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II. Introduction 
 

This proposal is an evolution of the functionality of std::future/std::shared_future. It details additions which 

can enable wait free compositions of asynchronous operations. 

This document supersedes N3634: the title has been changed, and the proposed changes have been modified to 

be expressed as edits to the C++ Draft Standard. 

New in this version: implicit unwrapping (one level) of future<future<R>> to future<R> in then().  

III. Motivation and Scope 
 

There has been a recent increase in the prevalence of I/O heavy applications which are coupled with compute 

heavy operations.  As the industry trends towards connected and multicore programs, the importance of 

managing the latency and unpredictability of I/O operations becomes ever more significant. This has mandated 

the necessity of responsive asynchronous operations. Concurrency is about both decomposing and composing 

the program from the parts that work well individually and together. It is in the composition of connected and 

multicore components where today's C++ libraries are still lacking. 

The functionality of std::future offers a partial solution. It allows for the separation of the initiation of an 

operation and the act of waiting for its result; however the act of waiting is synchronous. In communication-

intensive code this act of waiting can be unpredictable, inefficient and simply frustrating.  The example below 

illustrates a possible synchronous wait using futures.  

 

C++ suffers an evident deficit of asynchronous operations compared to other languages, thereby hindering 

programmer productivity. JavaScript on Windows 8 has promises (then, join and any), .NET has the Task Parallel 

Library (ContinueWith, WhenAll, WhenAny), C#/VB has the await keyword (asynchronous continuations), and F# 

has asynchronous workflows. When compared to these languages, C++ is less productive for writing I/O-

intensive applications and system software. In particular writing highly scalable services becomes significantly 

more difficult.  

#include <future> 
using namespace std; 
int main() { 

future<int> f = async([]() { return 123; }); 
 
int result = f.get(); // might block 

} 
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This proposal introduces the following key asynchronous operations to std::future, std::shared_future, and 

std::async, which will enhance and enrich these libraries.   

then:  
In asynchronous programming, it is very common for one asynchronous operation, on completion, to invoke a 
second operation and pass data to it. The current C++ standard does not allow one to register a continuation to 
a future.  With then, instead of waiting for the result, a continuation is “attached” to the asynchronous 
operation, which is invoked when the result is ready. Continuations registered using the then function will help 
to avoid blocking waits or wasting threads on polling, greatly improving the responsiveness and scalability of an 
application.  
 
unwrap: 

In some scenarios, you might want to create a future that returns another future, resulting in nested futures. 

Although it is possible to write code to unwrap the outer future and retrieve the nested future and its result, 

such code is not easy to write because you must handle exceptions and it may cause a blocking call.  unwrap can 

allow us to mitigate this problem by doing an asynchronous call to unwrap the outermost future.  

is_ready: 

There are often situations where a get() call on a future may not be a blocking call, or is only a blocking call 

under certain circumstances. This function gives the ability to test for early completion and allows us to avoid 

associating a continuation, which needs to be scheduled with some non-trivial overhead and near-certain loss of 

cache efficiency.   

when_any / when_any_swapped / when_all:  

The standard also omits the ability to compose multiple futures. This is a common pattern that is ubiquitous in 
other asynchronous frameworks and is absolutely necessary in order to make C++ a powerful asynchronous 
programming language. Not including these functions is synonymous to Boolean algebra without  AND/OR.  
when_any and when_any_swapped asynchronously wait for at least one of multiple future or shared_future 
objects to finish. when_all asynchronously waits for multiple future and shared_future objects to finish.  
 
make_ready_future  

Some functions may know the value at the point of construction. In these cases the value is immediately 

available, but needs to be returned as a future. By using make_ready_future a future can be created which 

holds a pre-computed result in its shared state.  In the current standard it is non-trivial to create a future directly 

from a value.  First a promise must be created, then the promise is set, and lastly the future is retrieved from 

the promise. This can now be done with one operation.  

 

Target Audience 

- Programmers wanting to write I/O and compute heavy applications in C++ 
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- Programmers who demand server side scalability, client side responsiveness, and non-blocking UI 
threads from applications. 

