
Deprecating rand() and Friends

Document #: WG21 N3775
Date: 2013-09-25
Revises: N3742
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Proposal 1
2 Proposed wording 2
3 Acknowledgments 4

4 Bibliography 4
5 Revision history 4

Abstract

This paper proposes to deprecate some <cstdlib> legacy interfaces in order to encourage
programmers to migrate to the <random> component of the C++11 standard library.1

This proposal has been separated, at LEWG’s request, from the others in [Bro13b] in order
to advance only this part for early incorporation into C++14, leaving the remaining sections for
a future Technical Specification and/or International Standard.

1 Proposal

If a feature is not deprecated [I] don’t see any point in not using it.

— HARIHARAN SUBRAMANIAN

By common consensus at several consecutive WG21 meetings during which the C++11 random
number facility was being discussed and shaped into its final form, it has for a number of years
been the long-term plan to excise the legacy C random number facility from the std namespace.
Indeed, obliquely acknowledging the quality2,3 of C++11’s <random> header, WG21 voted several
years ago to insert a Note4 into [c.math]/5 as a head start on this plan: “The random number
generation . . . facilities in this standard are often preferable to rand.”5

1 Readers seeking greater familiarity with this component may find [Bro13a] to be a helpful source of background
information and tutorial guidance with numerous usage examples.

2 “[B]y and large, I think it’s the best random number library design of all, by a mile. If I were a random number, I’d
think I died and went to heaven” [Ale07].

3 “The C++11 <random> is very STL-like in that it sets up requirements for random number generators. . . , and
random distributions. . . , and then the client can mix and match the two. It’s a really very cool design [Hin12].

4 The language for this Note was proposed by Beman Dawes in [Daw08]; [Bec08] was the first Working Paper to
incorporate it.

5 See also Stephan T. Lavavej’s recent talk, “rand() Considered Harmful,” given at GoingNative 2013. Recorded on
2013-09-06; available at channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful.

1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3742.pdf
mailto:webrown.cpp@gmail.com
channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful

2 N3775: Deprecating rand() and Friends

We therefore now propose to execute the next step of this plan to discourage the use of the
traditional C function rand as well as its associated seeding function srand and upper limit macro
RAND_MAX.6 In particular, we propose to begin this transition by formally deprecating:

• rand, srand, and RAND_MAX and

• algorithm random_shuffle() (keeping shuffle, however).

The rationale for deprecating random_shuffle() is that one overload is specified so as to depend
on rand, while the other overload is specified so as to require a hard-to-produce distribution
object from the user; such a distribution is already an implicit part of shuffle, which we retain.

2 Proposed wording

All proposed wording is relative to WG21 draft [DuT12]. It is recommended to apply the
wording additions and deletions in the order shown. Editorial notes are displayed against a
gray background .

(1) Create a new section in Annex D:

D.x Rand [depr.rand]

Use of function rand, function srand, and macro RAND_MAX is deprecated. [Note: This deprecation
holds in the global namespace as well as in namespace std. — end note]

(2) Copy all of the current [alg.random.shuffle] to a new section in Annex D, applying to the copy
the changes shown below.

D.y Random shuffle [depr.alg.random.shuffle]

The following templates are in addition to those specified in Clause [alg.random].

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first, RandomAccessIterator last,

RandomNumberGenerator&& rand);

template<class RandomAccessIterator, class UniformRandomNumberGenerator>
void shuffle(RandomAccessIterator first, RandomAccessIterator last,

UniformRandomNumberGenerator&& g);

Effects: Permutes the elements in the range [first, last) such that each possible permutation
of those elements has equal probability of appearance.

Requires: RandomAccessIterator shall satisfy the requirements of ValueSwappable (17.6.3.2).
The random number generating function object rand shall have a return type that is convert-
ible to iterator_traits<RandomAccessIterator>::difference_type, and the call rand(n)
shall return a randomly chosen value in the interval [0, n), for n > 0 of type iterator_traits<
RandomAccessIterator>::difference_type. The type UniformRandomNumberGenerator shall

6 These names are declared in the classic C header <stdlib.h> and the corresponding C++ header <cstdlib>.

N3775: Deprecating rand() and Friends 3

meet the requirements of a uniform random number generator (26.5.1.3) type whose return type
is convertible to iterator_traits<RandomAccessIterator>::difference_type.

Complexity: Exactly (last − first)− 1 swaps.

Remarks: To the extent that the implementation of these functions makes use of random numbers,
the implementation shall use the following sources of randomness:

The underlying source of random numbers for the first form of the function is implementation-
defined. An implementation may use the rand function from the standard C library.

In the second form of the function, the function object rand shall serve as the implementation’s
source of randomness.

