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Resumable Functions  
While presenting a proposal that can be adopted or rejected in isolation, this document is related to N3721. 
The reader is advised to read both as a unit and to consider how the two build on each other for synergy. 
Reading them in their assigned numeric order is strongly advised.  
 
New in this version: proposed wording for a TS, including language to generalize its applicability to other 
types than future/shared_future; a section on a possible extension to include generator functions; going back 
to use of the word ‘resumable’ instead of ‘async’ as the syntactic marker of resumable functions. 
 

1. The Problem 
The direct motivation for introducing resumable functions is the increasing importance of efficiently handling 
I/O in its various forms and the complexities programmers are faced with using existing language features and 
existing libraries.  
 
The motivation for a standard representation of asynchronous operations is outlined in N3721 and won’t be 
repeated here. The need for language support for resumable functions arises from the inherent limitations of 
the library-based solution described in that proposal.  
 
Taking a purely library-based approach to composition of asynchronous operations means sacrificing usability 
and versatility: the development of an asynchronous algorithm usually starts with a synchronous, imperative 
expression of it, which is then manually translated into an asynchronous equivalent. This process is quite 
complex, akin to the reformulation of an imperative algorithm in a pure functional language, and the resulting 
code may be difficult to read.  
 
A pure library-based approach leads to object lifetime management complexities and thus a different way of 
designing the objects that are to be used by and with asynchronous operation. An even bigger problem with 
solutions that avoid language support for asynchrony is the lack of ability to compose asynchronous 
operations using the rich variety of traditional control-flow primitives.  
 
Consider this example, using the modified version of std::future<T> introduced in N3721:  
 

future<int> f(shared_ptr<stream> str)  

{  

shared_ptr<vector<char>> buf = ...;  

return str->read(512, buf)  

  .then([](future<int> op)   // lambda 1  

{  



  return op.get() + 11;  

});  

}  

 

future<void> g()  

{  

shared_ptr<stream> s = ...;  

return f(s).then([s](future<int> op)   // lambda 2  

{  

s->close();  

});  

}  

 

When g() is activated, it creates its stream object and passes it to f, which calls the read() function, attaches a 
continuation (lambda 1) to its result, and then returns the result of the then() member function call. After the 
call to f() returns, g attaches a continuation (lambda 2) to the result, after which it returns to its caller.  
 
When the read operation finishes, lambda 1 will be invoked from some context and its logic executed, 
resulting in the operation returned from f() completing. This, in turn, results in lambda 2 being invoked and its 
logic executed. If you were to set a breakpoint in either of the lambdas, you would get very little context or 
information on how you got there, and a debugger would be hard-pressed to make up for the lack of 
information.  
 
To make matters worse, the above code does not consider that the futures returned by read() and f() may 
already be completed, making the attachment of a continuation lambda unnecessary and expensive. To 
squeeze out all the performance possible, the code will wind up being quite complex. 
  
In order to properly account for the fact that the lifetime of local objects passed to asynchronous operations 
(s, buf) is different from the scope in which they are declared the programmer has to allocate them on the 
heap and find some means of managing them (using a shared_ptr<> is often sufficient).  
 
Contrast this with how the same algorithm, just as efficient and asynchronous, would look when relying on 
resumable functions:  
 

future<int> f(stream str) resumable  

{  

shared_ptr<vector<char>> buf = ...;  

int count = await str.read(512, buf);  

return count + 11;  

}  

 

future<void> g() resumable  

{  

stream s = ...;  

int pls11 = await f(s);  

s.close();  

}  



Not only is this simpler, it is more or less identical to a synchronous formulation of the same algorithm. Note, 
in particular, that there is no need to manage the lifetime of locally declared objects by allocating them on 
the heap: the compiler takes care of the lifetimes, allowing the programmer to write code that looks almost 
identical to synchronous code.  
 
The library-based approach gets even more complicated when our example includes control-flow such as 
conditional evaluation and/or loops. The language-based approach allows control-flow to remain identical to 
the synchronous formulation, including the use of try-catch blocks and non-reducible constructs such as goto, 
continue, and break.  
 
The following example illustrates this.  
 
