
Document No: WG21 N3906
Date: 2014-02-03

Project: Programming Language C++
References: SC22 N4901, SC22 N

Reply to: Barry Hedquist
INCITS/PL22.16 IR

beh@peren.com

ISO/IEC PDTS 18822, File System, National Body Comments

Attached is a revision of SC22 N4901, the complete set of National Body Comments
submitted to JTC1 SC22 in response to the SC22 Letter Ballot for ISO/IEC PDTS 18822,
File System.

Comments that were submitted without numbering were numbered manually in the exact
order of the NB's official ballot response. Those with numbering were left as submitted.
A key was added at the end of the ballot comments to indicate the designations used for
those National Bodies submitting comments:

 CH - Switzerland
 FI - Finland
 GB - Great Britain
 US - United States

Responses to each of the National Body comments is required prior to the next ballot
round, DTS.

Also attached is the complete list of ballot responses from all National Bodies. One
National Body, Switzerland, voted to Disapprove the PDTS. Switzerland also indicated
that their vote will be changed to Approve if their comments are adopted.

Document numbers referenced in the ballot comments are WG21 documents unless
otherwise stated.

mailto:beh@peren.com

Template for comments and secretariat observations Date:2014-02-03 Document: WG21 N3906 Project: PDTS 18822

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 10

CH 1 all

ge Please coordinate with the networking study group
to make sure that the pathname grammar works
together with the URI grammar (pathnames should
be a subset of URIs).

FI 5 ge/ed The namespace for the filesystem should be
std::experimental, not std::tbd

Change the namespace to experimental
everywhere tbd occurs.

US 1 all ed Many cross-references contain the symbolic section
name rather than a link to that section. Examples
include occurrences in 1 ([fs.norm.ref]), 2.1
([fs.def.race]), 2.2 ([fs.def.osdep]), etc.

Replace cross-references using symbolic section
names with actual links to the referenced section.

US 2 all ed References to the C++ Standard are given in
various forms. For example, the first paragraph of
13 [class.directory_iterator] says,
"directory_iterator satisfies the
requirements of an input iterator ([input.iterators]),"
with no indication that the referenced section is
part of the C++ Standard., while the effects clause
of operator++ in 13.1
[directory_iterator.members] uses the full form "the
C++ Standard, 24.1.1 Input iterators
[input.iterators]." Sometimes the full word
"Standard" is used and sometimes "Std".

Use a canonical form for all references to the C++
Standard.

US 3 all ed The pattern of cross-references from synopses to
the description of an entity is inconsistent. For
example, in the synopsis of header
<filesystem> in 6 [fs.filesystem.synopsis], the
link for file_type is found on the symbolic
section name in a comment, while for
file_status it is on the class name. Two of the
copy overloads have links, while two do not. In
the synopsis for class path in 8 [class.path], some
of the member functions have links from the
function name, while others have links from
preceding comment text

Use a consistent pattern of cross-references. A link
on each entity name would probably be most
useful.

US 4 all ed Paragraphs are not numbered. Add paragraph numbers.

US 5 various te Namespace tbd is used but not described. It is
not clear whether tbd is intended to be replaced
by a different name at some point in the future

Add a note clarifying the intent of using that name.

Template for comments and secretariat observations Date:2014-02-03 Document: WG21 N3906 Project: PDTS 18822

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 10

(i.e., is an abbreviation for "To Be Determined") or
if it is intended to be an actual name.

US 6 2.1 ed "#error" is in body font. Set "#error" in program font.

FI 1 2.1 POSIX
conformance
[fs.conform.99
45]

 te It is unfortunate that error reporting for inability to
provide reasonable behaviour is completely
implementation-defined. This hurts portability in
the sense that programmers have no idea how
errors will be reported and cannot anticipate
anything.

Change “If an implementation cannot provide any
reasonable behavior, the implementation shall
report an error in an implementation-defined
manner.” to “If an implementation cannot provide
any reasonable behavior, the code using the
facilities for which reasonable behaviour cannot be
provided shall be ill-formed.” and strike the note.
.