- Programmers who rely on multiple asynchronous operations, each with its own completion event 
 

IV. Impact on the Standard 
 

These changes are entirely based on library extensions and do not require any language features beyond what is 

available in C++ 11. The definition of a standard representation of asynchronous operations described in this 

document will have very limited impact on existing libraries, largely due to the fact that it is being proposed 

exactly to enable the development of a new class of libraries and APIs with a common model for functional 

composition.  

V. Design Decisions 
 

Overview 

The proposal introduces new features to the C++ standard as a library based proposal. Many of the design 

decisions were based primarily on Microsoft’s successful Parallel Programming Libraries (PPL). PPL is widely 

adopted throughout the organization and has become the default model for asynchrony. Furthermore, the 

library based approach creates a basis for the natural evolution of future language based changes. 

then 

The proposal to include future::then to the standard provides the ability to sequentially compose two futures 

by declaring one to be the continuation of another.  With then the antecedent future is ready (has a value or 

exception stored in the shared state) before the continuation starts as instructed by the lambda function.  

In the example below the future<int> f2 is registered to be a continuation of future<int> f1 using the then 

member function. This operation takes a lambda function which describes how f2 should proceed after f1 is 

ready.  

 

#include <future> 
using namespace std; 
int main() { 

future<int> f1 = async([]() { return 123; }); 
 

   future<string> f2 = f1.then([](future<int> f) { 
        return f.get().to_string(); // here .get() won’t block 
   }); 

} 
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One key feature of this function is the ability to chain multiple asynchronous operations. In asynchronous 

programming, it's common to define a sequence of operations, in which each continuation executes only when 

the previous one completes. In some cases, the antecedent future produces a value that the continuation 

accepts as input. By using future.then, creating a chain of continuations becomes straightforward and intuitive: 

myFuture.then(…).then(…).then(…). Some points to note are: 

- Each continuation will not begin until the preceding has completed. 

- If an exception is thrown, the following continuation can handle it in a try-catch block 

Input Parameters:  

- Lambda function: One option which was considered was to follow JavaScript’s approach and take 

two functions, one for success and one for error handling. However this option is not viable in C++ 

as there is no single base type for exceptions as there is in JavaScript. The lambda function takes a 

future as its input which carries the exception through. This makes propagating exceptions 

straightforward. This approach also simplifies the chaining of continuations. 

 

- Executor: An overloaded version on then takes a reference to an executor object as an additional 

parameter. The details of the executor are described in document N3562, and won’t be repeated 

here. It is recommended to read N3562 to get a better understanding of what an executor is and 

motivation behind standardizing it. This variant of then is useful in cases where there is a desire to 

control which threads are being executed. Some circumstances where the executor is necessary 

include: 

o The continuation of a future requires significant time to complete and therefore cannot execute 

in the context of the completing thread (inline). Association of an executor with the future 

causes the future’s continuation to be scheduled using the executor.  

o A continuation needs to execute on the thread owning a particular hardware or software 

resource, such as the main graphical user interface thread. 

o The application needs to throttle its work into a thread pool of a limited size.  

 

- Launch policy: if the flexibility that the executor provides is not required.  

 

Return values: The decision to return a future was based primarily on the ability to chain multiple 

continuations using then. This benefit of composability gives the programmer incredible control and flexibility 

over their code. Returning a future object rather than a shared_future is also a much cheaper operation 

thereby improving performance. A shared_future object is not necessary to take advantage of the chaining 

feature. It is also easy to go from a future to a shared_future when needed using future::share(). 

It is a common situation that the body of a then function object will itself be a future-based operation, which 

leads to the then() returning a future<future<T>>. In this case, it is almost always the case that what you really 
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care about is the inner future, so then() performs an implicit unwrap() (see below) before returning. Only one 

level of future nesting is unwrapped. 

 

unwrap 

Calling unwrap() on a future<future> returns a proxy to the inner future. Often unwrapping is required 

before attaching a continuation using then.  In the example below the outer_future is of type 

future<future<int>>. Calling unwrap() is unlike get() in that it does not wait for the outer future to be ready 

before returning. Instead, it returns a proxy for the inner future.  

 

Explicit unwrapping:  During the design phase the option of doing automatic unwrapping was considered. 

Microsoft’s PPL task does automatic asynchronous unwrapping in several operations when returning a nested 

future. Based on experience with PPL, and feedback at meetings in Portland and Bristol, it was decided that 

explicit unwrapping will be available via the unwrap() function. 