While iterative composition is not covered in N3721, it is nevertheless expected that libraries will provide 
higher-order compositional constructs to mimic the behavior of such things as loops and conditional 
expressions/statements. With the help of a do_while() construct (not described in N3721), we get this code:  
 

auto write =  

  [&buf](future<int> size) -> future<bool>  

  {  

return streamW.write(size.get(), buf).then(  

  [](future<int> op){ return op.get() > 0; });  

  };  

 

auto flse = [](future<int> op){ return future::make_ready_future(false);};  

auto copy = do_while(  

  [&buf]() -> future<bool>  

  {   

return streamR.read(512, buf)  

  .then(  

[](future<int> op){ return (op.get() > 0) ? write : flse;});  

  });  

 

With resumable functions, the same code snippet would be:  
 

int cnt = 0;  

 

do  

{  

cnt = await streamR.read(512, buf);  

 

if ( cnt == 0 ) break;  

 

cnt = await streamW.write(cnt, buf);  

 

} while (cnt > 0);  



It is not necessarily a lot shorter, but undoubtedly easier to comprehend, more or less identical to a 
synchronous formulation of the same algorithm. Further, no special attention needs to be paid to object 
lifetimes.  
 
Resumable functions are motivated by the need to adequately address asynchronous operations, but are not 
actually tied to the proposal for a standard representation of such operations. The definition in this proposal 
can be used with any types that fit the described patterns. For example, resumable functions may be used to 
implementing a system for fully synchronous co-routines.  
 
That said, throughout this document, future<T> will be used as the primary example of usage and 
implementation.  
 

2. The Proposal  
 

2.1 Terminology  
 

A resumable function is a function that is capable of split-phase execution, meaning that the function may be 
observed to return from an invocation without producing its final logical result or all of its side-effects. This 
act is defined as the function suspending its execution. The result returned from a function when it first 
suspends is a placeholder for the eventual result: i.e. a future<T> representing the return value of a function 
that eventually computes a value of type T.  
 
After suspending, a resumable function may be resumed by the scheduling logic of the runtime and will 
eventually complete its logic, at which point it executes a return statement (explicit or implicit) and sets the 
function’s result value in the placeholder.  
 
It should thus be noted that there is an asymmetry between the function’s observed behavior from the 
outside (caller) and the inside: the outside perspective is that function returns a value of type future<T> at 
the first suspension point, while the inside perspective is that the function returns a value of type T via a 
return statement, functions returning future<void>/shared_future<void> behaving somewhat different still.  
 
Within the function, there are zero or more suspension points. A resumable function may pause when it 
reaches a suspension point. Given control-flow, it may or may not be the case that a resumable function 
actually reaches a suspension point before producing a value (of type T); conversely, a given suspension point 
may be reached many times during the execution of a function, again depending on its control-flow.  
 
A resumable function may continue execution on another thread after resuming following a suspension of its 
execution.  
 

2.2 Declaration and Definition  



Resumable functions are identified by decorating the function definition and declaration with the resumable 
keyword following the formal argument list. In the grammar productions for function definitions and lambda 
expressions, the resumable keyword is placed right before the exception-specification.  
 
Any function or lambda that can legally return a future<T>/shared_future<T> or future<void> 
/shared_future<void> may be a resumable function, regardless of scope. 
 

2.3 Restrictions  
 
Resumable functions cannot use a variable number of arguments. For situations where varargs are necessary, 
the argument unwrapping may be placed in a function that calls a resumable function after doing the 
unwrapping of arguments.  
 
The return type of a resumable function must be future<T> or shared_future<T>. The restrictions on T are 
defined by std::future, not this proposal, but T must be a copyable or movable type, or ‘void.’ It must also be 
possible to construct a variable of T without an argument; that is, it has to have an accessible (implicit or 
explicit) default constructor if it is of a class type.  
 
Await expressions may not appear within the body of an exception handler and should not be executed while 
a lock on any kind is being held by the executing thread.  
 

2. 4 Suspension Points  
 

Within a resumable function, its resumption points are uniquely identified by the presence of the ‘await’, 
which is treated as a keyword or reserved identifier within resumable functions. It is used as a unary operator, 
which pauses the function and resumes it when its operand is available. The expression denoted by the 
‘await’ keyword is called an “await expression.”  
 
