
Concepts Lite

Andrew Sutton, Bjarne Stroustrup, Gabriel Dos Reis

Texas A&M University
Department of Computer Science and Engineering

College Station, Texas 77843

Document number: N3701
Date: 2013-06-28

Study group: Concepts
Reply to: Andrew Sutton <asutton@cs.tamu.edu>

Bjarne Stroustrup <bs@cs.tamu.edu>
Gabriel Dos Reis <gdr@cs.tamu.edu>

1 Introduction
In this paper, we introduce template constraints (a.k.a., “concepts lite”), an
extension of C++ that allows the use of predicates to constrain template argu-
ments. The proposed feature is principled, uncomplicated, and uniform. Tem-
plate constraints are applied to enforce the correctness of template use, not the
correctness of template definitions. The design of these features is intended to
support easy and incremental adoption by users. More precisely, Concepts Lite:

• allows programmers to directly state the requirements of a set of template
arguments as part of a template’s interface,

• supports function overloading and class template specialization based on
constraints,

• seamlessly integrates a number of orthogonal features to provide uniform
syntax and semantics for generic lambdas, auto declarations, and result
type deduction,

• fundamentally improves diagnostics by checking template arguments in
terms of stated intent at the point of use,

• do all of this without any runtime overhead or longer compilation times.

This work is implemented as a branch of GCC-4.9. Previous versions of the
compiler are available for download at download at http://concepts.axiomatics.org/.
The most recent version provides support for writing and enforcing constraints.
Features related to shorthand notation and generic lambdas have not yet been
implemented.

This paper is in its 2nd revision. There have been a number of substantial
changes, which are summarize here.

• The syntax of constrained member functions has changed.

1

http://concepts.axiomatics.org/

• The syntax of the requires expression has changed.

• We have introduced syntax for constraining generic lambdas, and using
constraints wherever auto is used.

• We allow the use of overload sets as arguments to constrained functions.

• The standard wording has been more extensively developed, but does not
yet include language for constrained generic lambdas.

This paper is organized like this:

• Tutorial: introduces the new features specified by Concepts Lite, their
core concepts and examples.

• User’s guide: provides a more extensive discussion of the proposed features
and demonstrates the completeness of the constraints mechanism. We also
include some high-level discussion of the language mechanics.

• Discussion: explains what constrains are not. In particular, we try to
outline constraint’s relation to concepts and to dispel some common mis-
conceptions about concepts.

• Design Notes: Notes on the design of terse notation for templates and
generic lambdas.

• Language definition: presents a semi-formal definition of constraints

2

2 Tutorial
We begin by presenting a tutorial of Concepts Lite and its associated language
features. This section covers the core concepts of the proposal: how to constrain
templates, what concept definitions look like, and where constraints can be used
with other language features.

2.1 Introducing Constraints
A template constraint is part of a template parameter declaration. For example,
a generic sort algorithm might be declared as:

template<Sortable Cont>
void sort(Cont& container);

Here, Sortable is a constraint that is written as the “type” of the template
parameter Cont. The constraint determines what kinds of types can be used
with the sort algorithm. Here, Sortable specifies that any type template ar-
gument for sort must be “sortable,” that is, be a random-access container with
an element type with a <. Alternatively, we can introduce constraints using a
requires clause, in which constraints are explicitly called:

template<typename Cont>
requires Sortable<Cont>()

void sort(Cont& cont)

These two declarations of sort are equivalent. The first declaration is a
shorthand for the second. We generally prefer the shorthand since it is often
more concise and resembles the conventional type notation.

The requires clause is followed by a constant Boolean expression. Template
constraints are simply constexpr expressions that are evaluated by the compiler
to determine if the following declaration can be used. In fact, the Sortable is
just a constexpr function that returns true only when its template argument
can be used with the sort algorithm.

Trying to use the algorithm with a list does not work since std::sort is
not defined for bidirectional iterators.

list<int> lst = ...;
sort(lst); // Error

In C++11, we might expect a fairly long error message. It depends how
deeply in the sequence of nested function calls the sort algorithm tries to do
something that a bidirectional iterator does not support, like adding n to an
iterator. The error messages tend to be somewhat cryptic: “no ‘operator[]’
available”. With constraints, we can get much better diagnostics. Then pro-
gram above results in the following error.

error: no matching function for call to ‘sort(list<int>&)’
sort(l);

^
note: candidate is:

3

note: template<Sortable T> void sort(T)
void sort(T t) { }

^
note: template constraints not satisfied because
note: ‘T’ is not a/an ‘Sortable’ type [with T = list<int>]
note: failed requirement with (’list<int>::iterator i’, std::size_t n)
note: ‘i[n]’ is not valid syntax

Note that this is similar to actual computer output, rather than a conjec-
ture about what we might be able to produce. If people find this too verbose,
diagnostics could be suppressed through various compiler options.

