buf_rsrc);

 assert(&buf_rsrc == temporaryShoppingList.get_allocator());

 temporaryShoppingList.add_item("salt");

 temporaryShoppingList.add_item("pepper");

 if (processShoppingList(temporaryShoppingList)) {

 folder.push_back(temporaryShoppingList);

 assert(std::pmr::get_default_resource() ==

 folder.back().get_allocator());

 }

 // temporaryShoppingList, buf_rsrc, and buffer go out of scope
}

Notice that the shopping lists within folder use the default allocator resource

whereas the shopping list temporaryShoppingList uses the short-lived but very fast

buf_rsrc. Despite using different allocators, you can insert

temporaryShoppingList into folder because they have the same ShoppingList

type. Also, while ShoppingList uses memory_resource directly, std::pmr::list,

std::pmr::vector, and std::pmr::string all use polymorphic_allocator. The

resource passed to the ShoppingList constructor is propagated to the vector and

each string within that ShoppingList. Similarly, the resource used to construct

folder is propagated to the constructors of the ShoppingLists that are inserted into

the list (and to the strings within those ShoppingLists). The

polymorphic_allocator template is designed to be almost interchangeable with a

pointer to memory_resource, thus producing a “bridge” between the template-policy

style of allocator and the polymorphic-base-class style of allocator.

5 Summary of Proposal

5.1 Namespace std::pmr

All new components introduced in this proposal are in a new namespace, pmr, nested

within namespace std.

The name, pmr, and all other identifiers introduced in this proposal are subject to

change. If this proposal is accepted, we can have the bicycle-shed discussion of
names. If you think of a better name, send a suggestion to the email address at the

top of this paper.

N3916: Polymorphic Memory Resources - r2 Page 9 of 40

5.2 Abstract base class memory_resource

An abstract base class, memory_resource, describes a memory resource from which

blocks can be allocated and deallocated. It provides functions allocate(),

deallocate(), and is_equal(), which call pure virtual functions do_allocate(),

do_deallocate(), and do_is_equal(), respectively. Derived classes of

memory_resource contain the machinery for actually allocating and deallocating

memory. Note that memory_resource, not being a template, operates at the level of

raw bytes rather than objects. The caller is responsible for constructing objects into
the allocated memory and destroying the objects before deallocating the memory.

5.3 Class Template polymorphic_allocator<T>

An instance of polymorphic_allocator<T> is a wrapper around a

memory_resource pointer that gives it a C++11 allocator interface. It is this adaptor

that achieves the goal of separating an object’s type from its allocator, especially for

existing templates that have an allocator template parameter. Two objects x and y of

type list<int, polymorphic_allocator<int>> have the same type, but may use

different memory resources.

Polymorphic allocators use scoped allocator semantics. Thus, a container containing

other containers or strings can be built to use the same memory resource throughout
if polymorphic allocators are used ubiquitously.

5.4 Aliases for container classes

There would be an alias in the pmr namespace for each standard container (except

array). The alias would not take an allocator parameter but instead would use

polymorphic_allocator<T> as the allocator. For example, the <vector> header

would contain the following declaration:

namespace std {

namespace pmr {

template <class T>

 using vector<T> = std::vector<T, polymorphic_allocator<T>>;

} // namespace pmr

} // namespace std

Thus, std::pmr::vector<int> would be a vector that uses a polymorphic allocator.

Consistent use of his aliases would allow std::pmr::vector<int> to be used as a

vocabulary type, interoperable with all other instances of std::pmr::vector<int>.

Within the LEWG, there was extensive discussion of the desirability of creating same-
name aliases within a nested namespace. Proponents argued that the name

std::pmr::vector would be cleaner and better accepted than pmr_vector or

std::pmr::pmr_vector. Opponents claimed that users were likely to run into

ambiguities if both using std; and using std::pmr; were present (though such an

N3916: Polymorphic Memory Resources - r2 Page 10 of 40

ambiguity would be noisy and thus easy to fix). A straw poll was strongly in favor of

leaving the aliases as proposed here (and warning users not to put using std::pmr

in their code).

5.5 Class template resource_adaptor<Alloc>

An instance of resource_adaptor<Alloc> is a wrapper around a C++11 allocator

type that gives it a memory_resource interface. In a sense, it is the complementary

adaptor to polymorphic_allocator<T>. The adapted allocator, Alloc, is required

to use normal (raw) pointers, rather than shared-memory pointers or pointers to
some other kind of weird memory. (I have floated the term, Euclidean Allocator, to

describe allocators such as these .) The resource_adaptor template is actually an

alias template designed such that resource_adaptor<X<T>> and

resource_adaptor<X<U>> are the same type for all parameters T and U.

5.6 Function new_delete_resource()

Returns a pointer to a memory resource that forwards all calls to allocate() and

deallocate() to global operator new() and operator delete(), respectively.

Every call to this function returns the same value. Since the resource is stateless, all

instances of such memory resources would be equivalent and there is never a need
for more than one instance in a program.

5.7 Function null_memory_resource()

Returns a pointer to a memory resource that always fails with a bad_alloc exception

when allocate() is called. This function is useful for setting the end of a chain of

memory resource, where one memory resource depends on another. In cases where
the first memory resource is not expected to exhaust its own pool of memory, the null

memory resource can be used to avoid accidentally allocating memory from the heap.
This function is also useful for testing, in situations such as the small-object
optimization, where an allocator must be supplied, but is not expected to be used.

5.8 Functions get_default_resource() and set_default_resource()

Namespace-scoped functions get_default_resource() and

set_default_resource() are used to get and set a specific memory resource to be

used by certain classes when an explicit resource is not specified to the class’s

constructor. The ability to change the default resource used when constructing an
object is extremely useful for testing and can also be useful for other purposes such
as preventing DoS attacks by limiting the maximum size of an allocation.

If set_default_resource() is never called, the “default default” memory resource is

new_delete_resource().

5.9 Standard memory resources

A new library facility for using different types of allocators is useful only to the extent

that such allocators actually exist. This proposal, therefore, includes a few memory

N3916: Polymorphic Memory Resources - r2 Page 11 of 40

resource classes that have broad usefulness in our experience. In the future, we may
propose additional resource classes for standardization, including a resource for

testing the memory allocation behavior of allocator-aware classes.

5.9.1 Classes synchronized_pool_resource and unsynchronized_pool_resource

The synchronized_pool_resource and unsynchronized_pool_resource classes

are general-purpose resources that own the allocated storage and free it on

destruction, even if deallocate is not called for some or all of the allocated blocks.

Efficiency is obtained by allocating memory in chunks from an “upstream” allocator
(often the default allocator) and by maximizing storage locality among separate

allocations. A logical data structure would be a set of object pools, but the actual
choice of data structure and algorithm is left to the QOI.

5.9.2 Class monotonic_buffer_resource

The monotonic_buffer_resource class is designed for very fast memory allocations

in situations where memory is used to build up a few objects and then is released all

at once when those objects go out of scope. Like unsynchronized_pool_resource, it

owns its memory and it is intended for single-threaded operation. The “monotonic” in
its name refers to the fact that its use of memory increases monotonically because its

deallocate() member is a no-op. By ignoring deallocation calls, this type of

memory resource can use extremely simple data structures that do not require
keeping track of individual allocated blocks. In addition, the user can provide it an

initial buffer from which to allocate memory. In many applications, this buffer can
reside on the stack, providing even more efficient allocation for small amounts of
memory.