The unary operator has the same precedence as unary operator ‘!’ boolean. Therefore, these statements are 
equivalent:  
 

int x = (await expr) + 10;  

int x = await expr + 10;  

 

The operator may take an operand of any type that is future<U>/shared_future<U> or convertible to 
future<U>/ shared_future<U>.  
 
If U is not ‘void,’ it produces a value of type U by waiting for the future to be filled and returning the value 
returned by the future’s ‘get()’ function. If U is ‘void,’ the await expression must be the term of an expression 
statement. That is, it cannot be the operand of another expression (since it yields ‘void’).  
 
The U used in the operand of any given await expression in a function does not correspond to or have to be 
related to, the operands of other await expressions or the return type of the function itself: the types of what 
the function consumes (using await) and produces (using return) are independent of each other.  
 

2.5 Return Statements  
 



A resumable function produces its final value when executing a return statement or, only in the case of 
future<void>/shared_future<void> as the function return type, it reaches its end of the function without 
executing a return statement.  
 
For example:  
 

future<int> abs(future<int> i_op) resumable  

{  

int i = await i_op;  

return (i < 0) ? –i : i;  

}  

 

Within a resumable function declared to return S<T>, where S is a future or shared_future and T is not ‘void’, 
a return statement should accept an operand of type T. In the case of a resumable function declared to return 
future<void> or shared_future<void>, a return statement should be of the form “return;” or be omitted. In 
such a function, reaching the end of the function represents termination of the function and filling of the 
result.  
 

3. Interactions and Implementability  
 

3.1 Interactions  
 
Keywords  
 
The proposal uses two special identifiers as keywords to declare and control resumable functions. These 
should cause no conflict with existing, working, code.  
 
In the case of resumable, it appears in a place where it is not currently allowed and should therefore not 
cause any ambiguity. Introducing the use of resumable as an identifier with a special meaning only when it 
appears in that position is therefore not a breaking change.  
 
In the case of await, it is globally reserved but meaningful only within the body of a function or within the 
argument of a decltype() expression.  
 
A possible conflict, but still not a breaking change, is that the identifiers may be in use by existing libraries. In 
the case of resumable the context should remove the possibility of conflict, but ‘await’ is more difficult. 
When used with a parenthesized operand expression, it will be indistinguishable from a call to a function 
‘await’ with one argument.  
 
A second possible non-breaking conflict is if there is a macro of the name ‘await,’ in which preprocessing will 
create problems.  
 
A quick search of the header files for the Microsoft implementation of the standard C++ and C libraries, the 
Windows 7 SDK, as well as a subset of the Boost library header files show that there are no such conflicts 
lurking within those common and important source bases.  
 
Overload Resolution  
 



From the perspective of a caller, there is nothing special about a resumable function when considering 
overload resolutions.  
 
Expression Evaluation Order / Operator Precedence  
 
This proposal introduces a new unary operator, only valid within resumable functions and decltype() 
expressions. The precedence of the operator is the same as that of the ‘!’ operator, i.e. Boolean negation.  
 

3.2 Implementation, #1: Resumable Side Stacks  
 
The following implementation sketch is not intended to serve as a reference implementation. It is included for 
illustrative purposes only.  
 
With this prototype implementation each resumable function has its own side stack. A side stack is a stack, 
separate from the thread’s main stack, allocated by the compiler when a resumable function is invoked. This 
side stack lives beyond the suspension points until logical completion. The implementation is relatively simple 
and does not require a compiler to significantly alter the body of the function, but it requires the allocation of 
a separate contiguous stack for each outstanding resumable function. 
 
Consider the following:  
 

void foo()  

{  

future<bool> t = bar();  

}  

future<bool> bar() resumable  

{  

do_work();  

//possible suspension points and synchronous work here  

return true;  

}  

 

When foo (a non-resumable function) is invoked, the current thread’s stack is allocated. Next, when the 
function bar() is executed, the resumable keyword is recognized and the compiler creates a side stack, 
allocating it appropriately. Next, the compiler switches from the thread’s current stack, to the new side stack, 
this is the push side stack operation. Depending on the implementation, the side stack can run on the same 
thread or a new thread. do_work(), a synchronous operation executes on the resumable function’s side stack.  
 