Implicit unwrapping: Automatically unwrapping nested futures, when the context calls for it, is also very 

valuable as it makes a lot of code simpler and thus easier to read.  

Implicit unwrapping shall be implemented by the implementation of then(), which will automatically unwrap 

one level only. In other words, any then() for which the resulting type would be future<future<T>> without 

unwrapping will return future<T> as if .unwrap() were called on the result. Automatic unwrapping shall also be 

implemented throug construction, so that the constructor for future<T> will accept values of type 

future<future<T>> as if unwrap() were called on the value. 

is_ready 

#include <future> 
using namespace std; 
 
int main() { 

 
future<future<int>> outer_future = async([]{  

future<int> inner_future =  async([] {  
return 1;  

  }); 
 return inner_future; 

}); 
 
future<int> inner_future = outer_future.unwrap(); 

     
    inner_future.then([](future f) { 
 do_work(f); 
    }); 

} 
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The concept of checking if the shared state is ready already exists in the standard today. For example, calling 

get() on a function internally checks if the shared state is ready, and if it isn’t it wait()s. This function exposes 

this ability to check the shared state to the programmer, and allows them to bypass the act of waiting by 

attaching a continuation if necessary. The example below illustrates using the is_ready member function to 

determine whether using then to attach a continuation is needed.  

 

The decision to add this function as a member of the future and shared_future classes was straightforward, as 

this concept already implicitly exists in the standard. This functionality can also explicitly be called by using 

f1.wait_for(chrono::seconds(0)). However is_ready is less verbose and much easier to discover by the 

programmer.  By explicitly allowing the programmer to check the shared state of a future, improvements on 

performance can be made. Below are some examples of when this functionality becomes especially useful: 

- A library may be buffering I/O requests so that only the initial request takes a significant amount of 

time (can cause a blocking wait), while subsequent requests find that data already available.  
- A function which produces a constant value 90% of the time, but has to perform a long running 

computation 10% of the time.  

- A virtual function that in some derived implementations may require long-running computations, 

but on some implementations never block.   

 

when_any  

The choice operation is implemented by when_any. This operation produces a future object that completes after 

one of multiple input futures complete. The future that is returned holds a vector or tuple object with the 

#include <future>  
using namespace std; 
 
int main() { 
 

future<int> f1 = async([]() { return possibly_long_computation(); }); 
 
if(!f1.is_ready()) { 
 //if not ready, attach a continuation and avoid a blocking wait 
 fl.then([] (future<int> f2) { 
  int v = f2.get(); 
  process_value(v); 
 }); 
} 
//if ready, then no need to add continuation, process value right away  
else { 

int v = f1.get(); 
process_value(v); 

} 
} 

 

} 
 

 



 
9 

input futures as elements, in the same order. There are two variations of this function which differ by their input 

parameters. The first, producing a vector, takes a pair of iterators, and the second, producing a tuple, takes any 

arbitrary number of future and shared_future objects.  

when_any is useful in scenarios where there are redundant or speculative executions; you launch several tasks 

and the first one to complete delivers the required result. You could also add a timeout to an operation—start 

with an operation that returns a task and combine it with a task that sleeps for a given amount of time. If the 

sleeping task completes first, your operation has timed out and can therefore be discarded or canceled. Another 

useful scenario is a parallel search. As soon as the value being searched for is found when_any returns the 

vector/tuple with the input futures. The collection can then be parsed looking at the state of each future using 

the ready() operator. The first future with a ready state contains the value that was being searched for. 

An issue with this design is that figuring out which future is ready requires a linear scan of the output collection. 

In the case of the iterator-based input, the size of the output vector can be fairly large. In order to mitigate this 

cost in the common scenario where the calling code only cares about getting the result of the first ready future, 

a variant of when_any, named when_any_swapped, swaps the first ready future (the one that triggered completion 

of the composed future) with the last future of the vector. Thus, the ready future is available for being popped 

off the vector. This version of the functionality will not maintain the order-based correlation between input and 

output, and is therefore not the default behavior of when_any. 

 

 

Alternatives: The only other alternative that was considered was to not include this function and to let the user 

build their own version using promises. However, it is our assessment that this operator is so essential that 

without it this proposal would be incomplete and C++ would not have a comprehensive set of asynchronous 

composition primitives.  