US 7 3 ed "C++" is split across lines. Eliminate the line break between the "+"s.

GB 2 Page 2 4 Ge ‘extension’ should be added to the terms and
conditions as the term 'extension' is not defined in
4 [fs.definitions] but is used in the Remarks for
extension() in 8.4.9

The term 'extension' should be added to 4
[fs.definitions] and the term then used in the effects
for replace_extension (8.4.5)

CH 2 4.7
[fs.def.filenam
e]

 te Filename lengths are also implementation
dependent. This is not the same as
FILENAME_MAX that specifies the maximum
length of pathnames.

Add a bullet: “Length of filenames.”

US 8 4.14 ed "dot-dot" is referred to as a "pathname."
Everywhere else it is referred to as a "filename."

Change "pathname" to "filename".

CH 3 4.14
[fs.def.parent]

 te The concept of a parent directory for dot or dotdot
exists, but the definition doesn’t apply.

Remove the paragraph “This concept does not
apply to dot and dot-dot.” Add a definition for dot
and dot-dot.

CH 4 4.14
[fs.def.parent]

 te 8.1 [path.generic] says:
“The filename dot-dot is treated as a reference to
the parent directory.” So it must be specified what
“/..” and “/../..” refer to.

Add a statement what the parent directory of

the root directory is.

CH 5 4.15
[fs.def.path]

 te Path depth is implementation dependent. Add a paragraph: "The maximum length of the
sequence (i.e. the maximum depth) is
implementation dependent.

US 9 4.18 ed "." and ".." are referred to as "paths". The
distinction between "path" and "pathname" is not

Change "path" to "pathname" in the reference to "."
and "..".

Template for comments and secretariat observations Date:2014-02-03 Document: WG21 N3906 Project: PDTS 18822

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 10

completely clear, but those would appear to fit the
definition of "pathname" better than "path," i.e., "A
character string that represents the name of a
path," since "." and ".." are character strings. (It's
also not clear when "." and ".." are used and when
"dot" and "dot-dot" are used.)

US
10

 4.19 ed The definition of a symbolic link is given as, "A link
with the property that when the file is
encountered..." This assumes that links are files,
which is not how they are described in 4.9
[fs.def.link]: "A directory entry object that
associates a filename with a file."

Assuming that the intent is that symbolic links are
files and hard links are not, the definition should be
reworded to something like, "A link that is a file
with the property..."

GB 3 Page 5 6 P1 Ge The namespace 'tbd' needs clarification The synposes all belong in namespace
std::tbd::filesystem with no indication of how the
eventual namespace to replace 'tbd' will be arrived
at.

GB 4 Page 6 6 synopsis Te Use of the term a 'non-privileged' process
The comment for available in the struct
space_info refers to: free space available to a
non-privileged process
This seems quite specific to a POSIX
implementation (on Windows, for instance, the
equivalent data would be user-specific but not
directly related to privilege)

Remove the comment and add a note to 15.32
[fs.op.space]:

[Note: the precise meaning of available space is
implementation dependent. --end note]

CH 6 6
[fs.filesystem.
synopsis]

 te The name for the namespace is currently tbd. Specify an actual name for the namespace.

CH 7 6
[fs.filesystem.
synopsis]

 te Must the file_time_type hold times before 1960 and
after 2050?

Specify the requirements to unspecified-trivial-clock for
file_time_type.

FI 2 6 Header
<filesystem>
synopsis
[fs.filesystem.
synopsis]

 te It is unclear why the range-for support functions
(begin()/end()) for directory_iterator and
recursive_directory_iterator return different types
for begin() and end(), namely that begin() returns a
reference to const and end() returns a value.

FI 4 6 Header
<filesystem>

 te It is unclear why copy, copy_file and copy_symlink
have different return types, and why the attribute-

Make the status/error reporting consistent or add a
note explaining why it’s different.