Next consider the following resumable function which has a suspension point denoted by the await keyword:  
 

void foo()  

{  

future<bool> t = bar();  

do_work();  

bool b = t.get();  

}  

 

future<bool> bar() resumable 

{ 

 do_work(); 

 await some_value; 



 do_more_work(); 

 return true; 

} 

 

 

From above, we know that resumable function bar() is currently running on its own side stack. After 

completing the synchronous work on the call stack, the function reaches a possible suspension point which is 

indicated with ‘await’. If the value at that point is not ready, bar() is suspended and a future<T>, (where T is 

the type of the function’s return statement), is returned to the calling function. The side stack is popped and 

the compiler switches back to the thread’s main stack. Function foo() continues to proceed until it gets 

blocked waiting for the future’s state to be ready. After some time, when some_value is fulfilled, the function 

bar() resumes from where it left off (the suspension point) and bar()’s side stack is pushed. When the end of 

the resumable function is reached, the previously returned future’s state is set to ready and its value is set to 

the function’s return value. Once the resumable function bar() is completed, the side stack is popped off and 

deleted, and the compiler switches back to the main thread.



3.3 Implementation #2: Heap-allocated activation frames  
 
A second example implementation requires considerably more “heavy lifting” from the compiler, but 
does not require allocation of a large, contiguous stack for the function. Activation frames for resumable 
functions are allocated in heap-based storage and are reference-counted. 
 

3.2.1 Function Definition  

 
The definition of a resumable function results in the definition of the locals frame structure and the 
added function, into which the body of the resumable method is moved before being transformed. The 
resumable method itself is more or less mechanically changed to allocate an instance of the frame 
structure, copy or move the parameters, and then call the added method.  
 
It’s worth pointing out that the frame structure used in this example is an artifact of our attempt to 
represent the transformations using valid C++ code. A “real” implementation would allocate a suitably 
large byte array and use that for storage of local variables and parameters. It would also run 
constructors and destructors at the correct point in the function, something that our source-code 
implementation cannot.  
 
The definition:  

 
future<int> f(future<double> g) resumable { return ceil(await g); }  

 

results in:  
 

struct _frame_f  

{  

int _state;  

future<int> _resultF;  

promise<int> _resultP;  

  _frame_f(future<double> g) : g(g), _state(0)  

{  

_resultF = future<int>(_resultP);  

}  

future<double> g;  

};  

future<int> f(double g)  

{  

auto frame = std::make_shared<_frame_f>(g);  

 

_res_f(frame);  

 

return frame->_resultF;  

}  

 

void _res_f(const std::shared_ptr<_frame_f> &frame)  

{  

return ceil(await frame->g);  

}  

 



Note that the body of the _res_f() function represents artistic license, as it represents a transitional state 
of the original body. It still needs to be transformed into its final form, as described in the next section.  
 

3.2.2 Function Body  

 
There are four main transformations that are necessary, not necessarily performed in the order listed: a) 
space for local variables needs to be added to the frame structure definition, b) the function prolog 
needs to branch to the last resumption point, c) await expressions need to be hoisted and then 
transformed into pause/resumption logic, and d) return statements need to be transformed to modify 
the _result field of the frame.  
 

3.2.3 Allocating Storage  

 
All variables (and temporaries) with lifetimes that statically span one or more resumption points need to 
be provided space in the heap-allocated structure. In the hand-translated version, their lifetimes are 
extended to span the entire function execution, but a real, low-level implementation must treat the 
local variable storage in the frame as just storage and not alter the object lifetimes in any way.  
 
The heap-allocated frame is reference-counted so that it can be automatically deleted when there are 
no longer any references to it. In this source-code implementation, we’re using std::shared_ptr<> for 
reference counting. Something more tailored may be used by a real implementation.  
 
An implementation that cannot easily perform the necessary lifetime analysis before allocating space in 
the frame should treat all local variables and formal parameters of a resumable function as if their 
lifetimes span a resumption point. Doing so will increase the size of the heap-allocated frame and 
decrease the stack-allocated frame.  
 