Constraints violations are diagnosed at the point of use, just like type errors.
C++98 (and C++11) template instantiation errors are reported in terms of
implementation details (at instantiation time), whereas constraints errors are
expressed in terms of the programmer’s intent stated as requirements. This is
a fundamental difference. The diagnostics explain which constraints were not
satisfied and the specific reasons for those failures.

The programmer is not required to explicitly state whether a type satisfies a
template’s constraints. That fact is computed by the compiler. This means that
C++11 applications written against well-designed generic libraries will continue
to work, even when those libraries begin using constraints. For example, we
have put constraints on almost all STL algorithms without having to modify
user code.

For programs that do compile, template constraints add no runtime over-
head. The satisfaction of constraints is determined at compile time, and the
compiler inserts no additional runtime checks or indirect function calls. Your
programs will not run more slowly if you use constraints.

Constraints can be used with any template. We can constrain and use class
templates, alias templates, and class template member function in the same way
as function templates. For example, the vector template can be declared using
shorthand or, equivalently, with a requires clause.

// Shorthand constraints
template<Object T, Allocator A>
class vector;

// Explicit constraints
template<typename T, typename A>
requires Object<T>() && Allocator<A>()

class vector;

When we have constraints on multiple parameters, they are combined in
the requires clause as a conjunction. Using vector is no different than before,
except that we get better diagnostics when we use it incorrectly.

vector<int> v1; // Ok
vector<int&> v2; // Error: ‘int&’ does not satisfy the constraint ‘Object’

Constraints can also be used with member functions. For example, we only
want to compare vectors for equality and ordering when the value type can be

4

compared for equality or ordering.

template<Object T, Allocator A>
class vector
{
vector(const T& v)
requires Copyable<T>();

void push_back(const T& x)
requires Copyable<T>();

};

For constrained member functions, the requires clause is written after the
declaration. Trying to invoke the copy constructor or push_back when T is a
unique_ptr will result in a diagnostic at the point of use. This is a significant
improvement over C++11 where constraining (non-template) member functions
is not possible.

Constraints on multiple types are essential and easily expressed. Suppose
we want a find algorithm that searches through a sequence for an element that
compares equal to value (using ==). The corresponding declaration is:

template<Sequence S, Equality_comparable<Value_Type<S>> T>
Iterator_type<S> find(S&& sequence, const T& value);

Sequence is a constraint on the template parameter S. Likewise, Equality_-
comparable<Value_type<S>> is a constraint on the template parameter T. This
constraint depends on (and refers to) the previously declared template param-
eter, S. It’s meaning is that the parameter T must be equality comparable with
the value type of S. We could alternatively and equivalently express this same
requirement with a requires clause.

template<typename S, typename T>
requires Sequence<S>() && Equality_comparable<T, Value_type<S>>()

Iterator_type<S> find(S&& sequence, const T& value);

Why have two alternative notations? Some complicated constraints are best
expressed by a combination of the shorthand notation and requires expressions.
For example:

template<Sequence S, typename T>
requires Equality_comparable<T, Value_type<S>>()

Iterator_type<S> find(S&& sequence, const T& value);

The choice of style is up to the user. We tend prefer the concise shorthand. In
“Concept Design for the STL” (N3351=12-0041) we showed that the shorthand
notation is sufficiently expressive to handle most of the STL [1].

2.2 Defining Constraints
What do these concepts look like? Here is the declaration of Equality_comparable.

template<typename T>
concept bool Equality_comparable() { ... }

5

A constraint is a function template declared using the declaration specifier,
concept. The concept specifier implies that the declaration is constexpr, and it
enforces some other restrictions. In particular, concepts must not have function
arguments, and the must return bool. Concepts are—in the most literal sense—
predicates on template arguments, and they can are checked by compile time
evaluation, just like any other constexpr function.

The definition of the Equality_comparable concept relies on a new language
feature, the requires expression. This provides the capability to succinctly state
requirements on valid expressions and associated types.

template<typename T>
constexpr bool Equality_comparable()
{
return requires (T a, T b) {
{a == b} -> bool;
{a != b} -> bool;

};
}

The requires expression introduces a conjunction of syntactic requirements,
properties of types that can be checked at compile time. The expression can
introduce local parameters which are used in the writing of nested requirements.
Here, a and b can be used to denote values or expressions of type T for the
purpose of writing constraints.