Template for comments and secretariat observations Date:2014-02-03 Document: WG21 N3906 Project: PDTS 18822

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 10

synopsis
[fs.filesystem.
synopsis]

version of create_directory has a different return
type than the create_directory that takes no
attributes. The status/error reporting in these
functions seems inconsistent.

FI 3 6 Header
<filesystem>
synopsis
[fs.filesystem.
synopsis], 8
Class path
[class.path]

 ed The specification uses InputIterator begin,
InputIterator end in various places for the names
of iterator parameters. This makes searching for
the functions begin()/end() hard and is inconsistent
with the style used in the C++ standard.

Change “InputIterator begin, InputIterator end” to
“InputIterator first, InputIterator last”.

GB 1 6 & 15 Te There is no relative() operation, to complement
both absolute() and canonical()

The TS introduces relative paths.

• They are defined in section 4.18 relative
path [fs.def.relative-path]

• A decomposition method relative_path() is
described in section 8.4.9 path
decomposition [path.decompose]

• Two query methods to determine if a path
either has_relative_path() or is_relative()
described in 8.4.10 path query [path.query]

However there is no way to create a relative path
as a path relative to another. Methods are
provided to create absolute and canonical paths.
In section 15.1 Absolute [fs.op.absolute]:
path absolute(const path& p, const path&
base=current_path());
and in section 15.2 Canonical [fs.op.canonical]
path canonical(const path& p, const path& base =
current_path());
path canonical(const path& p, error_code& ec);
path canonical(const path& p, const path& base,
error_code& ec);
By providing a operations to achieve absolute and
canonical paths there is no impediment to

Modify section:

6 Header <filesystem> synopsis
[fs.filesystem.synopsis]

by adding the operational functions after canonical:

path relative(const path& p, const path& to =
current_path());
path relative(const path& p, error_code& ec);
path relative(const path& p, const path& to,
error_code& ec);

Insert the section:

15.3 Relative [fs.op.relative]
path relative(const path& p, const path& to =
current_path());
path relative(const path& p, error_code& ec);
path relative(const path& p, const path& to,
error_code& ec);

Overview: Return a relative path
of p to the current directory or
from an optional to path.

Returns: A relative path such that

Template for comments and secretariat observations Date:2014-02-03 Document: WG21 N3906 Project: PDTS 18822

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 5 of 10

providing a similar operation relative() that
attempts to return a new path relative to some
base path.
For example:
path relative(const path& p, const path& to =
current_path());
path relative(const path& p, error_code& ec);
path relative(const path& p, const path& to,
error_code& ec);
This would return a path, if possible, that is relative
to to. The implementation can make use of
absolute() and canonical() to determine the
relative path, if it exists.
The File System TS is based on the
boost::filesystem library and it too suffers from this
anomaly. There are open tickets for this in Boost
Trac:

• #5897 Make path relative function
• #1976 Inverse function for complete

and it is the subject of several posts on
StackOverflow for example:

•
http://stackoverflow.com/questions/10167382
/boostfilesystem-get-relative-path

•
http://stackoverflow.com/questions/5772992/
get-relative-path-from-two-absolute-paths

Other languages typically provide a similar
function. For example python provides:
os.path.relpath(path[, start])

Return a relative filepath to path
either from the current directory
or from an optional start
directory. This is a path
computation: the filesystem is

canonical(to)/relative(p,to) ==
canonical(p), otherwise path(). If
canonical(to) == canonical(p) the
path path(".") is returned. For the
overload without a to argument,
to is current_path(). Signatures
with argument ec return path() if
an error occurs.

Throws: As specified in Error
reporting.

Remarks: !exists(p) or !exists(to)
or !is_directory(to) is an error.

and bump all following sections up by 0.1. Update
the contents and any cross-references accordingly.