3.2.4 Function Prolog  

 
The _state field of the frame structure contains an integer defining the current state of the function. A 
function that has not yet been paused always has _state == 0. With the exception of the initial state, 
there is a one-to-one correspondence between state identities and resumption points. Except for the 
value 0, the actual numerical value assigned to states has no significance, as long as each identity 
uniquely identifies a resumption point.  
 
Each state is associated with one label (branch target), and at the prolog of the function is placed the 
equivalent of a switch-statement:  
 

void _res_f(std::shared_ptr<_frame_f> frame)  

{  

switch(frame->_state)  

{  

case 1: goto L1;  

case 2: goto L2;  

case 3: goto L3;  

case 4: goto L4;  

}  

}  

 



In the hand-coded version, special care has to be taken when a resumption point is located within a try-
block; an extra branch is required for each try block nesting a resumption point: first, the code branches 
to just before the try-block, then we allow the code to enter the block normally, then we branch again:  
 

void _res_f(std::shared_ptr<_frame_f> frame)  

{  

switch(frame->_state)  

{  

case 1: goto L1_1;  

case 2: goto L2;  

case 3: goto L3;  

case 4: goto L4;  

}  

 

L1_1:  

try  

{  

switch(frame->_state)  

{  

case 1: goto L1;  

}  

L1:  

...  

}  

}  

 

Depending on the implementation of try-blocks, such a chaining of branches may not be necessary in a 
low-level expression of the transformation.  
 

3.2.5 Hoisting ‘await’ Expressions  

 
Before transformation, each resumption point needs to be in one of these two forms:  
 

x = await expr;  

await expr;  

 

In other words, embedded await operators need to be hoisted and assigned to temporaries, or simply 
hoisted in the case of void being the result type. The operand ‘expr’ also needs to be evaluated into a 
temporary, as it will be used multiple times in the implementation, before and after the resumption 
point.  
Note that await expressions may appear in conditional (ternary) expressions as well as in short-circuit 
expressions, which may affects their hoisting in some compiler implementations.  
 

3.2.6 Implementing await expressions  

 
In our hand-coded implementation, the hoisted expression “t = await g;” is transformed thus:  
 

if ( !frame->g.ready() )  

{  

frame->_state = 1;  

frame->g.then(  

  [=](future<double> op)  



  {  

__res_f(frame);  

  });  

return;  

}  

 

L1:  

t = frame->g.get();  

 

In the case of ‘await g’ being used as the expression of an expression statement, i.e. the value is thrown 
away, the compiler must emit a call to ‘wait()’ after the resumption. Calling wait()when the result is not 
used gives the runtime a chance to raise any propagated exceptions that may otherwise go unobserved.  
 

3.2.7 Transforming ‘return’ Statements   

 

Return statements are simply transformed into calls to set the value contained in the _result objects, or 

overwrite it with a new object:  

// return ceil(await g);  

 

if ( frame->_state == 0 )  

frame->_resultF = make_ready_future<int>(ceil(t));  

else  

frame->_resultP.set(ceil(t));  

 

The test for _state == 0 is done to establish whether the function has ever been paused or not. If it has 
not, it means that the caller will not yet have been passed back the result instance and it is therefore not 
too late to replace it with a more efficient value holder. It is an optimization and an implementation is 
not required to test for this condition.  
 

4. Generalizations 
This section is meant to demonstrate two ways in which the proposal for resumable functions can 

eventually be generalized if there are use cases to motivate it. 

4.1 Types other than future<T>/shared_future<T> 
 

The proposal places strict requirements on the return type of resumable functions, as well as the 

operand of await expressions. These restrictions may be relaxed, independently, in the following ways. 

The operand of the unary operator await can be any type S<<T>> (“S eventually holding a T”) with 

meets the following conditions: 

1. S has a parameter-less function get which will either eventually produce a value of type T, 

or throw an exception. 

2. S has a function then accepting a single-parameter function object taking a parameter 

S<<T>>, S<<T>>&, or const S<<T>>. Once passed to then, the value held by the 

parameter must be immediately available for retrieval by a call to get. 



3. Optionally, if S<<T>> has a bool-returning function is_ready() indicating whether a value is 

already held, the implementation of await can be made more efficient. 