Each statement nested in a requires expression denotes a conjunction of
requirements on a valid expression or associated type. A valid expression is an
expression that must compile when instantiated with template arguments. A
statement can also include requirements on the result type of a valid expression.
For example, the requirement == ba == b -> bool includes two requirements:

• a == b must be a valid expression for all arguments of type T, and

• the result of that expression must be convertible to bool.

If the expression cannot be compiled when instantiated, or if the result type
requirement returns false, then the syntactic requirement is not satisfied and
also returns false.

An associated type requirement is also a syntactic requirement. For example,
the Readable concept requires an associated Value_type, which represents the
type of object referenced. We can implement a constraint as:

template<typename T>
constexpr bool Readable()
{
return requires (T i) {
typename Value_type<I>;
{*i} -> const Value_type<I>&;

}
}

6

The statement typename Value_type<I> requires that the alias Value_type<I>
must compile when instantiated. If not, the requirement is not satisfied and
returns false. We further explain features of the requires expression in Section
3.1.2.

Concepts definitions can, naturally, be nested. For example, the Sortable
concept is simply a conjunction of other concepts or primitive constraints:

template<typename T>
concept bool Sortable()
{
return Permutable_container<T>()

&& Totally_ordered<Value_type<T>>();
}

The Permutable_container and Totally_ordered concepts are also defined in
terms of other concepts. Ultimately, these definitions are written in terms of
syntactic requirements for valid expressions and associated types.

2.2.1 Overloading

Overloading is fundamental in generic programming. Generic programming re-
quires semantically equivalent operations on different types to have the same
name. In C++11, we have to simulate overloading using conditions (e.g., with
enable_if), which results in complicated and brittle code that slows compila-
tions.

With constraints, we get overloading for free. Suppose that we want to add
a find that is optimized for associative containers. We only need to add this
single declaration:

template<Associative_container C>
Iterator_type<C> find(C&& assoc, const Key_type<C>& key)
{
return assoc.find(key);

}

The Associative_container constraint matches all associative containers:
set, map, multimap, ... basically any container with an associated Key_type and
an efficient find operation. With this definition, we can generically call find for
any container in the STL and be assured that the implementation we get will
be optimal.

vector<int> v { ... };
multiset<int> s { ... };

auto vi = find(v, 7); // calls sequence overload
auto si = find(s, 7); // calls associative container overload

At each call site, the compiler checks the requirements of each overload to
determine which should be called. In the first call to find, v is a Sequence
whose value type can be compared for equality with 7. However, it is not an

7

associative container, so the first overload is called. At the second call site s is
not a Sequence; it is an Associative_container with int as the key type, so the
second overload is called.

Again, the programmer does not need to supply any additional information
for the compiler to distinguish these overloads. Overloads are automatically dis-
tinguished by their constraints and whether or not they are satisfied. Basically,
the resolution algorithm picks the unique best overload if one exists, otherwise
a call is an error. For details, see Section 3.3.

In this example, the requirements are largely disjoint. It is unlikely that
we will find many containers that are both Sequences and Associations. For
example, a container that was both a Sequence and an Association would have
to have both a c.insert(p, i, j) and a c.equal_range(x).

However, it is often the case that requirements on different overloads overlap,
as with iterator requirements. To show how to handle overlapping requirements,
we look at a constrained version of the STL’s advance algorithm in all its glory.

template<Input_iterator I>
void advance(I& i, Difference_type<I> n)
{
while (n--) ++i;

}

template<Bidirectional_iterator I>
void advance(I& i, Difference_type<I> n)
{
if (n > 0) while (n--) ++i;
if (n < 0) while (n++) --i;

}

template<Random_access_iterator I>
void advance(I& i, Difference_type<I> n)
{
i += n;

}

The definition is simple and obvious. Each overload of advance has progres-
sively more restrictive constraints: Input_iterator being the most general and
Random_accesss_iterator being the most constrained. Neither type traits nor
tag dispatch is required for these definitions or for overload resolution.

Calling advance works as expected. For example:

list<int>::iterator i = ...;
advance(i, 2); // Calls 2nd overload

As before, some overloads are rejected at the call site. For example, the
random access overload is rejected because a list iterator does not satisfy those
requirements. Among the remaining requirements the compiler must choose the
most specialized overload. This is the second overload because the requirements
for bidirectional iterators include those of input iterators; it is therefore a better

8

choice. We outline how the compiler determines the most specialized constraint
in 3.3.