#include <future> 
using namespace std; 
 
int main() { 

 
future<int> futures[] = {async([]() { return intResult(125); }),  
                         async([]() { return intResult(456); })}; 
 
 
future<vector<future<int>>> any_f = when_any(begin(futures), end(futures)); 
 
future<int> result = any_f.then([](future<vector<future<int>> f) { 
     for(future<int> i : f.get()) { 
  if(i.is_ready()) 
   return i.get(); //get() will not block 
        } 
         
}); 

} 
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Input Parameters: There are two variations in this implementation of when_any. The first being a function which 

takes a pair of iterators and the second variation takes any number (except zero) of future and shared_future 

objects. The reason to have two versions was to provide convenience and flexibility to the programmer. It is 

often the case when there is a collection of futures which has an unknown size that needs to be operated on. By 

using iterators the number of operands does not need to be known statically. The second variant provides 

additional convenience by allowing mixing of futures and shared futures of different types. when_any also 

accepts zero arguments and returns future<tuple<>>.  

Return values: The function always returns a future object; the type of the future is dependent on the inputs.  

- future<vector<future<R>>>: If the input cardinality is unknown at compile time and the futures are 

all of the same type, and the iterator pair yields future<R>. R may be void.  

- future<vector<shared_future<R>>>: If the input cardinality is unknown at compile time and the 

futures are all of the same type, and the iterator pair yields shared_future<R>. R may be void. 

- future<tuple<future<R0>, future<R1>, future<R2>…>>: If inputs are fixed in number and are of 

heterogeneous types. The inputs can be any arbitrary number of future and shared_future objects. 

The type of the element at each position of the tuple corresponds to the type of the argument at 

the same position. Any of R0, R1, R2, etc. may be void. 

when_all 

The join operator is implemented by when_all. This operation asynchronously waits for all of multiple future 

and shared_future objects to finish.  The future that is returned holds a tuple or a vector with copies of all of 

the input futures. Like when_any there are also two variations. The first taking an iterator pair and the second 

taking a series of future or shared_future objects as shown below. 

 

Exception handling: The resulting future will not throw an exception when its value is retrieved. Any exceptions 

arising from the operations represented by the input futures are raised by the individual futures in the output 

collection. 

#include <future> 
using namespace std; 
 
int main() { 

 
shared_future<int> shared_future1 = async([] { return intResult(125); }); 
future<string> future2 = async([]() { return stringResult(“hi”); });                          
 
future<tuple<shared_future<int>, future<string>>> all_f =  
        when_all(shared_future1, future2); 
 
future<int> result = all_f.then([](future<tuple<shared_future<int>, 
future<string>>> f) { 
        return doWork(f.get()); 
}); 

} 
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Input Parameters: Again, as the case with when_any, there are two variations. The first which takes an iterator 

pair, and the second which takes a sequence of future and shared_future objects.  One key difference with this 

operation is that the future and shared_future objects do not have to be of the same type. when_all also 

accepts zero arguments and returns future<tuple<>>.  

Return values: The function always returns a future object, however the type of the future is dependent on the 

inputs.  

- future<vector<future<R>>>: If the input cardinality is unknown at compile time and the futures are 

all of the same type, and the iterator pair yields future<R>. R may be void.  

- future<vector<shared_future<R>>>: If the input cardinality is unknown at compile time and the 

futures are all of the same type, and the iterator pair yields shared_future<R>. R may be void. 

- future<tuple<future<R0>, future<R1>, future<R2>…>>: If inputs are fixed in number and are of 

heterogeneous types. The inputs can be any arbitrary number of future and shared_future objects. 

The type of the element at each position of the tuple corresponds to the type of the argument at 

the same position. Any of R0, R1, R2, etc. may be void. 

 

make_ready_future 

This function creates a ready future<T> for a given value of type T. If no value is given then a future<void> is 

returned. This function is primarily useful in cases where sometimes, the return value is immediately available, 

but sometimes it is not. The example below illustrates, that in an error path the value is known immediately, 

however in other paths the function must return an eventual value represented as a future.  