 

What motivates #1 is that the implementation of await needs a well-defined way to retrieve the value or 

the exception eventually held by the operand. #2 is what allows the implementation to avoid blocking, 

as then serves to signal the availability of a held value or exception. #3 allows an implementation to 

avoid pausing the resumable function when a value is already available in the operand. 

Similarly, the set of allowable return types of resumable functions may be expanded to include any type 

S<<T>> that meets the following conditions: 

1. S contains a typedef … _promise_type; which indicates a type used to fill the 

placeholder returned by the resumable function when it reaches a return statement or 

propagates an exception. 

2. promise_type must have at least a function set_value(T) and a function 

set_exception(exception_ptr). 

3. There must be an implicit or explicit conversion from S::promise_type to S. 

#1 is motivated by the need to identify the type that should be used to set the value or exception held 

by the returned S<<T>> object. #2 identifies what is needed from S<<T>>::promise_type in order to 

actually set the value or exception, and #3 establishes the canonical means of constructing an instance 

of S<<T>>> from the corresponding S<<T>>::promise_type instance. 

 

4.2 Generator Functions 

 
While we are solely proposing adding the capabilities of asynchronous waiting at this point, it is useful to 

demonstrate that the resumable function concept may be expanded to include generator functions, 

which require the same kind of interruption / resumption of function logic as asynchronous wait. Such a 

demonstration should allow the reader to see how resumable functions are more broadly useful than 

what is covered by the scenario(s) in section 1. 

Consider the need to sequentially process a sequence of values, integers for the sake of simplicity. We 

do not have the need to access elements of the sequence in random order, or to modify the sequence in 

place. The logic of producing the sequence we shall call the generator, and the logic processing it is the 

processor. 

With existing means, we could utilize a vector to represent the sequence and pass it from the generator 

to the processor, but it would mean allocating memory for the whole sequence before starting the 

traversal. With a big sequence, that could be a lot of memory, possibly unbounded. To avoid this, we 

could use two threads and rely on some form of bounded queue to pass data from the generator to the 

processor. However, that means introducing concurrency to achieve something inherently serial. 

What we desire is the ability to produce each value of the sequence when it’s needed but no sooner, i.e. 

lazily. Generator functions, a concept available in languages like C# and Python, address this need 

elegantly and efficiently. Writing general lazy sequence generator is surprisingly hard without language 



support and surprisingly simple with it. With a couple of minor modifications to the resumable functions 

definition, they could be available in C++, too. 

 

Consider a function lazy_tform(), which takes an iterator pair and a function, applies the function to 

each element in the input sequence, and lazily produces a sequence. This is very similar to 

std::transform(), except for the lazy part – whereas transform() will generate (write to the output 

iterator it is passed) the entire output sequence before returning, lazy_tform() will only generate one 

value at a time, and only when asked to.  

    template<typename Iter> 

    sequence<int> lazy_tform(Iter beg, Iter end, std::function<int(int)> func) resumable 

    { 

        for (auto iter = beg; iter != end; ++iter) 

        { 

            yield func(*iter); 

        }     

    } 

In this example, we have introduced two new concepts: the sequence<T> type, and the ‘yield’ 

statement. sequence<T> is a collection type that supports only iteration, the iterator type it provides is 

an input iterator. 

A caller of lazy_tform() may use the sequence as such (the use of old-style for-statement is for the 

purpose of being very explicit about what happens): 

    auto rng = range(5, 15); 
 
    auto squares = lazy_tform(rng.begin(), rng.end(), [](int x) { return x*2; }); 
 
    for (auto iter = squares.begin(); iter != squares.end(); ++iter) 
    { 
        std::cout << "  Next: " << *iter << std::endl; 
    } 

Here, range() is assumed to be a function generating some collection of integers. It could, for example, 

be a resumable function generating the sequence of numbers between its two arguments: 

    sequence<int> range(int low, int high) resumable 
    { 
        for (int i = low; i <= high; ++i) 
        {  
            yield i; 
        } 
    } 

 

If so, we have effectively chained two sequence generators together – the one generating a 1-step 

sequence from 5 to 15, and the one generating the sequence of squares of its input sequence. It is 

important to realize that the generator of the first sequence, the range() function, is only generating 

data as it is being asked for by the second generator, the lazy_tform() function, which is only doing so as 

its caller is advancing the iterator using operator++. 