Question: Should Returns be specified in terms of
equivalence? For example:
equivalent(canonical(to)/relative(p,to), canonical(p)
)
Question: Should canonical(to) == canonical(p)
return path(".") or path()? Why?
Question: Should to be spelt start?

http://www.boost.org/doc/libs/1_55_0/libs/filesystem/doc/index.htm
https://svn.boost.org/
https://svn.boost.org/
https://svn.boost.org/trac/boost/ticket/5897
https://svn.boost.org/trac/boost/ticket/1976
http://stackoverflow.com/questions/10167382/boostfilesystem-get-relative-path
http://stackoverflow.com/questions/10167382/boostfilesystem-get-relative-path
http://stackoverflow.com/questions/5772992/get-relative-path-from-two-absolute-paths
http://stackoverflow.com/questions/5772992/get-relative-path-from-two-absolute-paths

Template for comments and secretariat observations Date:2014-02-03 Document: WG21 N3906 Project: PDTS 18822

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 6 of 10

not accessed to confirm the
existence or nature of path or
start.

start defaults to os.curdir.
CH 8 6

[fs.filesystem.
synopsis],
15.14
[fs.op.file_size
]

 te uintmax_t is specified to hold at least 64 bit. This
is not enough for sizes beyond 4 exabytes.

Specify whether an implementation must provide a
uintmax_t that can hold the maximum possible
space and file size values.

GB 5 Page 10 7 Ed Duplicate word: "appropriate appropriate" appears
in the last bullet in 7 [fs.err.report]

Delete the duplicate

US
11

 7 ed The next-to-last sentence has a duplicated word:
"...argument is set as appropriate appropriate for
the specific error."

Delete one instance of "appropriate."

CH 9 7
[fs.err.report],
all

 te The specification of the actual error conditions for
the functions that specify Throws: As specified in
Error reporting. is missing.

Add those specifications.

FI 6 8 Class path
[class.path]

 ed It doesn’t seem to be necessary to explicitly
=default destructors.

Remove superfluous declarations.

GB 6 Page 14 8.1 Ed Spurious whitespace in the grammar for directory-
separator: "slash directory-separator" is indented
more than the other three items.

Align the four items

US
12

 8.1 ed The second production in the grammar for
directory-separator is indented too far.

Align "slash directory-separator" with the other
productions.

US
13

 8.3 final bullet ed The third option for the Source template
parameter is, "A character array that after array-to-
pointer decay results in a pointer to a NTCTS."
NTCTS is defined in 4.12 [fs.def.ntcts] as "a
sequence of values of a given encoded character
type terminated by that type's null character."
Given that definition and the fact that array-to-
pointer decay results in a pointer to the first
element of the array, there does not appear to be
a way for a character string to satisfy this

Reword to say, "A character array that is a
NTCTS."

Template for comments and secretariat observations Date:2014-02-03 Document: WG21 N3906 Project: PDTS 18822

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 7 of 10

requirement, since a single character cannot be a
NTCTS.

GB 7 Page 16 8.4.1 Te Incorrect postcondition for copy/move constructor
The postconditions for the copy/move constructor
for path are shown as "empty()".
This appears to have been incorrectly copied from
the default ctor.

Remove the 'postconditions' clause from the
copy/move ctor.

GB 8 Page 17 8.4.1 Ge No specification for characters with no
representation. The example at the end of 8.4.1
refers to "for other native narrow encodings some
characters may have no representation" — what
happens in such cases?

Add some definition of the behaviour for characters
with no representation.

US
14

 8.4.1 example ed The last line in the code of the example is missing
a right parenthesis.

Add a right parenthesis before the semicolon.

CH
10

 8.4.1
[path.construc
t]

 te Postcondition for copy and move constructors is
wrong.

Remove wrong postcondition.

CH
11

 8.4.3
[path.append]

 te Is the added separator redundant in p1 /= p2,
where p1 is empty?
I.e. does the result start with a separator?

Specify what behaviour is required.

GB
10

Page 21 8.4.5 Ed Use of “concatined” In the Effects for replace_extension() change to
concatenated in the phrase: "replacement is
concatinated to the stored path".

GB 9 Page 20 8.4.5 Ed Unusual form of post-condition. The phrasing of
the postcondition for clear() "this->empty() is true"
differs from other similar postconditions throughout
the ISO C++ standard and this TS.