Note that we did not have to add any code to resolve the call of advance.
Instead, we computed the correct resolution from the constraints provided by
the programmer(s).

A conventional (unconstrained C++98) template parameter act as of “catch-
all” in overloading. It is simply represents the least constrained type, rather than
being a special case . For example, a print facility may have:

template<typename T>
void print(const T& x);

template<Container C>
void print(const C& container);

// ...
vector<string> v { ... };
print(v); // Calls the 2nd overload

complex<double> c {1, 1};
print(c); // Calls the 1st overload.

An unconstrained template is obviously less constrained than a constrained
template and is only selected when no other candidates are viable. This implies
that older templates can co-exist with constrained templates and that a gradual
transition to constrained templates is simple.

Note that we do not need a “late check” notion or a separate language con-
structs for constrained and unconstrained template arguments. The integration
is seamless.

The same principles apply for the partial specialization of class templates.
This can be helpful, for example, in the definition of numeric traits for sets of
types:

template<typename T>
struct numeric_traits;

template<Integral T>
struct numeric_traits<T> : integral_traits<T>
{ ... };

template<Floating_point T>
struct numeric_traits<T> : floating_point_traits<T>
{ };

The numeric_traits facility is designed as an undefined primary template, and
two constrained partial specializations, each of which corresponds to a distinct
set of numeric types.

Note that a specialization must be more specialized than the primary tem-
plate. This is obviously the case here since the primary template is uncon-
strained.

9

2.3 More Shorthand
The shorthand notation thus far allows us to use concepts as the “type” of
template parameters. This provides a convenient way of concisely stating the
requirements for that single template argument. However, when multiple tem-
plate parameters are involved, the constraints can become unwieldy.

Our experience has been that it is often useful to define concepts for groups
of algorithms with related requirements and semantics. This can help reduce
redundancy in declarations. For example, all_of, any_of, none_of, find_if,
find_if_not, count_if, and is_partitioned all share the same template require-
ments. We can define them as:

template<typename I, typename P>
concept bool Input_query()
{
return Input_iterator<I> && Predicate<P, Value_type<I>>;

}

We could use this concept like this:

template<typename I, typename P>
requires Input_query<I, P>()

I find(I first, I last, P pred);

But this is a little more verbose than we want. We’d like to have the Input_query
concept fully specify the template parameters necessary for that the declaration.
We can do this by writing the declaration like this:

Input_query{I, P}
I find(I first, I last, P pred);

Here, the specifier ,PInput_queryI is called a concept introduction. It is sim-
ply shorthand for writing the template parameter list and associated requires
clause in the preceding declaration. The template parameters I and P and their
constraints are used for the declaration following the introduction.

This mechanism is not simply syntactic sugar. It is necessary for writing
non-trivial constraints on generic lambdas, which we describe in the following
section.

2.4 Lambdas and Auto
C++14 will introduce generic lambdas. They allow programmers to write lamb-
das without specifying argument types. For example, we might search for a
C-string in a vector of strings.

vector<string> v = {...};
const char* str = "hello";
find_if(v, [str](const auto& x) { return str == x; });

The use of a generic lambda prevents a conversion to string in each com-
parison. Obviously, this is a desirable features. However, the lambda is not

10

defined for every type of x, only those for which str == x is a valid expression.
Essentially, we’d like to say that x must be some kind of String.

Concepts lite allows us to constrain generic lambdas by using a concept name
in place of auto. We can rewrite the lambda in the program above like this:

[str](const String& x) { return str == x; }

This is the most terse way of writing of writing the lambda. Here, String must
be a type concept, a concept that takes a single template argument.

There are, of course equivalent ways of expressing the same thing. For
example, we can explicitly declare the constrained type parameter T like this:

[str]<String T>(const T& x) { return str == x; }

Here, <String T> is the template parameter list for the lambda expression. We
can also choose to introduce the constrained template parameter using the con-
cept introduction mechanism.

[str] String{T} (const T& x) { return str == x; }

All three declarations are precisely equivalent.
Note that the concept introduction mechanism is the only reliable way of

tersely writing constraints for non-trivial generic lambdas. For example, a
lambda that shares the same interface as find_if might be written thusly:

[] Input_query{I, P} (I first I last, P pred) { ... }

Using one of the other syntaxes would lead to (far) more verbose code, which
is antithetical to the notion of lambdas to begin with.