What happens when lazy_tform() is called? 

1. The function is called and immediately returns a sequence<int> instance before reaching 

the first statement in the function body. 

2. When squares.begin() is called, the sequence creates an iterator, and executes the resumable 

function to the first yield. 

3. When operator* is called on the iterator, the value generated by the most recently executed 

yield statement is returned. 

4. When operator++ is called on the iterator, the resumable function is resumed and executed 

to the next yield statement. 

5. Once the function is advanced to the point where it returns (or falls off the end), the iterator 

reaches its end position and the sequence is terminated. 

Note that there is no concurrency involved, everything happens on the thread of the caller. 

 

With resumable functions thus expanded to include generator functions, it is interesting to ponder what 

happens when we want to mix yield and await in the same function – one is used to pause the 

function while generating data, one is used to pause the function while waiting for data to be available. 

The answer is, unfortunately, not as simple as the resumable function eventually producing a sequence 

(future<sequence<T>>) or producing a sequence of eventual values (sequence<future<T>>). 

Since the generation of any value in the output sequence may be interleaved with await, it is the 

begin and operator++ functions that need to produce eventual values. 

Such a resumable function would look like this (imagining our reading data from a distant table): 

    async_sequence<table_row> get_cloud_table_rows(int low, int high) resumable 
    { 
        for (int i = low; i <= high; ++i) 
        {  
            auto table_row = await table_client.get_row(i); 
            yield table_row; 
        } 
    } 

 

And the caller would look like this: 

    auto rows = get_cloud_table_rows(100,150); 

    for (auto iter = await rows.begin(); iter != rows.end(); await ++iter) 

    { 

        ... 

    } 

 

Going back to the points made at the beginning of this section, inclusion of this discussion on generator 

functions here was solely for the purpose of demonstrating that resumable functions is a general 

enough concept to be extended to other uses in the future, if a need for them should be pressing. It is 



not our intent to propose that such extensions be considered at this point, but we do want to point to 

its feasibility. 

 

5. Technical Specifications / Proposed Wording for the C++ Standard 
 

5.1 resumable 
 

In 1.9 p15 add: 

Every evaluation in the calling function (including other function calls to non-resumable 

functions, as defined in 8.3.5/15) that is not otherwise specifically sequenced before or after the 

execution of the body of the called function is indeterminately sequenced with respect to the 

execution of the called function. The execution of a resumable function may appear to 

interleave with the calling function. When a resumable function is suspended at the await 

keyword, a placeholder of the eventual result is returned and the calling function continues its 

execution. After suspending, a resumable function may be resumed and will eventually 

complete its logic, at which point it executes a return statement filling in the value of the 

placeholder.  

To footnote 9 add: 

In other words, function executions do not interleave with each other, with the exception of 

resumable functions, which may interleave with their caller. 

In 2.11 p2 add to Table 3 – Identifiers with special meaning: 

resumable 

  

In 5.1.2 p1: 

lambda-declarator: 

( parameter-declaration-clause ) mutableopt resumable-specificationopt  

exception-specificationopt attribute-specifier-seqopt trailing-return-typeopt 

 

In 5.1.2 p4 add: 

If a lambda-expression does not include a lambda-declarator, it is as if the lambda-declarator 

were (). The lambda return type is auto, which is replaced by the trailing-return-type if provided 

and/or deduced from return statements as described in 7.1.6.4. If the lambda has the 

resumable specifier and no trailing-return-type is provided, the return type is future<T>, 

where T is the type deduced from return statements. [ Example: 

auto x1 = [](int i){ return i; }; // OK: return type is int 

auto x2 = []{ return { 1, 2 }; }; // error: deducing return type from 

braced - init - list  

int j; 



auto x3 = []()->auto&& { return j; }; // OK: return type is int& 

auto x4 = []() resumable {  

    int i = await read_stream(); 

    return i; };                      // OK: return type is future< int> 

—end example ] 

In 8.0 p4: 

parameters-and-qualifiers: 