In the third shuffle form of the function, the object g shall serve as the implementation’s source
of randomness.

(3) In the synopsis in [algorithms.general]:

• apply the comment //Deprecated to each of the two declarations of random_shuffle;

• at the Project Editor’s discretion, append to these same declarations a cross-reference to the
new Annex D section [depr.alg.random.shuffle]; and

• change the parameter name rand to g so as to make this declaration consistent with that in
the later exposition of shuffle.

(4) Finally, excise vestiges of std::random_shuffle from [alg.random.shuffle] by adjusting as
follows:

25.3.12 Random sShuffle [alg.random.shuffle]

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first, RandomAccessIterator last,

RandomNumberGenerator&& rand);

template<class RandomAccessIterator, class UniformRandomNumberGenerator>
void shuffle(RandomAccessIterator first, RandomAccessIterator last,

UniformRandomNumberGenerator&& g);

Effects: Permutes the elements in the range [first, last) such that each possible permutation
of those elements has equal probability of appearance.

Requires: RandomAccessIterator shall satisfy the requirements of ValueSwappable (17.6.3.2).
The random number generating function object rand shall have a return type that is convertible
to iterator_traits<RandomAccessIterator>::difference_type, and the call rand(n) shall
return a randomly chosen value in the interval [0, n), for n > 0 of type iterator_traits<Rando
mAccessIterator>::difference_type. The type UniformRandomNumberGenerator shall meet
the requirements of a uniform random number generator (26.5.1.3) type whose return type is
convertible to iterator_traits<RandomAccessIterator>::difference_type.

Complexity: Exactly (last − first)− 1 swaps.

Remarks: To the extent that the implementation of these this functions makes use of random
numbers, the implementation shall use the following sources of randomness:

4 N3775: Deprecating rand() and Friends

The underlying source of random numbers for the first form of the function is implementation-de-
fined. An implementation may use the rand function from the standard C library.

In the second form of the function, the function object rand shall serve as the implementation’s
source of randomness.

In the third shuffle form of the function, the object g shall serve as the implementation’s source
of randomness.

3 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments.

4 Bibliography

[Ale07] Andrei Alexandrescu: “Re: Conveniently generating random numbers with TR1 random.”
comp.std.c++, 2007-06-11.

[Bec08] Pete Becker: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/SC22/
WG21 document N2691 (post-Sophia mailing), 2008-06-27. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2008/n2691.pdf.

[Bro13a] Walter E. Brown: “Random Number Generation in C++11.” ISO/IEC JTC1/SC22/WG21 docu-
ment N3551 (pre-Bristol mailing), 2013-03-12. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2013/n3551.pdf.

[Bro13b] Walter E. Brown: “Three <random>-related Proposals, v2.” ISO/IEC JTC1/SC22/WG21 doc-
ument N3742 (pre-Chicago mailing), 2013-08-30. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2013/n3742.pdf.

[Daw08] Beman Dawes et al.: “Thread-Safety in the Standard Library (Rev 2).” ISO/IEC JTC1/SC22/WG21
document N2669 (post-Sophia mailing), 2008-06-13. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2008/n2669.pdf.

[DuT12] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N3691 (mid-Bristol/Chicago mailing), 2013-05-16. http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2012/n3691.pdf.

[Hin12] Howard Hinnant: Untitled response to posted query. 2012-31-07. http://stackoverflow.com/
questions/11717433/tutorial-or-example-code-for-extending-c11-random-with-generators-
and-distribu.

5 Revision history

Version Date Changes

1 2013-09-25 • Extracted text from N3742 and adapted to be self-contained.
• Tweaked as requested by LWG at Chicago: (a) included a bit
more rationale re the deprecation of random_shuffle, (b) moved
rand()’s deprecation to a new Annex D section, (c) deprecated rand
and friends in the global namespace as well as in std,7 and (d) anno-
tated random_shuffle as deprecated.
• Added a Note of explanation to the rand deprecation wording.
• Added footnote referring to STL’s recent talk.
• Published as N3775.

7Thank you, LWG!

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2691.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2691.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3551.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3551.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3742.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3742.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2669.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2669.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3691.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3691.pdf
http://stackoverflow.com/questions/11717433/tutorial-or-example-code-for-extending-c11-random-with-generators-and-distribu
http://stackoverflow.com/questions/11717433/tutorial-or-example-code-for-extending-c11-random-with-generators-and-distribu
http://stackoverflow.com/questions/11717433/tutorial-or-example-code-for-extending-c11-random-with-generators-and-distribu
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3742.pdf

N3775: Deprecating rand() and Friends 5

	1 Proposal
	2 Proposed wording
	3 Acknowledgments
	4 Bibliography
	5 Revision history