Note that generic lambdas allow us to implicitly declare templates without
first declaring that the following declaration is, in fact, a template. To provide
consistency, we allow auto (and constrained auto) to be used for any function
declaration. For example, we could declare find like this:

auto gcd(auto a, auto b)

Of course, no reasonable C++ programmer would declare a function whose
interface is completely unspecified, except in the number of arguments. Obvi-
ously the algorithm is designed for a specific set of types, say Integers. We can
use concepts to restrict that definition.

Integer gcd(Integer a, Integer b)

This is equivalent to writing:

template<Integer T>
T gcd(T a, T b);

Note that repeated uses of the same concept name with a scope bind to the
type name, whereas the unconstrained auto version allows those types to vary.
This makes the use of concept names consistent with the usual rules for type
names (i.e., they don’t change between uses).

To further uniformity of these features, Concepts Lite allows programmers
to use the name of a concept wherever auto can be used in C++.

For example, we can use concepts with auto variable declarations:

11

Real y = f(x);

The meaning is that decltype(y) must satisfy the requirements of the Real
concept. This provides more context to a programmer reading the code if. This
behavior could be emulated with a static_assert.

auto y = f(x);
static_assert(Real<decltype(y)>(), "");

Concept checking may give better diagnostics than static_assert; it depends
on the implementation.

We can also use concept names for function result types. For example, the
result of begin must be an Iterator.

template<typename T>
Iterator begin(T&& t) -> decltype(t.begin());

Or more concisely using result-type deduction:

template<typename T>
Iterator begin(T&& t);

The result type constraint becomes part of the requirements for the template.
It is equivalent to writing this:

template<typename T>
requires Iterator<decltype(declval<T>().begin())>()

auto begin(T&& t);

Notes on the rationale and design of these syntactic extensions is given in
Section 5.

Concepts Lite provides one more feature related to lambdas and constraints.
We allow the names of overloaded functions to be used as arguments to a con-
strained function. For example, if we want to compute the product of a sequence
of values using the accumulate algorithm, we could simply write it this way:

vector<double> v { ... };
Number n = accumulate(v.begin(), v.end(), operator*);

The call to accumulate is equivalent to writing it and using a generic lambda.
That is:

Number n = accumulate(v.begin(), v.end(),
[](auto a, auto b) { return operator*(a, b)});

Note that accumulate must be constrained for this to work because the eval-
uated expression is deduced from the constraints of the called function. More
details are given in Sections 3.6 and 6.

The following sections in this report elaborate on the ideas presented in
the tutorial. We describe basic language mechanics, the implementation and
provide initial standard wording for the proposed features.

12

3 User’s Guide
This section expands on the tutorial and gives more examples of how constraints
interact with different language features. In particular, we look more closely at
constraints, discuss overloading concerns, examine constraints on member func-
tions, partial class template specializations. This section also describes con-
straints on non-type arguments and the interaction of constraints with variadic
templates. We begin with a thorough explanation of constraints.

A constraint is simply a C++11 constant expression whose result type can
be converted to 0. For example, all of the following are valid constraints.

Equality_comparable<T>()
requires (T a) { {a < a} -> bool; }
!is_void<T>::value
is_lvalue_reference<T>::value && is_const<T>::value
is_integral<T>::value || is_floating_point<T>::value
N == 2
X < 8

In the last two we assume N and X are also constant expressions. A constraint
is satisfied when the expression evaluates, at compile-time, to true. This is
effectively everything that a typical user (or even an advanced user) needs to
know about constraints.

However, in order to solve problems related to redeclaration and overloading,
and to improve diagnostics, the compiler must reason about the content of these
constraints.

3.1 Anatomy of a Constraint
In this section describes the compiler’s view of a constraint and is primarily
intended as an introduction to the semantics of the proposed features.

In formal terms, constraints are written in a constraint language over a set
of atomic propositions and using the logical connectives and (&&) and or (||).
For those interested in the logical aspects of the language, it is a subset of
propositional calculus.

In order to reason about the equivalence and ordering of constraints the
compiler must reduce and decompose a constraint expression into sets of atomic
propositions. That algorithm is sketched out in Section ??.

An atomic proposition is a C++ constant expression that evaluates to either
true or false. These terms are called atomic because the compiler can only
evaluate them; they have no deeper logical structure and cannot be further
further reduced or decomposed. Atomic propositions, or simply atoms, include
things like type traits (is_integral<T>::value), relational expressions (N == 0),
and constexpr functions (e.g., is_prime(N)). Calls to functions declared with
the concept specifier are not not atomic.