 

There are two variants of this function. The first takes a value of any type, and returns a future of that type. The 

input value is passed to the shared state of the returned future. The second version takes no input and returns 

a future<void>.  

If the programmer wants to create a ready shared_future, they must first use make_ready_future to create a 

future, then call share on that future to get a shared_future.  

VI. Technical Specification 
 

future<int> compute(int x) { 
  

if (x < 0) return make_ready_future<int>(-1); 
if (x == 0) return make_ready_future<int>(0); 

  
      future<int> f1 = async([]() { return do_work(x); });  
      return f1; 
} 
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This proposal presupposes at least partial approval of the proposal contained in document N3562, specifically, 

the section identified as “III.1.1 Class executor [executors.base.executor]” in that document. 

30.6.6 Class template future                                                     [futures.unique_future] 

To the class declaration found in 30.6.6/3, add the following to the public functions: 

bool ready() const; 

future(future<future<R>>&& rhs) noexcept; 

template<typename F> 
auto then(F&& func) -> future<decltype(func(*this))>; 
template<typename F> 
auto then(executor &ex, F&& func) -> future<decltype(func(*this))>; 
template<typename F> 
auto then(launch policy, F&& func) -> future<decltype(func(*this))>; 

 

see below unwrap(); 
 

Between 30.6.6/8 & 30.6.6/9, add the following: 

future(future<future<R>>&& rhs) noexcept; 

Effects: constructs a future object by moving the instance referred to by rhs and unwrapping the inner 

future (see unwrap()). 

Postconditions: 

- valid() returns the same value as rhs.valid() prior to the constructor invocation. 

- rhs.valid() == false. 

After 30.6.6/24, add the following: 

template<typename F> 
auto then(F&& func) -> future<decltype(func(*this))>; 
template<typename F> 
auto then(executor &ex, F&& func) -> future<decltype(func(*this))>; 
template<typename F> 
auto then(launch policy, F&& func) -> future<decltype(func(*this))>; 

 

Notes:  The three functions differ only by input parameters. The first only takes a callable object which 
accepts a future object as a parameter. The second function takes an executor as the first parameter 
and a callable object as the second parameter. The third function takes a launch policy as the first 
parameter and a callable object as the second parameter.  
In cases where ‘decltype(func(*this))’ is future<R>, the resulting type is future<R> instead of 
future<future<R>>. 

 
Effects:  

- The continuation is called when the object’s shared state is ready (has a value or exception 
stored).  
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- The continuation launches according to the specified launch policy or executor.  
- When the executor or launch policy is not provided the continuation inherits the parent’s 

launch policy or executor.  
- If the parent was created with std::promise or with a packaged_task (has no associated launch 

policy), the continuation behaves the same as the third overload with a policy argument of 
launch::async | launch::deferred and the same argument for func. 

- If the parent has a policy of launch::deferred and the continuation does not have a specified 
launch policy or scheduler, then the parent is filled by immediately calling .wait(), and the 
policy of the antecedent is launch::deferred 

 
Returns: An object of type future<decltype(func(*this))> that refers to the shared state created by 
the continuation.  

 
Postcondition:   

- The future object is moved to the parameter of the continuation function 
- valid() == false on original future object immediately after it returns 

 
 

template<typename R2> 
future<R2> future<R>::unwrap() 

 
 

Notes:  

- R is a future<R2> or shared_future<R2> 

- Removes the outer-most future and returns a proxy to the inner future. The proxy is a 

representation of the inner future and it holds the same value (or exception) as the inner future.  

Effects: 
- future<R2> X = future<future<R2>>.unwrap(), returns a future<R2> that becomes ready 

when the shared state of the inner future is ready. When the inner future is ready, its value (or 

exception) is moved to the shared state of the returned future. 

- future<R2> Y = future<shared_future<R2>>.unwrap(),returns a future<R2> that becomes 

ready when the shared state of the inner future is ready. When the inner shared_future is 

ready, its value (or exception) is copied to the shared state of the returned future. 

- If the outer future throws an exception, and .get() is called on the returned future, the 
returned future throws the same exception as the outer future. This is the case because the 
inner future didn’t exit 
 

Returns: a future of type R2. The result of the inner future is moved out (shared_future is copied out) 

and stored in the shared state of the returned future when it is ready or the result of the inner future 

throws an exception.  