A particularly good use for a monotonic_buffer_resource is to provide memory for

a local variable of container or string type. For example, the following code

concatenates two strings, looks for the word “hello” in the concatenated string, and
then discards the concatenated string after the word is found or not found. The
concatenated string is expected to be no more than 80 bytes long, so the code is

optimized for these short strings using a small monotonic_buffer_resource (but

will still work, using the default allocator as a backup resource, if the concatenated
string is over 80 bytes long):

bool find_hello(const std::pmr::string s1, const std::pmr::string s2)

{

 char buffer[80];

 monotonic_buffer_resource m(buffer, 80);

 std::pmr::string s(&m);

 s.reserve(s1.length() + s2.length());

 s += s1;

 s += s2;

 return s.find("hello") != pmr::string::npos;

 // s goes out of scope, then m and buffer go out of scope

}

N3916: Polymorphic Memory Resources - r2 Page 12 of 40

5.10 Idiom for type-Erased Allocators

Type-erased allocators, which are used by std::function, std::promise, and

std::packaged_task are already implemented internally using polymorphic

wrappers. In this proposal, the implicit use of polymorphic wrappers is made explicit
(reified). When one of these types is constructed, the caller may supply either a

C++11 allocator or a pointer to memory_resource. A new member function,

get_memory_resource() will return a pointer to the memory resource or, in the case

where a C++11 allocator was provided at construction, a pointer to a

resource_adaptor containing the original allocator. This pointer can be used to

create other objects using the same allocator. If no allocator or resource was

provided at construction, the value of get_default_resource() is used. To

complete the idiom, classes that use type-erased allocators will declare

typedef erased_type allocator_type;

indicating that the class uses allocators, but that the allocator is type-erased.

(erased_type is an empty class that exists solely for this purpose.)

6 Impact on the standard

The facilities proposed here are mostly pure extensions to the library except for minor

changes to the uses_allocator trait and to types that use type erasure for

allocators: function, packaged_task, future, promise and the upcoming

filepath type in the file-system TS [N3399]. No core language changes are proposed.

7 Implementation Experience

The implementation of the new memory_resource, resource_adaptor, and

polymorphic_allocator features is very straightforward. A prototype

implementation based on this paper is available at

http://www.halpernwightsoftware.com/WG21/polymorphic_allocator.tgz. The

prototype also includes a rework of the gnu function class template to add the

functionality described in this proposal. Most of the work in adapting function was

in adding allocator support without breaking binary (ABI) compatibility.

The memory_resource, polymorphic_allocator, monotonic_buffer_resource,

and unsynchronized_pool_resource classes described in this proposal are minor

variations of the facilities that have been in use at Bloomberg for over a decade (See
the BSL open-source library). These facilities have dramatically improved testability
of software (through the use of test resources) and provided performance benefits

when using special-purpose allocators such as arena allocators and thread-specific
allocators.

8 Formal Wording – new classes

Throughout this wording, Precondition clauses are distinguished from Requires
clauses. The former clause is used for run-time conditions that, if violated, would

produce undefined behavior. The latter clause is used for compile-time conditions

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3399.html
http://www.halpernwightsoftware.com/WG21/polymorphic_allocator.tgz
https://github.com/bloomberg/bsl

N3916: Polymorphic Memory Resources - r2 Page 13 of 40

which, if violated, would produce an ill-formed program. This pattern was used in
anticipation of an often discussed initiative to distinguish between these clauses in

the standard. However, if the committee decides not to pursue this distinction, or
decides to defer it until a later time, all Precondition clauses can be replaced with

Requires clauses by the editor.

8.1 Utility Class erased_type

Add a new section to the TS describing the following erased_type utility component:

u.1 Header <experimental/utility> synopsis [utility.syn]

#include <utility>

namespace std {

namespace experimental {

 // erased-type placeholder
 struct erased_type { };

Note to the editor: Other TS utility components from other papers would be merged
into this synopsis here

}

}

u.2 Class erased_type [erased.type]

namespace std {

namespace experimental {

 struct erased_type { };

}

}

The erased_type struct is an empty struct that serves as a placeholder for a type T in situations

where the actual type T is determined at runtime. For example, the nested type, allocator_type, is an alias

for erased_type in classes that use type-erased allocators (see [type.erased.allocator]).

Although the first (and currently only) use of erased_type is in the context of

memory allocation, the concept of type erasure is not allocator-specific. Since there

may be new uses for this type in the future, I elected to put it in <utility> instead

of in <memory>.

8.2 Polymorphic Memory Resources

Add a new subsection in the TS for the polymorphic memory resources.

w.x Polymorphic Memory Resources [memory.resource]

8.2.1 Header <experimental/memory_resource> synopsis

w.x.1 Header <experimental/memory_resource> synopsis [memory.resource.syn]

namespace std {

N3916: Polymorphic Memory Resources - r2 Page 14 of 40

namespace experimental {

namespace pmr {

 class memory_resource;

 bool operator==(const memory_resource& a,

 const memory_resource& b) noexcept;

 bool operator!=(const memory_resource& a,

 const memory_resource& b) noexcept;

 template <class Tp> class polymorphic_allocator;

 template <class T1, class T2>

 bool operator==(const polymorphic_allocator<T1>& a,

 const polymorphic_allocator<T2>& b) noexcept;

 template <class T1, class T2>

 bool operator!=(const polymorphic_allocator<T1>& a,

 const polymorphic_allocator<T2>& b) noexcept;

 // The name resource_adaptor_imp is for exposition only.

 template <class Allocator> class resource_adaptor_imp;

 template <class Allocator>

 using resource_adaptor = resource_adaptor_imp<

 allocator_traits<Allocator>::rebind_alloc<char>>;

 // Global memory resources

 memory_resource* new_delete_resource() noexcept;

 memory_resource* null_memory_resource() noexcept;

 // The default memory resource

 memory_resource* set_default_resource(memory_resource* r) noexcept;

 memory_resource* get_default_resource() noexcept;

 // Standard memory resources

 struct pool_options;

 class synchronized_pool_resource;

 class unsynchronized_pool_resource;

 class monotonic_buffer_resource;

} // namespace pmr

} // namespace experimental

} // namespace std

N3916: Polymorphic Memory Resources - r2 Page 15 of 40

8.2.2 Class memory_resource

w.x.2 Class memory_resource [memory.resource.class]

w.x.2.1 Class memory_resource overview [memory.resource.overview]

The memory_resource class is an abstract interface to an unbounded set of classes encapsulating memory

resources.

namespace std {

namespace experimental {

namespace pmr {

 class memory_resource

 {

 // For exposition only

 static constexpr size_t max_align = alignof(max_align_t);

 public:

 virtual ~memory_resource();

 void* allocate(size_t bytes, size_t alignment = max_align);

 void deallocate(void* p, size_t bytes,

 size_t alignment = max_align);

 bool is_equal(const memory_resource& other) const noexcept;

 protected:

 virtual void* do_allocate(size_t bytes, size_t alignment) = 0;

 virtual void do_deallocate(void* p, size_t bytes,

 size_t alignment) = 0;

 virtual bool do_is_equal(const memory_resource& other) const

 noexcept = 0;

 };

} // namespace pmr

} // namespace experimental

} // namespace std

The use of the pattern whereby a public non-virtual function calls a protected virtual

function enables default arguments to be expressed only once, in the abstract base
class. It has the additional benefit of allowing an implementation to instrument the

function or for the meaning of the function to evolve in the standard without breaking
existing derived classes. Finally, this pattern is convenient for specification because
it separates the public interface from the derived-class requirements.

w.x.2.2 memory_resource public member functions [memory.resource.public]

~memory_resource();

Effects: Destroys this memory_resource.

void* allocate(size_t bytes, size_t alignment = max_align);

N3916: Polymorphic Memory Resources - r2 Page 16 of 40

Effects: equivalent to return do_allocate(bytes, alignment);

void deallocate(void* p, size_t bytes, size_t alignment = max_align);

Effects: equivalent to do_deallocate(p, bytes, alignment);

bool is_equal(const memory_resource& other) const noexcept;

Effects: equivalent to return do_is_equal(other);

w.x.2.3 memory_resource protected virtual member functions [memory.resource.priv]

virtual void* do_allocate(size_t bytes, size_t alignment) = 0;

Preconditions: alignment shall be a power of two.