Postcondition: empty()

CH
12

 8.4.5
[path.modifier
s]

 te As we have move semantics, member swap
functions shouldn’t be necessary anymore.

Remove swap().

US
15

 8.4.9 ed The returns descriptions for stem() and
extension() both contain the phrase, "...does
not consist solely of one or to two periods." The
word "to" seems extraneous.

Omit "to" in both descriptions.

Template for comments and secretariat observations Date:2014-02-03 Document: WG21 N3906 Project: PDTS 18822

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 8 of 10

US
16

 8.4.9 ed The returns description for stem() begins, "if
filename() contains a character but..."
Comparison with the corresponding text in the
extension() entry suggests that this should
apply when the name contains a period, not when
it contains any character.

Replace the phrase with, "if filename() contains
a period but..."

FI 7 8.4.10 path
query
[path.query]

 te is_absolute says: “Returns: true if the elements of
root_path() uniquely identify a file system location,
else false.” The “uniquely identify a location”
seems confusing in presence of symlinks.

Clarify the returns clause so that there’s no
confusion about symlinks and ‘location’.

FI 8 8.6.1 path
inserter and
extractor
[path.io]

 te “[Note: Pathnames containing spaces require
special handling by the user to avoid
truncation when read by the extractor. --end note]”
sounds like a quoted manipulator as specified in
the C++14 draft in [quoted.manip] would be useful.

Consider using quoted manipulators for stream
insertion and extraction.

GB
11

Page 32 10.2 Ed Confusing section titles for copy_options - use of
"copy_file effects for", "copy effect for" and "copy
effects"

Use "copy effects for" consistently

GB
13

Page 38 12.2 Te Incorrect variable name in postcondition - the
postcondition on path() for replace_filename() is
defined as path().parent_path() / s

Define the postcondition on path() as
path().parent_path() / p

GB
12

Page 38 12.3 Ge Since operator== for directory_entry does not
check status, it would be worth highlighting that
operator== only checks that the paths match.

Add [Note: does not include status values - end
note]

CH
13

 14.1
[class.rec.dir.it
r.members
]

 te The behaviour of increment is underspecified:
What happens if the implementation detects an
endless loop (e.g. caused by links)? What
happens with automounting and possible race
conditions?
More information on this can be found at
<http://man7.org/linux/manpages/man3/fts.3.html>
.

Specify the required behaviour in these cases.

CH
14

 15 te Since create_symlink(), create_hardlink(), and
create_directory() exist, there’s no reason not to
have a create_regular_file() function.

Consider adding a function create_regular_file()
with the behaviour of the POSIX touch command.

Template for comments and secretariat observations Date:2014-02-03 Document: WG21 N3906 Project: PDTS 18822

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 9 of 10

GB
14

Page 46 15.3 Te Incorrect effects clause for path copy - the effect
clause for copy [fs.op.copy] includes "equivalent(f,
t)" — there is no equivalent() function defined for
variables of this type (file_status)

Replace with "equivalent(from, to)"

CH
15

 15.4
[fs.op.copy_fil
e]

 te Even if to and from are different paths, they may
be equivalent.

Specify what happens if (options &
copy_options::overwrite_existing) but from and to
resolve to the same file.

CH
16

 15.13
[fs.op.equivale
nt]

 te Equivalence is a volatile property. Consider adding a note that equivalence cannot be
determined race-free.

FI 9 15.15 Hard
link count
[fs.op.hard_lk
_ct]

 te “The signature with argument ec returns
static_cast<uintmax_t>(-1) if an error occurs.”, one
would expect that BOTH signatures return that if
an error occurs?

Clarify the Returns clause, and apply the same for
every function that returns an uintmax_t where
applicable.

GB
15

Page 56 15.25 Te The constraint on last_write_time is too weak: It is
noted that the postcondition of last_write_time(p)
== new_time is not specified since it might not
hold for file systems with coarse time granularity.
However, might it be possible to have a
postcondition that last_write_time(p) <= new_time
?