Postcondition: 
- The returned future has valid() == true, regardless of the validity of the inner future.  

 

[Example: 
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future<int> work1(int value); 
int work(int value) { 
 future<future<int>> f1 = std::async([=] {return work1(value); }); 
 future<int> f2 = f1.unwrap(); 
 return f2.get(); 

} 
-end example] 
 

bool is_ready() const; 

Returns: true if the shared state is ready, false if it isn't. 

 
 
 
30.6.7 Class template shared_future                                      [futures.shared_future] 
 

To the class declaration found in 30.6.7/3, add the following to the public functions: 

bool is_ready() const; 

template<typename F> 
auto then(F&& func) -> future<decltype(func(*this))>; 
template<typename F> 
auto then(executor &ex, F&& func) -> future<decltype(func(*this))>; 
template<typename F> 
auto then(launch policy, F&& func) -> future<decltype(func(*this))>; 

 
see below unwrap(); 

 

After 30.6.7/26, add the following: 

template<typename F> 
auto shared_future::then(F&& func) -> future<decltype(func(*this))>; 
template<typename F> 
auto shared_future::then(executor &ex, F&& func) -> future<decltype(func(*this))>; 
template<typename F> 
auto shared_future::then(launch policy, F&& func) -> future<decltype(func(*this))>; 
 
Notes:  The three functions differ only by input parameters. The first only takes a callable object which 
accepts a shared_future object as a parameter. The second function takes an executor as the first 
parameter and a callable object as the second parameter. The third function takes a launch policy as the 
first parameter and a callable object as the second parameter. 
In cases where ‘decltype(func(*this))’ is future<R>, the resulting type is future<R> instead of 
future<future<R>>. 
 
Effects:  

- The continuation is called when the object’s shared state is ready (has a value or exception 
stored).  

- The continuation launches according to the specified policy or executor.  
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- When the scheduler or launch policy is not provided the continuation inherits the parent’s 
launch policy or executor.  

- If the parent was created with std::promise (has no associated launch policy), the continuation 
behaves the same as the third function with a policy argument of launch::async | 
launch::deferred and the same argument for func. 

- If the parent has a policy of launch::deferred and the continuation does not have a specified 
launch policy or scheduler, then the parent is filled by immediately calling .wait(), and the 
policy of the antecedent is launch::deferred 

 
Returns: An object of type future<decltype(func(*this))> that refers to the shared state created by the 
continuation. 

 
Postcondition:   

- The shared_future passed to the continuation function is a copy of the original shared_future 
- valid() == true on the original shared_future object 

 
 

template<typename R2> 
future<R2> shared_future<R>::unwrap(); 

 
 

Requires: R is a future<R2> or shared_future<R2> 

Notes: Removes the outer-most shared_future and returns a proxy to the inner future. The proxy is a 

representation of the inner future and it holds the same value (or exception) as the inner future.  

Effects: 
- future<R2> X = shared_future<future<R2>>.unwrap(), returns a future<R2> that becomes 

ready when the shared state of the inner future is ready. When the inner future is ready, its 

value (or exception) is moved to the shared state of the returned future. 

- future<R2> Y = shared_future<shared_future<R2>>.unwrap(),returns a future<R2> that 

becomes ready when the shared state of the inner future is ready. When the inner 

shared_future is ready, its value (or exception) is copied to the shared state of the returned 

future. 

- If the outer future throws an exception, and .get() is called on the returned future, the 
returned future throws the same exception as the outer future. This is the case because the 
inner future didn’t exit 
 

Returns: a future of type R2. The result of the inner future is moved out (shared_future is copied out) 

and stored in the shared state of the returned future when it is ready or the result of the inner future 

throws an exception.  

Postcondition: 
- The returned future has valid() == true, regardless of the validity of the inner future.  

 

bool is_ready() const; 
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Returns: true if the shared state is ready, false if it isn't. 

 

30.6.X Function template when_all                                               [futures.when_all] 
 
template <class InputIterator> 
see below when_all(InputIterator first, InputIterator last); 
 
template <typename... T> 
see below when_all(T&&... futures); 
 

 
Requires: T is of type future<R> or shared_future<R>.  
 
