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Abstract

This paper proposes two frequently-used classical numeric algorithms, gcd and lcm, for header
<cstdlib>. The former calculates the greatest common divisor of two integer values, while the
latter calculates their least common multiple. Both functions are already typically provided in
behind-the-scenes support of the standard library’s <ratio> and <chrono> headers.

Die ganze Zahl schuf der liebe Gott, alles Übrige ist Menschenwerk.
(Integers are dear God’s achievement; all else is work of mankind.)

— LEOPOLD KRONECKER

1 Introduction

1.1 Greatest common divisor
The greatest common divisor of two (or more) integers is also known as the greatest or highest
common factor. It is defined as the largest of those positive factors1 shared by (common to) each
of the given integers. When all given integers are zero, the greatest common divisor is typically
not defined. Algorithms for calculating the gcd have been known since at least the time of Euclid.2

Some version of a gcd algorithm is typically taught to schoolchildren when they learn fractions.
However, the algorithm has considerably wider applicability. For example, Wikipedia states
that gcd “is a key element of the RSA algorithm, a public-key encryption method widely used in
electronic commerce.”3

Note that the standard library’s <ratio> header already requires gcd’s use behind the scenes;
see [ratio.ratio]:

Copyright c© 2014 by Walter E. Brown. All rights reserved.
1Using C++ notation, we would say that the int f is a factor of the int n if and only if n % f == 0 is true.
2See http://en.wikipedia.org/wiki/Euclidean_algorithm as of 2013-12-27.
3Loc. cit.
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2 The static data members num and den shall have the following values, where gcd
represents the greatest common divisor of the absolute values of N and D:

— num shall have the value sign(N) * sign(D) * abs(N) / gcd.
— den shall have the value abs(D) / gcd.

Because it has broader utility as well, we propose that a constexpr, two-argument4 gcd function
be added to the standard library. Since it is an integer-only algorithm, we propose that gcd
become part of <cstdlib>, as that is where the integer abs functions currently reside.

1.2 Least common multiple
The least common multiple of two (or more) integers is also known as the lowest or smallest
common multiple. It is defined as the smallest positive integer that has each of the given integers
as a factor. When manipulating fractions, the resulting value is often termed the least common
denominator.

Computationally, the lcm is closely allied to the gcd. Although its applicability is not quite as
broad as is that of the latter, it is nonetheless already in behind-the-scenes use to support the
standard library’s <chrono> header; see [time.traits.specializations]:

1 . . . . [Note: This can be computed by forming a ratio of the greatest common divisor
of Period1::num and Period2::num and the least common multiple of Period1::
den and Period2::den. — end note]

We therefore propose we propose that a constexpr, two-argument4 lcm function accompany gcd
and likewise become part of <cstdlib>.

2 Implementation

2.1 Helpers
We use two helper templates in our sample code. Since <cstdlib> defines abs() for only
int, long, and long long argument types, we first formulate an overload to accommodate all
remaining integer types, including unsigned standard integer types and any signed and unsigned
extended integer types. Note that our function is marked constexpr; if necessary, we will propose
that the existing abs functions also be thusly declared.

1 template< class T >
2 constexpr auto abs( T i ) -> enable_if_t< is_integral<T>{}(), T >
3 { return i < T(0) ? -i : i; }

Second, we factor out the computation of the common_type of two integer types. This will allow
us, via SFINAE, to restrict our desired functions’ applicability to only integer types, as was done
for a single type in computing the return type in our abs template above:

1 template< class M, class N = M >
2 using common_int_t = enable_if_t< is_integral<M>{}() and is_integral<N>{}()
3 , common_type_t<M,N>
4 >;

4Multiple-argument versions can be obtained via judicious combination of std::accumulate and the proposed two-
argument form. It may be useful to consider an overload taking an initializer_list, however.
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2.2 Greatest common divisor
We formulate our gcd function as a recursive one-liner so that it can qualify for constexpr
treatment under C++11 rules:

1 template< class M, class N >
2 constexpr auto gcd( M m, N n ) -> common_int_t<M,N>
3 {
4 using CT = common_int_t<M,N>;
5 return n == 0 ? clib::abs<CT>(m) : gcd<CT,CT>(n, m % n);
6 }

While this code exhibits a form of the classical Euclidean algorithm, other greatest common
divisor algorithms, exhibiting different performance characteristics, have been published.5 As of
this writing, it is unclear whether any of these is suitable for use in the context of a constexpr
function.

2.3 Least common multiple
We also formulate our lcm function as a one-liner so that it, too, can qualify for constexpr
treatment under C++11 rules:

1 template< class M, class N >
2 constexpr auto lcm( M m, N n ) -> common_int_t<M,N>
3 { return abs((m / gcd(m,n)) * n); }

3 Proposed wording6

3.1 New text

Insert the following consecutively-numbered paragraphs so as to follow [c.math]/7, and renumber
the displaced original paragraphs 8–11 as 11-14:

8 C++ further adds function templates gcd and lcm to <cstdlib>.

template< class M, class N >
constexpr auto gcd( M m, N n ) -> common_type_t<M,N>;

template< class M, class N >
constexpr auto lcm( M m, N n ) -> common_type_t<M,N>;

9 Requires: M and N shall be integer types. m and n shall not both be zero.

10 Returns: the greatest common divisor of |m| and |n|, and the least common multiple of |m| and
|n|, respectively.

3.2 Feature-testing macro
For the purposes of SG10, we recommend the macro name __cpp_lib_gcd_lcm.
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