The reason that expressions like is_integral<T>::value and is_prime(N) are
atomic is that there they may be multiple definitions or overloads when in-
stantiated. The is_integral trait could have a number of specializations, and

13

is_prime could have different overloads for different types of N. Trying to re-
duce these declarations would be unsound. However, they can still be used and
evaluated as constraints. Some functions are given special meaning, which we
describe in the next section.

Negation (e.g., !is_void<T>::value) is also an atomic proposition. These
expressions can be evaluated but are not reduced. While negation has turned
out to be occasionally useful in the specification of constraints, we have not
found it necessary to assign deeper semantics to the operator.

Atomic propositions can be also be nested and include arithmetic opera-
tors, calls to constexpr functions, conditional expressions, literals, and even
compound expressions. For example, (3 + 4 == 8, 3 < 4) is a perfectly valid
constraint, and its result will always be true.

3.1.1 Concept Definitions

A concept is a declaration declared with the concept specifier. That specifier
implies that the declaration is constexpr, and imposes the following restrictions:

• The declaration must return bool.

• The declaration must have no function parameters.

• The declaration must not be constrained.

• The declaration must also be a definition.

• The definition must not be recursive.

• There must be no overload with the same name and type but different
constraints.

The goal of these restrictions is to ensure that each concept has a single
definition for all type arguments. That is, there is no way to find an alternative
definition of requirements based on the type of a template argument. Allowing
concepts to overload like regular functions would make the constraints language
undecidable.

Note, however, that concepts can be overloaded based on the number of type
parameters. For example, in [1], we found it useful to define cross-type concepts
that extended the usual definitions of equality and ordering to operands of
different (but related) types.

template<typename T>
concept bool Equality_comparable() { ... }

template<typename T, typename U>
concept bool Equality_comparable() { ... }

14

3.1.2 Writing Requirements

Concept definitions often specify requirements on valid expressions and asso-
ciated types. These are written using the requires expression. A requires
expression introduces local arguments to help ease the writing of valid expres-
sions. This is no different than the table of names that often precedes tables
of requirements in the C++ standard [?] and online library documentation [?].
Those arguments also obviate the need to use declval everywhere. Recall the
definition of the Equality_comparable concept:

template<typename T>
concept bool Equality_comparable()
{
return requires (T a, T b) {
{a == b} -> bool;
{a != b} -> bool;

};
}

The arguments a and b are placeholders for values of type T. They are simply
used to help the compiler resolve expressions in the individual requirements of
the requires clause.

There are four kinds of requirements:

• A simple-requirement is simply a valid expression that must compile when
instantiated.

• A compound-requirement is a set of requirements involving a valid ex-
pression that includes the validity of an expression, possibly a constraint
on the result type, and other specifiers for semantic constraints. The
requirements for == and != in are Equality_comparable are compound re-
quirements.

• A type-requirement is a requirement for the formation of a valid type.

• A nested-requirement is a requires clause that evaluates additional con-
straints within the body of a requires expression.

Consider a simple concept definition for Iterator; its models must be incre-
mentable and dereferenceable.

template<typename T>
concept Iterator()
{
return requires (I i) {
{++i} -> I&;
i++;
*i;

};
}

15

The pre-increment requirement is a compound-requirement. The expression ++i
must compile when instantiated and the result of that expression must be con-
vertible to I&. Note that there is an implied type requirement in the formation
of I&. This means, for example, that any implementation returning void will
fail to satisfy the requirements since references to void are not valid types.

The requirements for post-increment and and dereferencing are simple-requirements.
These expressions must compile when instantiated. There are no requirements
associated with the result of those operations.

Expression requirements can include specifiers, requiring that the expression
must not throw, or that the expression must be evaluable at compile-time.
For example, we can define a concept for types that can be copied without
propagating exceptions.

template<typename T>
concept bool Nothrow_copyable()
{
return requires (T a, T b) {
{ T(a) } noexcept;
{ a = n; } noexcept;

};
}

Similarly, we could define a constraint for types whose interfaces support
compile-time evaluation. For example, we could define a constraint that al-
lows the optimization certain container operations when their allocators are
constexpr evaluable.

template<typename T>
concept bool Constexpr_equality_comparable()
{
requires (T a, T b) {
{ a == b } constexpr -> bool;
{ a != b } constexpr -> bool;

};
}

Both constexpr and noexcept can be specified. The order is immaterial.
A type-requirement requires the valid formation of a type. For example, the

Allocator concept may include the following:

template<typename A>
concept bool Allocator()
{
return requires () {
typename A::value_type;
typename A::pointer;
typename A::const_pointer;
... // more requirements

};
}

16

If, when instantiated, any of those type names cannot be resolved, the require-
ments are not satisfied.