Notes:  

- There are two variations of when_all. The first version takes a pair of InputIterators. The 
second takes any arbitrary number of future<R0> and shared_future<R1> objects, where R0 
and R1 need not be the same type. 

- Calling the first signature of when_all where InputIterator index first equals index last, 
returns a future with an empty vector that is immediately ready. 

- Calling the second signature of when_any with no arguments returns a future<tuple<>> that is 
immediately ready.  

 
Effects: 

- Each future and shared_future is waited upon and then copied into the collection of the 
output (returned) future, maintaining the order of the futures in the input collection. 

- The future returned by when_all will not throw an exception, but the futures held in the output 
collection may. 
 

Returns: 
- future<tuple<>>: if when_all is called with zero arguments.  
- future<vector<future<R>>>: If the input cardinality is unknown at compile and the iterator pair 

yields future<R>. R may be void. The order of the futures in the output vector will be the same 

as given by the input iterator. 

- future<vector<shared_future<R>>>: If the input cardinality is unknown at compile time and 

the iterator pair yields shared_future<R>. R may be void. The order of the futures in the output 

vector will be the same as given by the input iterator. 

- future<tuple<future<R0>, future<R1>, future<R2>…>>: If inputs are fixed in number. The 

inputs can be any arbitrary number of future and shared_future objects. The type of the 

element at each position of the tuple corresponds to the type of the argument at the same 

position. Any of R0, R1, R2, etc. may be void. 

 
Postcondition: 

- All input future<T>s valid() == false 
- All output shared_future<T> valid() == true 
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30.6.X Function template when_any     [futures.when_any] 
 
template <class InputIterator> 
see below when_any(InputIterator first, InputIterator last); 
 
template <typename... T> 
see below when_any(T&&... futures); 
 
 
 

Requires: T is of type future<R> or shared_future<R>. All R types must be the same.  
 
Notes:  

- There are two variations of when_any. The first version takes a pair of InputIterators. The 
second takes any arbitrary number of future<R> and shared_future<R> objects, where R need 
not be the same type. 

- Calling the first signature of when_any where InputIterator index first equals index last, 
returns a future with an empty vector that is immediately ready. 

- Calling the second signature of when_any with no arguments returns a future<tuple<>> that is 
immediately ready.  

 
Effects: 

- Each future and shared_future is waited upon. When at least one is ready, all the futures are 
copied into the collection of the output (returned) future, maintaining the order of the futures 
in the input collection. 

- The future returned by when_any will not throw an exception, but the futures held in the 
output collection may. 

 
Returns: 

- future<tuple<>>: if when_any is called with zero arguments.  
- future<vector<future<R>>>: If the input cardinality is unknown at compile time and the 

iterator pair yields future<R>. R may be void. The order of the futures in the output vector will 

be the same as given by the input iterator. 

- future<vector<shared_future<R>>>: If the input cardinality is unknown at compile time and 

the iterator pair yields shared_future<R>. R may be void. The order of the futures in the output 

vector will be the same as given by the input iterator. 

- future<tuple<future<R0>, future<R1>, future<R2>…>>: If inputs are fixed in number. The 

inputs can be any arbitrary number of future and shared_future objects. The type of the 

element at each position of the tuple corresponds to the type of the argument at the same 

position. Any of R0, R1, R2, etc. maybe void. 

Postcondition: 
- All input future<T>s valid() == false 
- All input shared_future<T> valid() == true 
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30.6.X Function template when_any_swapped  [futures. when_any_ swapped] 
 
template <class InputIterator> 
see below when_any_swapped(InputIterator first, InputIterator last); 
 
 

Requires: T is of type future<R> or shared_future<R>. All R types must be the same.  
 
Notes:  

- The function when_any_swapped takes a pair of InputIterators. 
- Calling when_any_swapped where InputIterator index first equals index last, returns a future 

with an empty vector that is immediately ready. 
 

Effects: 
- Each future and shared_future is waited upon. When at least one is ready, all the futures are 

copied into the collection of the output (returned) future. 
- After the copy, the future or shared_future that was first detected as being ready swaps its 

position with that of the last element of the result collection, so that the ready future or 
shared_future may be identified in constant time. Only one future or shared_future is thus 
moved. 

- The future returned by when_any_swapped will not throw an exception, but the futures held in 
the output collection may. 