Add postcondition: last_write_time(p) <= new_time

GB
16

Page 57 15.27 Te Unclear semantics of read_symlink on error: 15.27
[fs.op.read_symlink] has: Returns: If p resolves to
a symbolic link, a path object containing the
contents of that symbolic link. Otherwise path().
and also [Note: It is an error if p does not resolve
to a symbolic link. -- end note]
I do not believe path() can be a valid return for the
overload not taking error_code.

Strike "Otherwise path(). "

CH
17

 15.28
[fs.op.remove]

 te The specification can be read to require the
existence test. As this introduces a race, the
existence test must not happen.

Change to: “Effects: p is removed as if by
POSIX remove().”

CH
18

 15.30
[fs.op.rename]

 te POSIX guarantees some kind of atomicity for
rename().

Clarify that POSIX’ rename() guarantee “If the
rename() function fails for any reason other than
[EIO], any file named by new shall be unaffected.”
holds for C++ as well.

Template for comments and secretariat observations Date:2014-02-03 Document: WG21 N3906 Project: PDTS 18822

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 10 of 10

FI 10 15.36 System
complete
[fs.op.system_
complete]

 “[Example: For POSIX based operating systems,
system_complete(p)
has the same semantics as complete(p,
current_path()).” What is this ‘complete’ that is
referred here?

Clarify the example.

CH
19

 15.38
[fs.op.unique_
path]

 te unique_path() is a security vulnerability. As the
Linux manual page for the similar function
tmpnam() writes in the “BUGS” section: “Never use
this function. Use mkstemp(3) or tmpfile(3) instead.”
mkstemp() and tmpfile() avoid the inherent race
condition of unique_path() by returning an open file
descriptor or FILE *.

Remove this function. Consider providing a function
create_unique_directory(). If it fits the scope of the
proposed TS, consider providing functions
create_unique_file() that returns ifstream, ofstream
and iofstream.

H:\cc51\Public\SC 22 Project\4900\CommentFiles\ISO_IEC PDTS 18822_ANSI.doc: Collation successful
H:\cc51\Public\SC 22 Project\4900\CommentFiles\ISO_IEC PDTS 18822_BSI.doc: Collation successful
H:\cc51\Public\SC 22 Project\4900\CommentFiles\ISO_IEC PDTS 18822_SFS.doc: Collation successful
H:\cc51\Public\SC 22 Project\4900\CommentFiles\ISO_IEC PDTS 18822_SNV.doc: Collation successful
Collation of files was successful. Number of collated files : 4
SELECTED (number of files): 4 .
FILES IN THIS GROUP(number of files): 4.
PASSED TEST (number of files): 4.
FAILED TEST (number of files): 0.
KEY:
 US - United States
 GB - Great Britain
 FI - Finland
 CH - Switzerland

Result of voting

Ballot Information

Ballot reference ISO/IEC PDTS 18822

Ballot type DTS

Ballot title Technical Specification -- File System
Opening date 2013-10-18

Closing date 2014-01-20

Note

Member responses:

Votes cast (20) Austria (ASI)
Canada (SCC)
China (SAC)
Denmark (DS)
Finland (SFS)
France (AFNOR)
Germany (DIN)
Ireland (NSAI)
Italy (UNI)
Japan (JISC)
Korea, Republic of (KATS)
Netherlands (NEN)
Portugal (IPQ)
Romania (ASRO)
Russian Federation (GOST R)
Spain (AENOR)
Switzerland (SNV)
Ukraine (DTR)
United Kingdom (BSI)
United States (ANSI)

Comments submitted (0)

Votes not cast (1) Kazakhstan (KAZMEMST)

Questions:

Q.1 "Does your National Body approve the attached DTS to go forward to publication?"

Q.2 "If you approve the DTS Text with comments, would you please indicate which type ? (G
Technical or Editorial)"

eneral,

Q.3 "If you Disappove the Draft, would you please indicate if you accept to change your vote to
Approval if the reasons and appropriate changes will be accepted?"