Type requirements can also be formed for alias templates:
template<typename T>
concept bool Range()
{
return requires () {
typename Iterator_type<R>;

};
}

If Iterator_type<R> results in a substitution failure, the constraints are not
satisfied.

A nested-requirement provides the ability to evaluate additional require-
ments on associated types or result types inside the expression. For example,
the Allocator concept may include the following:
concept bool Allocator()
{
return requires () {
typename A::pointer;
requires Pointer<typename A::pointer>;
// ...

};
}

The type-requirement checks for validity of A::pointer, and the nested-requirement
checks that the type satisfies the requirements of the Pointer concept.

This can be cumbersome when specifying requirements on valid expressions,
especially when the name of the result type is unimportant to the design of the
concept. A concept name may be used in place of a type-id in a compound-
requirement. For example, the Forward_iterator concept might be written as:
template<typename I>
concept bool Forward_iterator()
{
return Input_iterator<I>()

&& requires (I i) {
{*i} -> Reference;

};
}

The name Reference is a concept that is equivalent to is_reference<T>::value.

3.1.3 Constraint Reduction

Within a constraint, a call to a function that is declared with the concept
specifier is called a concept check. Unlike other constexpr functions, concepts
are not atomic: their definitions are recursively reduced instead of constexpr-
evaluated.

Recall that the definition of Equality_comparable from Section 2:

17

template<typename T>
concept bool Equality_comparable()
{
return requires (T a, T b) {
bool = {a == b};
bool = {a != b};

};
}

And its use within an algorithm:

template<typename T>
requires Equaltiy_comparable<T>()

bool distinct(T a, T b) { return a != b; }

After the template requirements are parsed, the constraints are reduced to an ex-
pression of only atoms, connectives. The concept check Equality_comparable<T>()
causes the function definition of that function to be recursively reduced.

The results of reducing concept checks are equivalent to writing all of the
atomic propositions as if they were part of the requires clause. For exam-
ple, if a compiler implementation exposed the mechanism for evaluating these
requirements, the declaration above would be equivalent to this:

template<typename T>
requires __is_valid_expr(decltype<T>() == decltype<T>())

&& __is_convertible_to(decltype(decltype<T>() == decltype<T>()), bool)
&& __is_valid_expr(decltype<T>() != decltype<T>())
&& __is_convertible_to(decltype(decltype<T>() != decltype<T>()), bool)

bool distinct(T a, T b)

Obviously, this representation of constraints is internal to the compiler, and
an implementation may not expose the primitives required to write such expres-
sions. For example, our GCC implementation does not expose __is_valid_expr
as an intrinsic.

Once we have reduced predicates up into their simplest form, we can use
straightforward classical logic and logical algorithms to solve constraint related
problems: primarily ordering and equivalence. These two relations are used
to define the semantics for redeclaration, overload resolution, partial template
specialization, and the substitution rules for constrained template template pa-
rameters.

In their most reduced forms, constraints are composed of propositions joined
by the logical connectives && (conjunction, and) and || (disjunction, or). These
have the usual meanings in C++, but cannot be overloaded. Parentheses may
also be used for grouping.

The reason that negation (!) is not included as a logical connective in the
constraints language has to do with the evolution of these features as we move
towards a fuller definition of concepts. In particular, we assume that a template
definition will be checked against sets of requirements included by a constraint.
As of this writing, it is not clear what a “negative requirement” should actually
means. This does not mean, however, that a programmer cannot use ! in a

18

constraint. It simply means that the expression will be treated as atomic, even
if the operand is a constraint predicate.

In order to determine ordering and equivalence of constraints, the compiler
must then decompose these reduced expression into lists of atomic propositions
based on the connectives in the constraint expression. The decomposition rules
are the same as the left-logical rules of sequent calculus for conjunction and
disjunction. A good introduction to the underlying theory and its application
can be found in “ML for the Working Programmer” [10].

Note that the description of the decomposition algorithm is intended pri-
marily for compiler writers and tool vendors. Programmers will not need to be
aware of these details.

This algorithm constructs a list of lists of atoms called goals (or subgoals,
depending on the literature). The rules for decomposing constraint expressions
modify this data structure by inserting new atoms into the current goal or
creating new goals. The rules are specific to the the different kinds of operators.