 
Returns: 

- future<vector<future<R>>>: If the input cardinality is unknown at compile time and the 

iterator pair yields future<R>. R may be void.  

- future<vector<shared_future<R>>>: If the input cardinality is unknown at compile time and 

the iterator pair yields shared_future<R>. R may be void. 

Postcondition: 
- All input future<T>s valid() == false 
- All input shared_future<T> valid() == true  

 
30.6.X Function template make_ready_future                                                [futures.make_future] 
 
template <typename T> 
future<typename decay<T>::type> make_ready_future(T&& value); 
future<void> make_ready_future(); 

 
 

Effects:  The value that is passed in to the function is moved to the shared state of the returned function if it 
is an rvalue.  Otherwise the value is copied to the shared state of the returned function. 

 
Returns: 

- future<T>, if function is given a value of type T  
- future<void>, if the function is not given any inputs.  
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Postcondition: 
- Returned future<T>, valid() == true 
- Returned future<T>, is_ready() = true 

 
 
 

30.6.8 Function template async                                                                [futures.async] 
 

Change 30.6.8/1 as follows: 

The function template async provides a mechanism to launch a function potentially in a new thread 

and provides the result of the function in a future object with which it shares a shared state. 

template <class F, class... Args> 
future<typename result_of<typename decay<F>::type(typename decay<Args>::type...)>::type> 
async(F&& f, Args&&... args); 
template <class F, class... Args> 
future<typename result_of<typename decay<F>::type(typename decay<Args>::type...)>::type> 
async(launch policy, F&& f, Args&&... args); 
template<class F, class... Args> 
future<typename result_of<typename decay<F>::type(typename decay<Args>::type...)>::type> 
async(executor &ex, F&& f, Args&&... args); 

 
Change 30.6.8/3 as follows: 

Effects: The first function behaves the same as a call to the second function with a policy argument of 

launch::async | launch::deferred and the same arguments for F and Args. The second and third functions 

creates a shared state that is associated with the returned future object. The further behavior of the second 

function depends on the policy argument as follows (if more than one of these conditions applies, the 

implementation may choose any of the corresponding policies): 

- if policy & launch::async is non-zero — calls INVOKE (DECAY_COPY (std::forward<F>(f)), 

DECAY_COPY (std::forward<Args>(args))...) (20.8.2, 30.3.1.2) as if in a new thread of execution 

represented by a thread object with the calls to DECAY_COPY () being evaluated in the thread 

that called async. Any return value is stored as the result in the shared state. Any exception 

propagated from the execution of INVOKE (DECAY_COPY (std::forward<F>(f)), DECAY_COPY 

(std::forward<Args>(args))...) is stored as the exceptional result in the shared state. The thread 

object is stored in the shared state and affects the behavior of any asynchronous return objects 

that reference that state. 

 

- if policy & launch::deferred is non-zero — Stores DECAY_COPY (std::forward<F>(f)) and DECAY_COPY 

(std::forward<Args>(args))... in the shared state. These copies of f and args constitute a deferred 

function. Invocation of the deferred function evaluates INVOKE  std::move(g), std::move(xyz)) where g is 

the stored value of DECAY_COPY (std::forward<F>(f)) and xyz is the stored copy of DECAY_COPY 

(std::forward<Args>(args)).... The shared state is not made ready until the function has completed. The 

first call to a non-timed waiting function (30.6.4) on an asynchronous return object referring to this 

shared state shall invoke the deferred function in the thread that called the waiting function. Once 
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evaluation of INVOKE (std::move(g), std::move(xyz)) begins, the function is no longer considered 

deferred. [ Note: If this policy isspecified together with other policies, such as when using a policy value 

of launch::async | launch::deferred, implementations should defer invocation or the selection of the 

policy when no more concurrency can be effectively exploited. —end note ] 

The further behavior of the third function is as follows:  

The executor::add() function is given a function<void ()> which calls INVOKE (DECAY_COPY 

(std::forward<F>(f)), DECAY_COPY (std::forward<Args>(args))...). The implementation of the executor 

is decided by the programmer.  

Change 30.6.8/8 as follows: 
 

Remarks: The first signature shall not participate in overload resolution if decay<F>::type is std:: 

launch or std::executor. 
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