Returns: A derived class shall implement this function to return a pointer to allocated storage (3.7.4.2)

with a size of at least bytes. The returned storage is aligned to the specified alignment, if such

alignment is supported; otherwise it is aligned to max_align.

[Note to editor: 3.7.4.2 [basic.stc.dynamic.deallocation]does not seem to actually define allocated

storage, even though it is referenced in 3.8 [basic.life]. I could not find an actual definition of this term,

but from the usage, it seems to mean storage that does not currently have an object constructed in it.]

Throws: a derived class implementation shall throw an appropriate exception if it is unable to allocate

memory with the requested size and alignment.

virtual void do_deallocate(void* p, size_t bytes, size_t alignment) = 0;

Preconditions: p shall have been returned from a prior call to allocate(bytes, alignment) on a

memory resource equal to *this, and the storage at p shall not yet have been deallocated.

Effects: A derived class shall implement this function to dispose of allocated storage.

Throws: Nothing.

Although this function throws nothing, it is not declared noexcept because it has a

narrow interface. An implementation may choose to throw if a defensive test of the
preconditions fails.

virtual bool do_is_equal(const memory_resource& other) const noexcept = 0;

Returns: A derived class shall implement this function to return true if memory allocated from this

can be deallocated from other and vice-versa; otherwise it shall return false. [Note: The most-derived

type of other might not match the type of this. For a derived class, D, a typical implementation of

this function will compute dynamic_cast<D*>(&other) and go no further (i.e., return false) if it

returns nullptr. – end note]

For most classes derived from memory_resource, do_is_equal will return exactly

this == &other. I.e., most memory resources are equal only if they are the same

object. The resource_adaptor template (below) is a rare exception.

w.x.2.4 memory_resource equality [memory.resource.eq]

bool operator==(const memory_resource& a,

 const memory_resource& b) noexcept;

Returns: &a == &b || a.is_equal(b).

N3916: Polymorphic Memory Resources - r2 Page 17 of 40

The explicit optimization of testing for &a == &b means that the implementation shall

not invoke is_equal if the pointers compare equal. If this test were not explicit, then

this important optimization would actually be illegal because the number of calls to

is_equal is user-detectible.

bool operator!=(const memory_resource& a,

 const memory_resource& b) noexcept;

Returns: !(a == b).

8.2.3 Class template polymorphic_allocator

w.x.3 Class template polymorphic_allocator [polymorphic.allocator.class]

w.x.3.1 Class template polymorphic_allocator overview [polymorphic.allocator.overview]

A specialization of class template pmr::polymorphic_allocator conforms to the Allocator

requirements ([allocator.requirements] 17.6.3.5). Constructed with different memory resources, different

instances of the same specialization of pmr::polymorphic_allocator can exhibit entirely different

allocation behavior. This runtime polymorphism allows objects that use polymorphic_allocator to

behave as if they used different allocator types at run time even though they use the same static allocator type.

namespace std {

namespace experimental {

namespace pmr {

 template <class Tp>

 class polymorphic_allocator

 {

 memory_resource* m_resource; // For exposition only

 public:

 typedef Tp value_type;

 polymorphic_allocator() noexcept;

 polymorphic_allocator(memory_resource* r);

 polymorphic_allocator(const polymorphic_allocator& other)

 = default;

 template <class U>

 polymorphic_allocator(const polymorphic_allocator<U>& other)

 noexcept;

 polymorphic_allocator&

 operator=(const polymorphic_allocator& rhs) = default;

 Tp* allocate(size_t n);

 void deallocate(Tp* p, size_t n);

 template <typename T, typename... Args>

 void construct(T* p, Args&&... args);

N3916: Polymorphic Memory Resources - r2 Page 18 of 40

 // Specializations for pair using piecewise construction
 template <class T1, class T2, class... Args1, class... Args2>

 void construct(pair<T1,T2>* p, piecewise_construct_t,

 tuple<Args1...> x, tuple<Args2...> y);

 template <class T1, class T2>

 void construct(pair<T1,T2>* p);

 template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, U&& x, V&& y);

 template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p,

 const std::pair<U, V>& pr);

 template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, pair<U, V>&& pr);

 template <typename T>

 void destroy(T* p);

 // Return a default-constructed allocator (no allocator propagation)
 polymorphic_allocator select_on_container_copy_construction()

 const;

 memory_resource* resource() const;

 };

} // namespace pmr

} // namespace experimental

} // namespace std

w.x.3.2 polymorphic_allocator constructors [polymorphic.allocator.ctor]

polymorphic_allocator() noexcept;

Effects: Sets m_resource to get_default_resource().

polymorphic_allocator(memory_resource* r);

Precondition: r is non-null.

Effects: Sets m_resource to r.

Throws: nothing

Note: This constructor provides an implicit conversion from memory_resource*.

template <class U>

 polymorphic_allocator(const polymorphic_allocator<U>& other) noexcept;

Effects: sets m_resource to other.resource().

w.x.3.3 polymorphic_allocator member functions [polymorphic.allocator.mem]

Tp* allocate(size_t n);

Returns: Equivalent to static_cast<Tp*>(m_resource->allocate(n * sizeof(Tp),

alignof(Tp))).

N3916: Polymorphic Memory Resources - r2 Page 19 of 40

void deallocate(Tp* p, size_t n);

Preconditions: p was allocated from a memory resource, x, equal to *m_resource, using

x.allocate(n * sizeof(Tp), alignof(Tp)).

Effects: Equivalent to m_resource->deallocate(p, n * sizeof(Tp), alignof(Tp)).

Throws: Nothing.

template <class T, class... Args>

 void construct(T* p, Args&&... args);

Requires: uses-allocator construction of T with allocator this->resource() (see

[mods.allocator.uses]) and constructor arguments std::forward<Args>(args)... is well-

formed. [Note: uses-allocator construction is always well formed for types that do not use allocators. –

end note]

Effects: Construct a T object at p by uses-allocator construction with allocator this->resource()

([mods.allocator.uses]) and constructor arguments std::forward<Args>(args)....

Throws: Nothing unless the constructor for T throws.

template <class T1, class T2, class... Args1, class... Args2>

 void construct(pair<T1,T2>* p, piecewise_construct_t,

 tuple<Args1...> x, tuple<Args2...> y);

Effects: Let xprime be a tuple constructed from x according to the appropriate rule from the

following list. [Note: The following description can be summarized as constructing a

std::pair<T1,T2> object at p as if by separate uses-allocator construction with allocator this-

>resource() ([allocator.uses.construction] 20.6.7.2) of p->first using the elements of x and

p->second using the elements of y. – end note]:

— If uses_allocator<T1,memory_resource*>::value is false and

is_constructible<T,Args1...>::value is true, then xprime is x.

— Otherwise, if (uses_allocator<T1,memory_resource*>::value is true and
is_constructible<T1,allocator_arg_t,memory_resource*,Args1...

>::value) is true, then xprime is tuple_cat(make_tuple(allocator_arg, this-

>resource()), move(x)).

— Otherwise, if (uses_allocator<T1,memory_resource*>::value is true and

is_constructible<T1,Args1...,memory_resource*>::value) is true, then

xprime is tuple_cat(move(x), make_tuple(this->resource())).

— Otherwise the program is ill formed.

and let yprime be a tuple constructed from y according to the appropriate rule from the following list:

— If uses_allocator<T2,memory_resource*>::value is false and

is_constructible<T,Args2...>::value is true, then yprime is y.

— Otherwise, if (uses_allocator<T2,memory_resource*>::value is true and
is_constructible<T2,allocator_arg_t,memory_resource*,Args2...

>::value) is true, then yprime is tuple_cat(make_tuple(allocator_arg,

this->resource()), move(y)).

