
Consistent Metafunction Aliases

Document #: N3887
Date: 2013-12-26
Project: Programming Language C++

Library Evolution Group
Reply-to: Michael Park

<mcypark@gmail.com>

1 Introduction

This paper is inspired by [N3655], section 3 of which was adopted at WG21’s 2013 Bristol meeting.
That section provided (as did its predecessor [N3546]) template aliases for the result of metafunc-
tions in <type traits>. However, the broader question of analogous template aliases throughout
the remainder of the standard library was not addressed.

This paper recommends a systematic guideline to steer future WG21 decisions in deciding when
a metafunction-name t template alias should accompany a standard library metafunction. After
applying this recommended guideline to the entire C++14 standard library, we conclude that
tuple element t is the only missing alias. We then propose wording (a) to remedy this lack and
(b) to take advantage of the proposed remedy. Finally, we also present an alternative guideline and
its implications, and provide justifications for favoring the recommended guideline.

2 Motivation and Scope

[N3655] provided the motivation for the existence of the t template aliases. The goal of this paper
is to introduce a guideline for WG21 to systematically decide when a metafunction in the standard
library should be accompanied by a metafunction-name t template alias. Specifically, we want to
ensure that future standard library metafunctions stay consistent with those we currently have.

The proposed guideline is the following:

A class template should be accompanied by a metafunction-name t template alias if it
provides a public member type named type and no other accessible members.

An exhaustive search through the text of [N3797] reveals that the only class templates that meet
the above guideline are the following:

• TransformationTraits from section 3 of [N3655].

• tuple element

Since tuple element t is the only missing template alias, we propose to add it.

1

mailto:mcypark@gmail.com

3 Impact on the Standard

This proposal is a pure library extension. It does not require any new language features, it is merely
an extension of an existing practice adopted from [N3655].

4 Proposed Wording

Add to <tuple> synopsis of [N3797]:

// 20.4.2.5: tuple helper classes:

+ template <size_t I, class T>

+ using tuple_element_t = typename tuple_element <I, T>:: type;

The definition of get functions in §20.3.4, and §20.4.2.6 of [N3797] can be simplified as follows:1

// 20.3.4: tuple -like access to pair:

template <size_t I, class T1, class T2>

- constexpr typename tuple_element <I, std::pair <T1, T2> >::type&

+ constexpr tuple_element_t <I, pair <T1 , T2 > >&

- get(std::pair <T1, T2 >&) noexcept;

+ get(pair <T1 , T2 >&) noexcept;

template <size_t I, class T1, class T2>

- constexpr typename tuple_element <I, std::pair <T1, T2> >::type&&

+ constexpr tuple_element_t <I, pair <T1 , T2 > > &&

- get(std::pair <T1, T2 >&&) noexcept;

+ get(pair <T1 , T2 >&&) noexcept;

template <size_t I, class T1, class T2>

- constexpr const typename tuple_element <I, std::pair <T1, T2> >::type&

+ constexpr const tuple_element_t <I, pair <T1 , T2 > >&

- get(const std::pair <T1, T2 >&) noexcept;

+ get(const pair <T1 , T2 >&) noexcept;

// 20.4.2.6 , element access:

template <size_t I, class ... Types >

- constexpr typename tuple_element <I, tuple <Types ...> >::type&

+ constexpr tuple_element_t <I, tuple <Types...> >&

get(tuple <Types ...>&) noexcept;

template <size_t I, class ... Types >

- constexpr typename tuple_element <I, tuple <Types ...> >::type&&

+ constexpr tuple_element_t <I, tuple <Types...> >&&

get(tuple <Types ... >&&) noexcept;

template <size_t I, class ... Types >

- constexpr typename tuple_element <I, tuple <Types ...> >::type const&

+ constexpr const tuple_element_t <I, tuple <Types...> >&

get(const tuple <Types ... >&) noexcept;

1 Note the removal of explicit std:: namespace qualifiers and a standardized placement of const as a drive-by-fix.

2

5 Design Decisions

We considered an alternative guideline:

A class template should be accompanied by a metafunction-name t template alias if it
provides a public member type named type and possibly other accessible members.

An exhaustive search through the text of [N3797] reveals that the class templates that meet this
alternative guideline are the following:

• integral constant

– TransformationTraits from section 4 of [N3655]

– is bind expression

– is error code enum

– is error condition enum

– is placeholder

– ratio equal

– ratio greater

– ratio greater equal

– ratio less

– ratio less equal

– ratio not equal

– tuple size

– uses allocator

• ratio

• ratio add

• ratio divide

• ratio multiply

• ratio subtract

• reference wrapper

This guideline is overly accepting, because we are rarely interested in the type member of these
class templates. Consider integral constant along with all of the class templates listed under it
which inherit from integral constant. The class member we are far more interested in for these
class templates is the value member. For ratio, and ratio operations, the type member is simply
a type alias for itself, and reference wrapper’s type member is nothing but an identity type
alias for T.

3

Also consider their intended use cases. All of is property, ratio compare, and uses allocator are
intended for compile-time boolean tests. tuple size is intended to acquire the size of a tuple.
integral constant is intended to capture a compile-time value and is sometimes used for tagged
dispatch. ratio operations are used for compile-time rational arithmetic. reference wrapper is
simply intended for containing references in our containers. The intended use cases make it clear
that these are not metafunctions that yield a type as a result.

On the contrary, the proposed guideline captures the correct intended use of the class templates.
If the only member provided for a class template is type, it is most likely a metafunction which
yields a type as a result. This categorization holds true for all of TransformationTraits from section
3 of [N3655] and tuple element. For example, add const is a metafunction which yields a const-
qualified version of the type as a result, and tuple element is a metafunction which yields the
type that lies at a specified index within a list of types as a result. Therefore providing a template
alias for such class templates will be useful for convenient access to the type member.

6 Acknowledgements

Thanks to Walter E. Brown for encouraging me to write this paper.

7 References

[N3546] Walter E. Brown, TransformationTraits Redux
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3546.pdf

[N3655] Walter E. Brown, TransformationTraits Redux, v2
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3655.pdf

[N3797] Stefanus Du Toit, Working Draft, Standard for Programming Language C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf

4

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3546.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3655.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf

	Introduction
	Motivation and Scope
	Impact on the Standard
	Proposed Wording
	Design Decisions
	Acknowledgements
	References