( parameter-declaration-clause ) attribute-specifier-seqopt cv-qualifier-seqopt 

ref-qualifieropt  resumable- specificationopt  exception-specificationopt 

In 8.3.5 p1: 

D1 ( parameter-declaration-clause ) cv-qualifier-seqopt 

ref-qualifieropt  resumable- specificationopt  exception-specificationopt attribute-specifier-seqopt 

In 8.3.5 p2: 

D1 ( parameter-declaration-clause ) cv-qualifier-seqopt 

ref-qualifieropt resumable- specificationopt  exception-specificationopt attribute-specifier-seqopt trailing-return-type 

In 8.3.5 p2: 

 The resumable-specification is not a part of the function type.  

In 8.4.1 p2: 

D1 ( parameter-declaration-clause ) cv-qualifier-seqopt 

ref-qualifieropt resumable- specificationopt  exception-specificationopt attribute-specifier-seqopt trailing-return-typeopt 

In 8.3.5 add p15 

15. The function specified with an resumable specifier is a resumable function (see definition 

below): 

 resumable-specification: 

resumable 

 

- A resumable function is a function that returns a placeholder for an eventually available 

value. 

- It may be observed by its caller to return without filling the placeholder with a value. 

- If the resumable function terminates, it will fill the placeholder with either a value or an 

exception. 

- Some side-effects of the resumable function may be delayed until after its return.  

- The caller of this function can resume its work without waiting for the resumable function to 

finish.  

[Example: 

   int work1(int value);  



   void f(int value) { 

 future<int> f = g(value);  

 work2();  

   } 

    

   future<int> g(value) resumable { 

 result = await std::async([=] {return work1(value}); // 

 return result;  

   } 

- end example] 

- If a declaration contains a resumable-specification then every subsequent redeclaration shall 

also contain a resumable-specification.  

- A resumable-specification shall not appear in a typedef declaration or alias-declaration.  

- A function declaration with the resumable specifier must return future<T> or 
shared_future<T>. 

- The parameter-declaration-clause of a resumable function shall not terminate with an 

ellipsis.  

- The result returned from a function when it first suspends is a placeholder for the eventual 

result: i.e. a future<T> representing the return value of a function that eventually 

computes a value of type T.  

- The parameter-declaration-clause may terminate with a function parameter pack.  

- The resumable keyword is only a reserved keyword in the resumable-specification position 

of a function’s declaration. It has no special meaning if used elsewhere.  

 

5.2 await 
 

In 2.12 add to Table 4 – Keywords: 

await 

 

In 5.3 p1 add: 

Expressions with unary operators group right-to-left. 
unary-expression: 

postfix-expression 

++ cast-expression 

-- cast-expression 

unary-operator cast-expression 

sizeof unary-expression 

sizeof ( type-id ) 

sizeof ... ( identifier ) 

alignof ( type-id ) 

noexcept-expression 

new-expression 

delete-expression 

 

unary-operator: one of 

* & + - ! ~ await 

In 5.3 add: 



 5.3.8 await unary operator 

A unary operator expression of the form: 

await cast-expression 

 

1. The await operator is only valid within resumable functions [8.3.5] and decltype() 

expressions. 

2. When the await operator is applied to an operand in a resumable function, the execution 

of the resumable function is suspended until the operand completes.  

3. The cast-expression shall be of class type future<T> or shared_future<T> or shall 

be implicitly convertible to future<T> or shared_future<T>. 

4. await  is globally reserved but meaningful only within the body of a function or within the 

argument of a decltype() expression. 

5. The await operator shall not appear within the body of an exception handler1. 

6. The await operator shall not be executed while a lock [30.4.2] is being held. 

7. The result of await is of type T, where T is the return type of the get function of the 

future or shared_future object. If T is void, then the await expression cannot be the 

operand of another expression.  

 

5.3 Return 
 

In 6.6.3, add a paragraph 4: 

4 Within a resumable function declared to return future<T> or shared_future<T>, where 

T may be void, any return statement shall be treated as if the function were declared to 

return a value of type T. 

                                                           
1 The motivation for this is to avoid interfering with existing exception propagation mechanisms, as they may be 
significantly (and negatively so) impacted should await be allowed to occur within exception handlers. 