N3916: Polymorphic Memory Resources - r2 Page 20 of 40

— Otherwise, if (uses_allocator<T2,memory_resource*>::value is true and

is_constructible<T2,Args2...,memory_resource*>::value) is true, then

yprime is tuple_cat(move(y), make_tuple(this->resource())).

— Otherwise the program is ill formed.

then this function constructs a std::pair<T1,T2> object at p using constructor arguments
piecewise_construct, xprime, yprime.

The description above is almost identical to that in scoped_allocator_adaptor

because a polymorphic_allocator is scoped. It differs in that, instead of passing

*this down to the constructed object, it passes this->resource().

template <class T1, class T2>

 void construct(std::pair<T1,T2>* p);

Effects: equivalent to this->construct(p, piecewise_construct, tuple<>(),
tuple<>());

template <class T1, class T2, class U, class V>

 void construct(std::pair<T1,T2>* p, U&& x, V&& y);

Effects: equivalent to this->construct(p, piecewise_construct,
forward_as_tuple(std::forward<U>(x)), forward_as_tuple(std::forward<V>(y)));

template <class T1, class T2, class U, class V>

 void construct(std::pair<T1,T2>* p, const std::pair<U, V>& pr);

Effects: equivalent to this->construct(p, piecewise_construct,
forward_as_tuple(pr.first), forward_as_tuple(pr.second));

template <class T1, class T2, class U, class V>

 void construct(std::pair<T1,T2>* p, std::pair<U, V>&& pr);

Effects: equivalent to this->construct(p, piecewise_construct,
forward_as_tuple(std::forward<U>(pr.first)),

forward_as_tuple(std::forward<V>(pr.second)));

template <typename T>

 void destroy(T* p);

Effects: p->~T().

polymorphic_allocator select_on_container_copy_construction() const;

Returns: polymorphic_allocator().

memory_resource* resource() const;

Returns: m_resource.

w.x.3.4 polymorphic_allocator equality [polymorphic.allocator.eq]

template <class T1, class T2>

 bool operator==(const polymorphic_allocator<T1>& a,

 const polymorphic_allocator<T2>& b) noexcept;

Returns: *a.resource() == *b.resource().

template <class T1, class T2>

N3916: Polymorphic Memory Resources - r2 Page 21 of 40

 bool operator!=(const polymorphic_allocator<T1>& a,

 const polymorphic_allocator<T2>& b) noexcept;

Returns: ! (a == b)

8.2.4 Class-alias template resource_adaptor

w.x.4 template alias resource_adaptor [resource.adaptor]

w.x.4.1 resource_adaptor [resource.adaptor.overview]

An instance of resource_adaptor<Allocator> is an adaptor that wraps a memory_resource

interface around Allocator. In order that resource_adaptor<X<T>> and

resource_adaptor<X<U>> are the same type for any allocator template X and types T and U,

resource_adaptor<Allocator> is rendered as an alias to a class template such that Allocator is

rebound to a char value type in every specialization of the class template. The requirements on this class

template are defined below. The name resource_adaptor_imp is for exposition only and is not

normative, but the definition of the members of that class, whatever its name, are normative.

In addition to the Allocator requirements ([allocator.requirements] 17.6.3.4), the parameter to

resource_adaptor shall meet the following additional requirements:

- typename allocator_traits<Allocator>::pointer shall be identical to typename

allocator_traits<Allocator>::value_type*.

- typename allocator_traits<Allocator>::const_pointer shall be identical to

typename allocator_traits<Allocator>::value_type const*.

- typename allocator_traits<Allocator>::void_pointer shall be identical to void*.

- typename allocator_traits<Allocator>::const_void_pointer shall be identical to

void const*.

namespace std {

namespace experimental {

namespace pmr {

 // The name resource_adaptor_imp is for exposition only.
 template <class Allocator>

 class resource_adaptor_imp : public memory_resource {

 // for exposition only
 Allocator m_alloc;

 public:

 typedef Allocator allocator_type;

 resource_adaptor_imp() = default;

 resource_adaptor_imp(const resource_adaptor_imp&) = default;

 resource_adaptor_imp(resource_adaptor_imp&&) = default;

 explicit resource_adaptor_imp(const Allocator& a2);

 explicit resource_adaptor_imp(Allocator&& a2);

N3916: Polymorphic Memory Resources - r2 Page 22 of 40

 resource_adaptor_imp& operator=(const resource_adaptor_imp&)

 = default;

 allocator_type get_allocator() const { return m_alloc; }

 protected:

 virtual void* do_allocate(size_t bytes, size_t alignment);

 virtual void do_deallocate(void* p, size_t bytes,

 size_t alignment);

 virtual bool do_is_equal(const memory_resource& other) const

 noexcept;

 };

template <class Allocator>

 using resource_adaptor = typename resource_adaptor_imp<

 allocator_traits<Allocator>::template rebind_alloc<char>>;

} // namespace pmr

} // namespace experimental

} // namespace std

w.x.4.2 resource_adaptor_imp constructors [resource.adaptor.ctor]

explicit resource_adaptor_imp(const Allocator& a2);

Effects: Initializes m_alloc with a2.

explicit resource_adaptor_imp(Allocator&& a2);

Effects: Initializes m_alloc with std::move(a2).

w.x.4.3 resource_adaptor_imp member functions [resource.adaptor.mem]

void* do_allocate(size_t bytes, size_t alignment);

Returns: Allocated memory obtained by calling m_alloc.allocate. The size and alignment of the

allocated memory shall meet the requirements for a class derived from memory_resource

([memory.resource]).

void do_deallocate(void* p, size_t bytes, size_t alignment);

Requires: p was previously allocated using A.allocate, where A == m_alloc, and not

subsequently deallocated.

Effects: Returns memory to the allocator using m_alloc.deallocate().

bool do_is_equal(const memory_resource& other) const;

Let p be dynamic_cast<const resource_adaptor_imp*>(&other).

Returns: false if p is null, otherwise the value of m_alloc == p->m_alloc.

N3916: Polymorphic Memory Resources - r2 Page 23 of 40

8.2.5 Program-wide memory_resource objects

w.x.5 Access to program-wide memory_resource objects [memory.resource.global]

memory_resource* new_delete_resource() noexcept;

Returns: A pointer to a static-duration object of a type derived from memory_resource that can serve

as a resource for allocating memory using ::operator new and ::operator delete. The same

value is returned every time this function is called. For return value p and memory resource r,

p->is_equal(r) returns &r == p.

memory_resource* null_memory_resource() noexcept;

Returns: A pointer to a static-duration object of a type derived from memory_resource for which

allocate() always throws bad_alloc and for which deallocate() has no effect. The same

value is returned every time this function is called. For return value p and memory resource r,

p->is_equal(r) returns &r == p.

A memory resource may obtain memory using another resource for replenishing its

pool. The null memory resource is useful for situations where the original pool is not
expected to become exhausted.

The default memory resource pointer is a pointer to a memory resource that is used by certain facilities when an

explicit memory resource is not supplied through the interface. Its initial value is the return value of

new_delete_resource().

memory_resource* set_default_resource(memory_resource* r) noexcept;

Effects: If r is non-null, sets the value of the default memory resource pointer to r, otherwise sets the

default memory resource pointer to new_delete_resource().

Post-condition: get_default_resource() == r.

Returns: The previous value of the default memory resource pointer.

Remarks: Calling the set_default_resource and get_default_resource functions shall not

incur a data race. A call to the set_default_resource function shall synchronize with subsequent

calls to the set_default_resource and get_default_resource functions.

These synchronization requirements are the same as for set/get_new_handler and
set/get_terminate.

memory_resource* get_default_resource() noexcept;

Returns: The current value of the default memory resource pointer.

8.3 Classes synchronized_pool_resource and unsynchronized_pool_resource

w.x.6 Pool resource classes [pool.resource]

w.x.6.1 Classes synchronized_pool_resource and unsynchronized_pool_resource

[pool.resource.overview]

The synchronized_pool_resource and unsynchronized_pool_resource classes (collectively,

pool resource classes) are general-purpose memory resources having the following qualities:

— Each resource owns the allocated memory, and frees it on destruction – even if deallocate has not

been called for some of the allocated blocks.

N3916: Polymorphic Memory Resources - r2 Page 24 of 40

— A pool resource (see Figure 1) consists of a collection of pools, serving requests for different block

sizes. Each individual pool manages a collection of chunks that are in turn divided into blocks of

uniform size, returned via calls to do_allocate. Each call to do_allocate(size,

alignment) is dispatched to the pool serving the smallest blocks accommodating at least size

bytes.

— When a particular pool is exhausted, allocating a block from that pool results in the allocation of an

additional chunk of memory from the upstream allocator (supplied at construction), thus replenishing

the pool. With each successive replenishment, the chunk size obtained increases geometrically. [Note:

By allocating memory in chunks, the pooling strategy increases the chance that consecutive allocations

will be close together in memory. – end note]

— Allocation requests that exceed the largest block size of any pool are fulfilled directly from the

upstream allocator.

— A pool_options struct may be passed to the pool resource constructors to tune the largest block size

and the maximum chunk size.

[Example: Figure 1 shows a possible data structure that implements a pool resource.

Figure 1: pool resource

– end example]

A synchronized_pool_resource may be accessed from multiple threads without external

synchronization and may have thread-specific pools to reduce synchronization costs. An

unsynchronized_pool_resource class may not be accessed from multiple threads simultaneously and

thus avoids the cost of synchronization entirely in single-threaded applications.

namespace std {

namespace experimental {

namespace pmr {

N3916: Polymorphic Memory Resources - r2 Page 25 of 40

 struct pool_options

 {

 size_t max_blocks_per_chunk = 0;

 size_t largest_required_pool_block = 0;

 };

By bundling the options together into a struct, the interface is substantially more

future-proof than if the options were specified individually in the constructors. It is

much easier to add (named) fields to a struct than to overload on a list of (unnamed)

arguments to a constructor.

 class synchronized_pool_resource : public memory_resource

 {

 public:

 synchronized_pool_resource(const pool_options& opts,

 memory_resource* upstream);

 synchronized_pool_resource()

 : synchronized_pool_resource(pool_options(),

 get_default_resource()) { }

 explicit synchronized_pool_resource(memory_resource* upstream)

 : synchronized_pool_resource(pool_options(), upstream) { }

 explicit synchronized_pool_resource(pool_options& opts)

 : synchronized_pool_resource(opts,

 get_default_resource()) { }

 synchronized_pool_resource(

 const synchronized_pool_resource&) = delete;

 virtual ~synchronized_pool_resource();

 synchronized_pool_resource& operator=(

 const synchronized_pool_resource&) = delete;

 void release();

 memory_resource* upstream_resource() const;

 pool_options options() const;

 protected:

 virtual void* do_allocate(size_t bytes, size_t alignment);

 virtual void do_deallocate(void* p, size_t bytes,

 size_t alignment);

 virtual bool do_is_equal(const memory_resource& other) const

 noexcept;

 };

 class unsynchronized_pool_resource : public memory_resource

 {

 public:

 unsynchronized_pool_resource(const pool_options& opts,

N3916: Polymorphic Memory Resources - r2 Page 26 of 40

 memory_resource* upstream);

 unsynchronized_pool_resource()

 : unsynchronized_pool_resource(pool_options(),

 get_default_resource()) { }

 explicit unsynchronized_pool_resource(memory_resource* upstream)

 : unsynchronized_pool_resource(pool_options(), upstream) { }

 explicit unsynchronized_pool_resource(const pool_options& opts)

 : unsynchronized_pool_resource(opts,

 get_default_resource()) { }

 unsynchronized_pool_resource(

 const unsynchronized_pool_resource&) = delete;

 virtual ~unsynchronized_pool_resource();

 unsynchronized_pool_resource& operator=(

 const unsynchronized_pool_resource&) = delete;

 void release();

 memory_resource* upstream_resource() const;

 pool_options options() const;

 protected:

 virtual void* do_allocate(size_t bytes, size_t alignment);

 virtual void do_deallocate(void* p, size_t bytes,

 size_t alignment);

 virtual bool do_is_equal(const memory_resource& other) const

 noexcept;

 };

} // namespace pmr

} // namespace experimental

} // namespace std

w.x.6.2 pool_options data members

The members of pool_options comprise a set of constructor options for pool resources. The effect of each

option on the pool resource behavior is described below:

size_t max_blocks_per_chunk;

The maximum number of blocks that will be allocated at once from the upstream memory resource to

replenish a pool.

If the value of max_blocks_per_chunk is zero or is greater than an implementation-defined limit,

that limit is used instead. The implementation may choose to use a smaller value than is specified in this

field and may use different values for different pools.

size_t largest_required_pool_block;

The largest allocation size that is required to be fulfilled using the pooling mechanism. Attempts to

allocate a single block larger than this threshold will be allocated directly from the upstream memory

N3916: Polymorphic Memory Resources - r2 Page 27 of 40

resource. If largest_required_pool_block is zero or is greater than an implementation-defined

limit, that limit is used instead. The implementation may choose a pass-through threshold larger than

specified in this field.

w.x.6.3 pool resource constructors and destructors [pool.ctor]

synchronized_pool_resource(const pool_options& opts,

 memory_resource* upstream);

unsynchronized_pool_resource(const pool_options& opts,

 memory_resource* upstream);

Precondition: upstream is the address of a valid memory resource.

Effects: Constructs a pool resource object that will obtain memory from upstream whenever the pool

resource is unable to satisfy a memory request from its own internal data structures. The resulting object

will hold a copy of upstream, but will not own the resource to which upstream points. [Note: The

intention is that calls to upstream->allocate() will be substantially fewer than calls to

this->allocate() in most cases. – end note] The behavior of the pooling mechanism is tuned

according to the value of the opts argument.

Throws: Nothing unless upstream->allocate() throws. It is unspecified if or under what

conditions this constructor calls upstream->allocate().

virtual ~synchronized_pool_resource();

virtual ~unsynchronized_pool_resource();

Effects: calls this->release().

w.x.6.4 pool resource members [pool.mem]

void release();

Effects: Calls upstream_resource()->deallocate() as necessary to release all allocated

memory. [Note: memory is released back to upstream_resource() even if deallocate has not

been called for some of the allocated blocks. – end note]

memory_resource* upstream_resource() const;

Returns: The value of the upstream argument provided to the constructor of this object.

pool_options options() const;

Returns: The options that control the pooling behavior of this resource. The values in the returned

struct may differ from those supplied to the pool resource constructor in that values of zero will be

replaced with implementation-defined defaults and sizes may be rounded to unspecified granularity.

virtual void* do_allocate(size_t bytes, size_t alignment);

Returns: A pointer to allocated storage (3.7.4.2) with a size of at least bytes. The size and alignment

of the allocated memory shall meet the requirements for a class derived from memory_resource

([memory.resource]).

Effects: If the pool selected for a block of size bytes is unable to satisfy the memory request from its

own internal data structures, it will call upstream_resource()->allocate() to obtain more

memory. If bytes is larger than that which the largest pool can handle, then memory will be allocated

using upstream_resource()->allocate().

Throws: Nothing unless upstream_resource()->allocate() throws.

N3916: Polymorphic Memory Resources - r2 Page 28 of 40

virtual void do_deallocate(void* p, size_t bytes, size_t alignment);

Effects: Return the memory at p to the pool. It is unspecified if or under what circumstances this

operation will result in a call to upstream_resource()->deallocate().

Throws: Nothing

virtual bool

unsynchronized_pool_resource::do_is_equal(const memory_resource& other)

 const noexcept;

Returns: this == dynamic_cast<unsynchronized_pool_resource*>(&other).

virtual bool

synchronized_pool_resource::do_is_equal(const memory_resource& other)

 const noexcept;

Returns: this == dynamic_cast<synchronized_pool_resource*>(&other).

8.4 Class monotonic_buffer_resource

w.x.7 Class monotonic_buffer_resource [monotonic.buffer]

w.x.7.1 Class monotonic_buffer_resource overview [monotonic.buffer]

A monotonic_buffer_resource is a special-purpose memory resource intended for very fast memory

allocations in situations where memory is used to build up a few objects and then is released all at once when

the memory resource object is destroyed. It has the following qualities:

— A call to deallocate has no effect, thus the amount of memory consumed increases monotonically

until the resource is destroyed.

— The program can supply an initial buffer, which the allocator uses to satisfy memory requests.

— When the initial buffer (if any) is exhausted, it obtains additional buffers from an upstream memory

resource supplied at construction. Each additional buffer is larger than the previous one, following a

geometric progression.

— It is intended for access from one thread of control at a time. Specifically, calls to allocate and

deallocate do not synchronize with one another.

— It owns the allocated memory and frees it on destruction, even if deallocate has not been called for

some of the allocated blocks.

namespace std {

namespace experimental {

namespace pmr {

 class monotonic_buffer_resource : public memory_resource

 {

 memory_resource* upstream_rsrc; // exposition only

 void* current_buffer; // exposition only

 size_t next_buffer_size; // exposition only

 public:

 explicit monotonic_buffer_resource(memory_resource* upstream);

 monotonic_buffer_resource(size_t initial_size,

 memory_resource* upstream);

N3916: Polymorphic Memory Resources - r2 Page 29 of 40

 monotonic_buffer_resource(void* buffer, size_t buffer_size,

 memory_resource* upstream);

 monotonic_buffer_resource()

 : monotonic_buffer_resource(get_default_resource()) { }

 explicit monotonic_buffer_resource(size_t initial_size)

 : monotonic_buffer_resource(initial_size,

 get_default_resource()) { }

 monotonic_buffer_resource(void* buffer, size_t buffer_size)

 : monotonic_buffer_resource(buffer, buffer_size,

 get_default_resource()) { }

 monotonic_buffer_resource(const monotonic_buffer_resource&)

 = delete;

 virtual ~monotonic_buffer_resource();

 monotonic_buffer_resource operator=(

 const monotonic_buffer_resource&) = delete;

 void release();

 memory_resource* upstream_resource() const;

 protected:

 virtual void* do_allocate(size_t bytes, size_t alignment);

 virtual void do_deallocate(void* p, size_t bytes,

 size_t alignment);

 virtual bool do_is_equal(const memory_resource& other) const

 noexcept;

 };

} // namespace pmr

} // namespace experimental

} // namespace std

w.x.7.2 monotonic_buffer_resource constructor and destructor [monotonic.buffer.ctor]

explicit monotonic_buffer_resource(memory_resource* upstream);

monotonic_buffer_resource(size_t initial_size, memory_resource* upstream);

Preconditions: upstream shall be the address of a valid memory resource; initial_size, if

specified, shall be greater than zero.

Effects: Sets upstream_rsrc to upstream and current_buffer to nullptr. If

initial_size is specified, sets next_buffer_size to at least initial_size; otherwise sets

next_buffer_size to an implementation-defined size.

monotonic_buffer_resource(void* buffer, size_t buffer_size,

 memory_resource* upstream);

Preconditions: upstream shall be the address of a valid memory resource. buffer_size shall be no

larger than the number of bytes in buffer.

N3916: Polymorphic Memory Resources - r2 Page 30 of 40

Effects: Sets upstream_rsrc to upstream, current_buffer to buffer, and

next_buffer_size to initial_size (but not less than 1), then increases next_buffer_size

by an implementation-defined growth factor (which need not be integral).

~monotonic_buffer_resource();

Effects: Calls this->release().

w.x.7.3 monotonic_buffer_resource members [monotonic.buffer.mem]

void release();

Effects: Calls upstream_rsrc->deallocate() as necessary to release all allocated memory.

[Note: memory is released back to upstream_rsrc even if some blocks that were allocated from

this have not been deallocated from this. – end note]

memory_resource* upstream_resource() const;

Returns: the value of upstream_rsrc.

void* do_allocate(size_t bytes, size_t alignment);

Returns: A pointer to allocated storage (3.7.4.2) with a size of at least bytes. The size and alignment

of the allocated memory shall meet the requirements for a class derived from memory_resource

([memory.resource]).

Effects: If the unused space in current_buffer can fit a block with the specified bytes and

alignment, then allocate the return block from current_buffer; otherwise set

current_buffer to upstream_rsrc->allocate(n, m), where n is not less than

max(bytes, next_buffer_size) and m is not less than alignment, and increase

next_buffer_size by an implementation-defined growth factor (which need not be integral), then

allocate the return block from the newly-allocated current_buffer.

Throws: Nothing unless upstream_rsrc->allocate() throws.

void do_deallocate(void* p, size_t bytes, size_t alignment);

Effects: None

Throws: Nothing

Remarks: Memory used by this resource increases monotonically until its destruction.

bool do_is_equal(const memory_resource& other) const noexcept;

Returns: this == dynamic_cast<monotonic_buffer_resource*>(&other).

8.5 String Aliases Using Polymorphic Allocators

Create an experimental extension to <string> to add variations of the standard

string types that allocate memory using pmr::polymorphic_allocator:

w.x.8 Header <experimental/string> synopsis:

#include <string>

namespace std {

namespace experimental {

namespace pmr {

N3916: Polymorphic Memory Resources - r2 Page 31 of 40

// basic_string using polymorphic allocator in namespace pmr
template <class charT, class traits = char_traits<charT>>

 using basic_string =

 std::basic_string<charT, traits, polymorphic_allocator<charT>>;

// basic_string typedef names using polymorphic allocator in namespace

// std::experimental::pmr
typedef basic_string<char> string;

typedef basic_string<char16_t> u16string;

typedef basic_string<char32_t> u32string;

typedef basic_string<wchar_t> wstring;

} // namespace std

} // namespace pmr

} // namespace experimental

With this change pmr::wstring is a wstring that uses a polymorphic allocator.

8.6 Containers Aliases Using Polymorphic Allocators

Create experimental extensions to most of the container headers to add variations of

the standard containers that allocate memory using pmr::polymorphic_allocator:

w.x.9 Header <experimental/deque> synopsis [deque.syn]

#include <deque>

namespace std {

namespace experimental {

namespace pmr {

 template <class T>

 using deque = std::deque<T,polymorphic_allocator<T>>;

}

}

}

w.x.10 Header <experimental/forward_list> synopsis [forward_list.syn]

#include <forward_list>

namespace std {

namespace experimental {

namespace pmr {

 template <class T>

 using forward_list =

 std::forward_list<T,polymorphic_allocator<T>>;

}

}

}

N3916: Polymorphic Memory Resources - r2 Page 32 of 40

w.x.11 Header <experimental/list> synopsis [list.syn]

#include <list>

namespace std {

namespace experimental {

namespace pmr {

 template <class T>

 using list = std::list<T,polymorphic_allocator<T>>;

}

}

}

w.x.12 Header <experimental/vector> synopsis [vector.syn]

#include <vector>

namespace std {

namespace experimental {

namespace pmr {

 template <class T>

 using vector = std::vector<T,polymorphic_allocator<T>>;

}

}

}

w.x.13 Header <experimental/map> synopsis [map.syn]

#include <map>

namespace std {

namespace experimental {

namespace pmr {

 template <class Key, class T, class Compare = less<Key>>

 using map = std::map<Key, T, Compare,

 polymorphic_allocator<pair<const Key,T>>>;

 template <class Key, class T, class Compare = less<Key>>

 using multimap = std::multimap<Key, T, Compare,

 polymorphic_allocator<pair<const Key,T>>>;

}

}

}

w.x.14 Header <experimental/set> synopsis [set.syn]

#include <set>

namespace std {

N3916: Polymorphic Memory Resources - r2 Page 33 of 40

namespace experimental {

namespace pmr {

 template <class Key, class Compare = less<Key>>

 using set = std::set<Key, Compare,

 polymorphic_allocator<Key>>;

 template <class Key, class Compare = less<Key>>

 using multiset = std::multiset<Key, Compare,

 polymorphic_allocator<Key>>;

}

}

}

w.x.15 Header <experimental/unordered_map> synopsis [unordered_map.syn]

#include <unordered_map>

namespace std {

namespace experimental {

namespace pmr {

 template <class Key, class T,

 class Hash = hash<Key>,

 class Pred = std::equal_to<Key>>

 using unordered_map =

 std::unordered_map<Key, T, Hash, Pred,

 polymorphic_allocator<pair<const Key,T>>>;

 template <class Key, class T,

 class Hash = hash<Key>,

 class Pred = std::equal_to<Key>>

 using unordered_multimap =

 std::unordered_multimap<Key, T, Hash, Pred,

 polymorphic_allocator<pair<const Key,T>>>;

}

}

}

w.x.16 Header <experimental/unordered_set> synopsis [unordered_set.syn]

#include <unordered_set>

namespace std {

namespace experimental {

namespace pmr {

 template <class Key,

 class Hash = hash<Key>,

 class Pred = equal_to<Key>>

 using unordered_set =

N3916: Polymorphic Memory Resources - r2 Page 34 of 40

 std::unordered_set<Key, Hash, Pred,

 polymorphic_allocator<Key>>;

 template <class Key,

 class Hash = hash<Key>,

 class Pred = equal_to<Key>>

 using unordered_multiset =

 std::unordered_multiset<Key, Hash, Pred,

 polymorphic_allocator<Key>>;

}

}

}

w.x.16 Header <experimental/regex> synopsis [regex.syn]

#include <regex>

#include <exerimental/string>

namespace std {

namespace experimental {

namespace pmr {

 template <class BidirectionalIterator>

 using match_results =

 std::match_results<BidirectionalIterator,

 polymorphic_allocator<sub_match<BidirectionalIterator>>>;

 typedef match_results<const char*> cmatch;

 typedef match_results<const wchar_t*> wcmatch;

 typedef match_results<string::const_iterator> smatch;

 typedef match_results<wstring::const_iterator> wsmatch;

}

}

}

8.7 Type-erased allocators

Insert a new section into the TS as follows:

x.y.z Type-erased allocator [type.erased.allocator]

A type-erased allocator is an allocator or memory resource, alloc, used to allocate internal data structures for

an object X of type C, but where C is not dependent on the type of alloc. Once alloc has been supplied to X

(typically as a constructor argument), alloc can be retrieved from X only as a pointer rptr of static type

std::experimental::pmr::memory_resource* ([memory.resource.class]). The process by which

rptr is computed from alloc depends on the type of alloc as described in Table Q:

Table Q – Computed memory_resource for type-erased allocator

If the type of alloc is then the value of rptr is

N3916: Polymorphic Memory Resources - r2 Page 35 of 40

If the type of alloc is then the value of rptr is

non-existent – no alloc specified The value of

experimental::pmr::get_default_resource() at the

time of construction.
nullptr_t The value of

experimental::pmr::get_default_resource() at the

time of construction.

a pointer type convertible to
pmr::memory_resource*

static_cast<

experimental::pmr::memory_resource*>(alloc)

pmr::polymorphic_allocator<U> alloc.resource()

any other type meeting the Allocator

requirements ([allocator.requirements])

a pointer to a value of type

experimental::pmr::resource_adaptor<A> where A is

the type of alloc. rptr remains valid only for the lifetime of

X.

None of the above The program is ill-formed.

Additionally, class C shall meet the following requirements:

- C::allocator_type shall be identical to std::experimental::erased_type.

- X.get_memory_resource() returns rptr.

9 Formal wording – Changes to classes in the standard

Although this proposal is targeted towards a TS, there are a small number of C++14

standard library classes that would need to be adjusted in order for users of the TS to
get maximum value from the features proposed here. These changes are expressed
as deltas from the standard, but new classes are still within the experimental

namespace. Implementers might wish have a macro to turn these new features on or
off, depending on whether TS functionality is desired. (Such a macro could be added

to the feature-test recommendations listed in N3694.)

Note: the section numbers below are relative to the October 2013 Committee Draft,
N3797 and will need to be updated when the FDIS and eventually the IS is issued.

Add the following section to the TS:

t.u Departure from the ISO standard [standard.departure]

t.u.1 In general

Although most of the facilities described in this technical specification are strictly supplements to the ISO C++

Standard, a few facilities depend on extensions to entities within the standard itself. The following sections

describe these extensions by quoting the affected parts of the standard and using underlining to represent added

text and strike-through to represent deleted text.

The description above is a placeholder for text that might appear only once within the
TS. I expect the project editors to edit or replace it as appropriate.

t.u.2 Uses-allocator construction [mods.allocator.uses]

The following changes to the uses_allocator trait and to the description of uses-allocator construction

allow a memory_resource pointer act as an allocator in many circumstances. [Note: Existing programs that

uses standard allocators would be unaffected by this change. – end note]

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3694.htm
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3797.pdf

N3916: Polymorphic Memory Resources - r2 Page 36 of 40

20.7.7 uses_allocator [allocator.uses]

20.7.7.1 uses_allocator trait [allocator.uses.trait]

template <class T, class Alloc> struct uses_allocator;

Remark: automatically detects whether T has a nested allocator_type that is convertible from

Alloc. Meets the BinaryTypeTrait requirements (20.9.1). The implementation shall provide a

definition that is derived from true_type if a type T::allocator_type exists and either

is_convertible<Alloc, T::allocator_type>::value != false or

T::allocator_type is an alias for std::experimental::erased_type

([utility.erased_type]), otherwise it shall be derived from false_type. A program may specialize

this template to derive from true_type for a user-defined type T that does not have a nested

allocator_type but nonetheless can be constructed with an allocator where either:

— the first argument of a constructor has type allocator_arg_t and the second argument has

type Alloc or

— the last argument of a constructor has type Alloc.

20.7.7.2 uses-allocator construction [allocator.uses.construction]

Uses-allocator construction with allocator Alloc refers to the construction of an object obj of type T,

using constructor arguments v1, v2, ..., vN of types V1, V2, ..., VN, respectively, and an

allocator alloc of type Alloc, where Alloc either (1) meets the requirements of an allocator

([allocator.requirements]), or (2) is a pointer type convertible to

std::experimental::pmr::memory_resource* ([polymorphic.allocator]), according to the

following rules:

The new text for Uses-allocator construction is not strictly necessary, but it is

intended to clarify that two different kinds of thing can be passed as alloc in uses-

allocator construction.

9.1 Type-erased allocator for function

t.u.3 Additions to std::function [mods.func.wrap]

In section 20.9.11.2 [func.wrap.func], the following declarations are added as public members of class template

function:

 typedef experimental::erased_type allocator_type;

 experimental::pmr::memory_resource* get_memory_resource();

In section 20.9.11.2.1 [func.wrap.func.con], the introductory paragraph is changed as follows, giving the

constructors of the function class template support for a type-erased allocator:

When a function constructor that takes a first argument of type allocator_arg_t is invoked, the

second argument is treated as a type-erased allocator ([type.erased.allocator]). shall have a type that

conforms to the requirements for Allocator (Table 17.6.3.5). A copy of the allocator argument is used to

allocate memory, if necessary, for the internal data structures of the constructed function object. If the

constructor moves or makes a copy of a function object (including an instance of the function class

template), then that move or copy is performed by using-allocator construction with allocator

get_memory_resource().

