
Removing Undefined Behavior from the
Preprocessor

Gabriel Dos Reis
Microsoft

Document number: N3801
Date: 2013-10-14
Working groups: SG12, CWG
Reply to: gdr@microsoft.com

Abstract

This paper recommends removal of undefined behavior from the C++
preprocessor. In all cases, the erroneous constructs are identified as violations
of diagnosable rules.

1 Introduction

The recommendations contained in this document implement the consensus of SG-
12’s first meeting in Chicago on Thursday September 26, 2013. Those attending
that meeting felt strongly that erroneous preprocessor constructs should be diag-
nosed, and none of them should lead to unrestricted runtime behavior.

It turns out that most changes were straightforward. A brief discussion of a
couple of suggested changes is offered in §3.

2 Proposed wording

The removal of undefined behavior from the preprocessor calls for altering clauses
2 and 16. These changes are relative to committee document N3691, the latest
Wording Draft prior to the Chicago meeting.

2.1 Modification of Clause 2

1. Modify second bullet of §2.2/1 as follows:

[...] If, as a result, a character sequence that matches the syn-
tax of a universal-character-name is produced, the behavior is
undefinedthe logical source line is conditionally supported with
an implementation-defined semantics.

1



2. Modify fourth bullet of §2.2/1 as follows:

[...] If a character sequence that matches the syntax of a universal-
character-name is produced by token concatenation (16.3.3), the
behavior is undefinedthe program is ill-formed.

3. Modify §2.5/2 as follows:

If a ’ or a " character matches the last category, the behavior is
undefinedthe program is ill-formed.

2.2 Modification of Clause 16

1. Modify §16.1/4 as follows:

[...] If the token defined is generated as a result of this replace-
ment process or use of the defined unary operator does not match
one of the two specified forms prior to macro replacement, the
behavior is undefinedthe program is ill-formed.

2. Modify §16.2/4 as follows:

[...] If the directive resulting after all replacements does not match
one of the two previous forms, the behavior is undefinedthe pro-
gram is ill-formed.

3. Modify §16.3/11 as follows:

[...] If there are sequences of preprocessing tokens within the
list of arguments that would otherwise act as preprocessing direc-
tives, the behavior is undefinedthe program is ill-formed.

4. Modify §16.3.2/2 as follows:

[...] If the replacement that results is not a valid character string
literal, the behavior is undefinedthe program is ill-formed.

5. Modify §16.3.3/3 as follows:

[...] If the result is not a valid preprocessing token, the behavior
is undefinedthe program is ill-formed.

6. Modify §16.4/3 as follows:

2



[...] If the digit sequence specifies zero or a number greater than
2147483647, the behavior is undefinedan implementation-defined
limit, which shall be no less than 2147483647, the program is ill-
formed.

7. Modify §16.4/5 as follows:

[...] If the directive resulting after all replacements does not match
one of the two previous forms, the behavior is undefinedthe pro-
gram is ill-formed; otherwise, the result is processed as appropri-
ate.

8. Modify §16.8/4 as follows:

If any of the pre-defined macro names in this subclause, or the
identifier defined, is the subject of a #define or a #undef pre-
processing directive, the behavior is undefinedthe program is ill-
formed.

2.3 Implementation-defined limits

The modification of §16.4/3 clearly acknowledge the existence of an implementation-
defined limit for the line number in a #line preprocessing directive. Consequently,
add the following to Annex B

— the line number in a #line directive [2147483647]

3 Discussion

Existing implementations offer the diagnosis suggested in §2.5/2.
There is no proposal to amend §2.14.5/12 because it is a description of the effect
of potentially evaluated expression that is outside the realm of the preprocessor.
The implementation-defined limit on the line-number recognizes an implicit con-
straint on programs, the violation of which is best diagnosed at translation time.

4 Acknowledgment

I would like to thank the audience at the SG12 meeting in Chicago, members of
the UB mailing list, and Jens Maurer for their feedback.

3