Votes by members Q.1 Q.2 Q.3

Austria (ASI) Abstention Ignore Ignore

Canada (SCC) Approval as
presented

Ignore Ignore

China (SAC) Approval as
presented

Ignore Ignore

Denmark (DS) Approval as
presented

Ignore Ignore

Finland (SFS) Approval with
comments

All Ignore

France (AFNOR) Abstention Ignore Ignore

Germany (DIN) Abstention Ignore Ignore

Ireland (NSAI) Approval as
presented

Ignore Ignore

Italy (UNI) Approval as
presented

Ignore Ignore

Japan (JISC) Approval as
presented

Ignore Ignore

Korea, Republic of
(KATS)

Approval as
presented

Ignore Ignore

Netherlands (NEN) Approval as
presented

Ignore Ignore

Portugal (IPQ) Abstention Ignore Ignore

Romania (ASRO) Abstention Ignore Ignore

Russian Federation
(GOST R)

Approval as
presented

Ignore Ignore

Spain (AENOR) Approval as
presented

Ignore Ignore

Switzerland (SNV) Disapproval of the
draft

Technical Yes

Ukraine (DTR) Approval as
presented

Ignore Ignore

United Kingdom (BSI) Approval with
comments

All Ignore

United States (ANSI) Approval with
comments

All Ignore

Answers to Q.1: "Does your National Body approve the attached DTS to go forward to publication?"

11 x Approval as presented Canada (SCC)
China (SAC)
Denmark (DS)
Ireland (NSAI)
Italy (UNI)
Japan (JISC)
Korea, Republic of (KATS)
Netherlands (NEN)
Russian Federation (GOST R)
Spain (AENOR)
Ukraine (DTR)

3 x Approval with
comments

Finland (SFS)
United Kingdom (BSI)
United States (ANSI)

1 x Disapproval of the draft Switzerland (SNV)

5 x Abstention Austria (ASI)
France (AFNOR)
Germany (DIN)
Portugal (IPQ)
Romania (ASRO)

Answers to Q.2: "If you approve the DTS Text with comments, would you please indicate which type ?
(General, Technical or Editorial)"

0 x General

1 x Technical Switzerland (SNV)

0 x Editorial

3 x All Finland (SFS)
United Kingdom (BSI)
United States (ANSI)

16 x Ignore Austria (ASI)
Canada (SCC)
China (SAC)
Denmark (DS)
France (AFNOR)
Germany (DIN)
Ireland (NSAI)
Italy (UNI)
Japan (JISC)
Korea, Republic of (KATS)
Netherlands (NEN)
Portugal (IPQ)
Romania (ASRO)
Russian Federation (GOST R)
Spain (AENOR)
Ukraine (DTR)

Answers to Q.3: "If you Disappove the Draft, would you please indicate if you accept to change your
vote to Approval if the reasons and appropriate changes will be accepted?"

1 x Yes Switzerland (SNV)

0 x No

19 x Ignore Austria (ASI)
Canada (SCC)
China (SAC)
Denmark (DS)
Finland (SFS)
France (AFNOR)
Germany (DIN)
Ireland (NSAI)
Italy (UNI)
Japan (JISC)
Korea, Republic of (KATS)

Netherlands (NEN)
Portugal (IPQ)
Romania (ASRO)
Russian Federation (GOST R)
Spain (AENOR)
Ukraine (DTR)
United Kingdom (BSI)
United States (ANSI)

Comments from Voters

Member: Comment: Date:

 Finland (SFS) Comment File 2014-01-15
07:54:49

 CommentFiles/ISO_IEC PDTS 18822_SFS.doc

 Switzerland (SNV) Comment File 2014-01-15
09:31:14

 CommentFiles/ISO_IEC PDTS 18822_SNV.doc

 United Kingdom (BSI) Comment File 2014-01-16
11:45:43

 CommentFiles/ISO_IEC PDTS 18822_BSI.doc

 United States (ANSI) Comment File 2014-01-16
21:04:54

 CommentFiles/ISO_IEC PDTS 18822_ANSI.doc

Comments from Commenters

Member: Comment: Date:

