This paper proposes two frequently-used classical numeric algorithms, \texttt{gcd} and \texttt{lcm}, for header \texttt{<numeric>}. The former calculates the greatest common divisor of two integer values, while the latter calculates their least common multiple. Both functions are already typically provided in behind-the-scenes support of the standard library’s \texttt{<ratio> and <chrono>} headers.

Die ganze Zahl schuf der liebe Gott. alles Übrige ist Menschenwerk.
(Integers are dear God’s achievement; all else is work of mankind.)

— LEOPOLD KRONECKER

It is now clear that the whole structure of number theory rests on a single foundation, namely the algorithm for finding the greatest common divisor of two numbers.

— PETER GUSTAV LEJEUNE DIRICHLET

1 Introduction

1.1 Greatest common divisor

The greatest common divisor of two (or more) integers is also known as the greatest or highest common factor. It is defined as the largest of those positive factors\(^1\) shared by (common to) each of the given integers. When all given integers are zero, the greatest common divisor is typically not defined. Algorithms for calculating the \texttt{gcd} have been known since at least the time of Euclid.\(^2\)

Some version of a \texttt{gcd} algorithm is typically taught to schoolchildren when they learn fractions. However, the algorithm has considerably wider applicability. For example, Wikipedia states that \texttt{gcd} “is a key element of the RSA algorithm, a public-key encryption method widely used in electronic commerce.”\(^3\)

Note that the standard library’s \texttt{<ratio>} header already requires \texttt{gcd}’s use behind the scenes; see [ratio.ratio]:

\(^1\)Using C++ notation, we would say that the \texttt{int f} is a factor of the \texttt{int n} if and only if \(n \mod f == 0\) is \texttt{true}.

\(^3\)Loc. cit.
The static data members `num` and `den` shall have the following values, where `gcd` represents the greatest common divisor of the absolute values of `N` and `D`:

- `num` shall have the value `sign(N) * sign(D) * abs(N) / gcd`.
- `den` shall have the value `abs(D) / gcd`.

Because it has broader utility as well, we propose that a `constexpr`, two-argument `gcd` function be added to the standard library. Since it is an integer-only algorithm, we initially proposed that `gcd` become part of `<cstdlib>`, as that is where the integer `abs` functions currently reside, but consensus seemed to favor `<numeric>`.

1.2 Least common multiple

The **least common multiple** of two (or more) integers is also known as the **lowest** or **smallest** common multiple. It is defined as the smallest positive integer that has each of the given integers as a factor. When manipulating fractions, the resulting value is often termed the least common denominator.

Computationally, the `lcm` is closely allied to the `gcd`. Although its applicability may be not quite as broad as is that of the latter, it is nonetheless already in behind-the-scenes use to support the standard library’s `<chrono>` header; see [time.traits.specializations]:

```
1 . . . . [Note: This can be computed by forming a ratio of the greatest common divisor of Period1::num and Period2::num and the least common multiple of Period1::den and Period2::den. — end note]
```

We therefore propose that a `constexpr`, two-argument `lcm` function accompany `gcd` and likewise become part of the same header, `<numeric>`.

2 Expository implementation

2.1 Exposition-only helpers

We use two helper templates in our sample code. Since `<cstdlib>` defines `abs()` for only `int`, `long`, and `long long` argument types, we formulate our own version to accommodate all integer types, including unsigned standard integer types and any signed and unsigned extended integer types. Note that our function is marked `constexpr`.

```cpp
template< class T >
cconstexpr auto abs( T i ) -> enable_if_t< is_integral<T>{}(), T >
{ return i < T(0) ? -i : i; }
```

Second, we factor out the computation of the `common_type` of two integer types. This will allow us, via `SFINAE`, to restrict our desired functions’ applicability to only integer types, as was done for a single type in computing the return type in our `abs` template above:

```cpp
template< class M, class N = M >
using common_int_t = enable_if_t< is_integral<M>{}() and is_integral<N>{}(), common_type_t<M,N> >;
```

4 Multiple-argument versions can be obtained via judicious combination of `std::accumulate` and the proposed two-argument form. It may be useful to consider an overload taking an `initializer_list`, however.
2.2 Greatest common divisor

We formulate our gcd function as a recursive one-liner so that it can qualify for constexpr treatment under C++11 rules:

```cpp
template< class M, class N >
constexpr common_int_t<M,N> gcd( M m, N n )
{ return n == 0 ? abs(m) : gcd(n, abs(m) % abs(n)); }
```

While this code exhibits a form of the classical Euclidean algorithm, other greatest common divisor algorithms, exhibiting different performance characteristics, have been published. As of this writing, it is unclear whether any of these is suitable for use in the context of a constexpr function. We have also been made aware of additional greatest common divisor-related research that may lead to a future proposal for a more general algorithm in the standard library.

2.3 Least common multiple

We also formulate our lcm function as a one-liner so that it, too, can qualify for constexpr treatment under C++11 rules:

```cpp
template< class M, class N >
constexpr common_int_t<M,N> lcm( M m, N n )
{ return m * n == 0 ? 0 : (abs(m) / gcd(m,n)) * abs(n); }
```

3 Proposed wording

3.1 Synopsis

Insert the following declarations into the synopsis in [numeric.ops.overview]:

```cpp
namespace std {
...
    template< class M, class N >
    constexpr common_type_t<M,N> gcd( M m, N n );

    template< class M, class N >
    constexpr common_type_t<M,N> lcm( M m, N n );
}
```

3.2 New text

Append the following new sections to the end of [numeric.ops]:

26.7.7 Greatest common divisor

```cpp
template< class M, class N >
constexpr common_type_t<M,N> gcd( M m, N n );
```

1 Requires: |m| shall be representable as a value of type M and |n| shall be representable as a value of type N. [Note: These requirements ensure, for example, that gcd(m,m) = |m| is representable as a value of type M. — end note]

5E.g., [Web95, Sed97, Web05].
6Sean Parent: Reflector message [c++std-lib-ext-695], citing [Ste99].
7All proposed additions and deletions are relative to the post-Chicago Working Draft [N3797]. Editorial notes are displayed against a gray background.
Remarks: If either M or N is not an integer type, the program is ill-formed.

Returns: zero when m and n are both zero, and the greatest common divisor of |m| and |n|, otherwise.

26.7.8 Least common multiple

```cpp
template< class M, class N >
constexpr common_type_t<M,N> lcm( M m, N n );
```

Requires: |m| shall be representable as a value of type M and |n| shall be representable as a value of type N.

Remarks: If either M or N is not an integer type, the program is ill-formed.

Returns: the least common multiple of |m| and |n|.

3.3 Feature-testing macro

For the purposes of SG10, we recommend the macro name `__cpp_lib_gcd_lcm`.

4 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments. Special thanks to Cassio Neri for his extra-careful proofreading and helpful suggestions.

5 Bibliography

6 Document history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2014-01-01</td>
<td>• Published as N3845.</td>
</tr>
<tr>
<td>2</td>
<td>2014-02-25</td>
<td>• Restored missing <code>abs()</code> calls in algorithm implementations. • Excised comment re standardizing our <code>abs<></code> in future. • Required <code>abs()</code> result be representable in the argument’s type. • Augmented the Acknowledgements. • Mentioned possible future proposal for generalization. • Edited proposed wording per SG6 guidance at Issaquah. • Published as N3913.</td>
</tr>
</tbody>
</table>