N3916: Polymorphic Memory Resources - r2 Page 37 of 40

In section 20.9.11.2.1 [func.wrap.func.con], the assignment operators are enhanced to take the type-erased

allocator into account:

function& operator=(const function& f);

Effects: function(allocator_arg, get_memory_resource(),
f).swap(*this);

Returns: *this

function& operator=(function&& f);

Effects: Replaces the target of *this with the target of f. function(allocator_arg,
get_memory_resource(), std::move(f)).swap(*this);

Returns: *this

function& operator=(nullptr_t);

Effects: If *this != NULL, destroys the target of this.

Postconditions: !(*this).

Returns: *this

template<class F> function& operator=(F&& f);

Effects: function(allocator_arg, get_memory_resource(),
std::forward<F>(f)).swap(*this);

Returns: *this

template<class F> function& operator=(reference_wrapper<F> f)

noexcept;

Effects: function(allocator_arg, get_memory_resource(),
f).swap(*this);

Returns: *this

In section 20.9.11.2.2 [func.wrap.func.mod] a precondition is added to the definition of swap:

void swap(function& other) noexcept;

Precondition: this->get_memory_resource() == other->get_memory_resource().

Effects: Interchanges the targets of *this and other.

9.2 Type-erased allocator for promise

t.u.4 Additions to std::promise [mods.futures.promise]

In section 30.6.5 [futures.promise], the following declarations are added as public members of class template

promise:

 typedef experimental::erased_type allocator_type;

 experimental::pmr::memory_resource* get_memory_resource();

and the following paragraph is inserted before the first (introductory) paragraph of the section.

When a promise constructor that takes a first argument of type allocator_arg_t is invoked, the

second argument is treated as a type-erased allocator ([type.erased.allocator]).

N3916: Polymorphic Memory Resources - r2 Page 38 of 40

9.3 Type-erased allocator for packaged_task

t.u.5 Additions to std::packaged_task [mods.futures.task]

In section 30.6.9 [futures.task], the following declarations are added as public members of class template

packaged_task:

 typedef experimental::erased_type allocator_type;

 experimental::pmr::memory_resource* get_memory_resource();

and the following paragraph is inserted before the first (introductory) paragraph of the section.

When a packaged_task constructor that takes a first argument of type allocator_arg_t is invoked,

the second argument is treated as a type-erased allocator ([type.erased.allocator]).

10 Appendix: Template Implementation Policy (Section 4.3 from N1850)

The first problem most people see with the allocator mechanism as specified in the
Standard is that the choice of allocator affects the type of a container. Consider, for

example, the following type and object definitions:

typedef std::list<int, std::allocator<int> > NormIntList;

typedef std::list<int, MyAllocator<int> > MyIntList;

NormIntList list1(5, 3);

MyIntList list2(5, 3);

list1 and list2 are both lists of integers, and both contain five copies of the

number 3. Most people would say that they have the same value. Yet they belong to
different types and you cannot substitute one for the other. For example, assume we
have a function that builds up a list:

int build(std::list<int>& theList);

Because we did not specify an allocator parameter for the argument type, the default,

std::allocator<int> is used. Thus, theList is a reference to the same type as

list1. We can use build to put values into list1, but we cannot use it to put

values into list2 because MyIntList is not compatible with std::list<int>. The

following operations are also not supported:

list1 == list2

list1 = list2

MyIntList list3(list1);

NormIntList* p = &list2;

// etc.

Now, some would argue that the solution to the build function problem is to

templatize build:

template <typename Alloc>

int build(std::list<int, Alloc>& theList);

or, better yet:

template <typename OutputIterator>

int build(OutputIterator theIter);

N3916: Polymorphic Memory Resources - r2 Page 39 of 40

Both of these templatized solutions have their place, but both add substantial
complexity to the development process. Templates, if overused, lead to long compile

times and, sometimes, bloated code. If build were a template and passed its

arguments on to other functions, those functions would also need to be templates.
This chained instantiation of templates produces a deep compile-time dependency

such that a change to any of those modules would result in a recompilation of a
significant part of the system. For thorough coverage of the benefits of reducing

physical dependencies, see [Lakos96].

Even if the templatization solution were acceptable, once a nested container (e.g. a
list of strings) is involved, even the simplest operations require many layers of code to

bridge the type-interoperablity gap. Consider trying to compare a shared list of
shared strings with a regular list of regular strings:

typedef std::basic_string<

 char,

 std::char_traits<char>,

 shared_alloc<char>

 > shared_string;

std::list<shared_string, shared_alloc<shared_string> > SharedList;

std::list<std::string> TestList;

Not only will SharedList == TestList fail to compile, but employing iterators and

standard algorithms will not work either:

bool same = std::range_equal(SharedList.begin(), SharedList.end(),

 TestList.begin(), TestList.end());

The types to which the iterators refer are not equality-compatible (std::string vs.

shared_string). The interoperability barrier caused by the use of template

implementation policies impedes the straightforward use of vocabulary types –

ubiquitous types used throughout the internal interfaces of a program. For example,

to declare a string, s using MyAllocator we would need to write

std::basic_string<char, std::char_traits<char>, MyAllocator<char> > s;

Many people find this hard to read, but the more important fact is that s is not an

std::string object and cannot be used wherever std::string is expected. Similar

problems exist for other common types like std::vector<int>. The use of a well-

defined set of vocabulary types like string and vector lends simplicity and clarity to

a piece of code. Unfortunately, their use hinders the effective use of STL-style

allocators and vice-versa.

Finally, template code is much harder to test than non-template code. Templates do
not produce executable machine code until instantiated. Since there are an

unbounded number of possible instantiations for any given template, the number of
test cases needed to ensure that every path is covered can grow by an order of
magnitude for each template parameter. Subtle assumptions that the template

writer makes about the template’s parameters may not become apparent until
someone instantiates the template with an innocent-looking, but not-quite-

N3916: Polymorphic Memory Resources - r2 Page 40 of 40

compatible parameter, long after the engineer who created the template has left the
project.

Template implementation policies can be very useful when constructing mechanisms,
as in the case of a function object (functor) type being used to specify an

implementation policy for a standard algorithm template. Alexandrescu makes a
compelling case for the use of template class policies in situations where
instantiations are not expected to interoperate. However, template implementation

policies are detrimental when used to control the memory allocation mechanisms of
basic types that could otherwise interoperate.

11 Acknowledgements

I’d like to thank John Lakos for his careful review of my introductory text and for
showing me what allocators can really do, if correctly conceived. Also, a big thank
you to the members of my former team at Bloomberg for your help in defining the

concepts in this paper and reviewing the result, especially Alexander Beels, Henry
Mike Verschell, and Alisdair Merideth, who reworked the usage example for me.

Thanks to Mark Boyall for promoting the addition of new allocators to the standard
and for reviewing an early draft of this paper.

12 References

N3726 Polymorphic Memory Resources, Pablo Halpern, 2013

N3525 Polymorphic Allocators, Pablo Halpern, 2013

N3575 Additional Standard allocation schemes, Mark Boyall, 2013

N1850 Towards a Better Allocator Model, Pablo Halpern, 2005

BSL The BSL open-source library, BLoomberg

jsmith C++ Type Erasure, JSmith, Published on www.cplusplus.org, 2010-01-27

N3399 Filesystem Library Proposal (Revision 3), Beman Dawes, 2012-09-21

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3726.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3525.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3575.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1850.pdf
https://github.com/bloomberg/bsl
http://www.cplusplus.com/forum/articles/18756/
http://www.cplusplus.org/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3399.html