Given a reduced constraint expression, we first construct a new goal (the
current goal) and insert the expression as its only term (the current term). We
then consider that expression.

If the current term is a conjunction of the form a && b, the expression is
removed from the current goal, and its operands a and b are re- inserted. For
example, if the current goal contains the atom p, and the expression a && b, the
result of this rule will modify the current goals so that it contains p, a, b. The
new terms a and b will need to be recursively decomposed.

If the current term is disjunction of the for a || b, the expression is removed
from the current goal, the current is copied, and the operands are inserted into
the different goals. For example, if the current goal contains the atom p and the
expression a || b, the result of this rule is that the current goal will contain p
and a and the copy will contain p and q. Both a and b will need to be recursively
decomposed.

If the current term is an atom, no action is required, and we advance to the
next term. There are no other terms, we advance to the next goal. If there are
no other goals, the algorithm terminates.

As an example, suppose we define concepts for Container and Range like this:

template<typename T>
constexpr bool Container()
{
return value_semantic<T>::value

&& requires (T c) {
typename T::iterator;
begin(c) -> typename T::iterator;
end(c) -> typename T::iterator;
... // more requirements

};
}

template<typename T>

19

constexpr bool Range()
{
return reference_semantic<T>::value

&& requires (T r) {
typename Iterator_type<T>;
begin(r) -> Iterator_type<T>;
end(r) -> Iterator_type<T>;
... // more requirements

};

The two concepts share some syntactic requirements, namely that both begin
and end are defined and return some an Iterator type. However, they differ in
the use of hypothetical two type traits, value_semantic and reference_semantic,
which characterize the intended semantics of their constituent types.

Consider the following algorithm:

template<typename R>
requires Range<R>

Iterator find(R range, Value_type<R>)

Reducing the constraints produces the following requirement:

requires refernce_semantic<R>::value
&& __is_valid_type(Iterator_type<R>)
&& __is_valid_expr(begin(decltype<R>()))
&& __is_convertible_to(decltype(begin(decltype<R>())), Iterator_type<R>)
&& __is_valid_expr(end(decltype<R>()))
&& __is_convertible_to(decltype(end(decltype<R>())), Iterator_type<R>);

Again, we are assuming the availability of intrinsics to express these low-level
requirements. The result of decomposition produces a single goal containing the
following atomic propositions:

refernce_semantic<R>::value
__is_valid_type(Iterator_type<R>)
__is_valid_expr(begin(decltype<R>()))
__is_convertible_to(decltype(begin(decltype<R>())), Iterator_type<R>)
__is_valid_expr(end(decltype<R>()))
__is_convertible_to(decltype(end(decltype<R>())), Iterator_type<R>);

Because only conjunctions were found in the constraints, all of the propositions
are added to the same list of terms.

Suppose we define find more generally, allowing both reference- and value-
semantic types to be used:

template<typename T>
requires Container<T>() || Range<T>()

Iterator find(const T& x);

Reduction is similar to that above, except that the reduced requirements for
Container<T>() and Range<T>() are operands of a logical-or expression. Decom-
position results in two different goals (lists of atoms).

20

// Atomic propositions for Container<T>
value_semantic<T>::value
__is_valid_type(typename T::iterator)
__is_valid_expr(begin(decltype<T>()))
__is_convertible_to(decltype(begin(decltype<T>())), typename T::iterator_type)
__is_valid_expr(end(decltype<T>()))
__is_convertible_to(decltype(end(decltype<T>())), typename T::iterator_type)

// Atomic propositions for Range<T>
refernce_semantic<T>::value
__is_valid_type(Iterator_type<T>)
__is_valid_expr(begin(decltype<T>()))
__is_convertible_to(decltype(begin(decltype<T>())), Iterator_type<T>)
__is_valid_expr(end(decltype<T>()))
__is_convertible_to(decltype(end(decltype<T>())), Iterator_type<T>);

The two goals contain the lists of propositions required by each concept. These
lists are used by algorithms to determine the ordering and equivalence of con-
straints.

3.1.4 Relations on Constraints

Constraints can be ordered (i.e., one constraint is more restrictive than another)
and compared for equivalence. These relations are used to define semantics for
a number of language features.

The ordering relation on constraints is called subsumption. Given two con-
straints P and Q, then logically P subsumes Q iff whenever P is satisfied (eval-
uates to true), Q is also satisfied. We are effectively computing the validity
the implication P =⇒ Q. The idea is closely related to set theory, and the
basic concepts are sometimes easier to understand in that context. For example,
suppose we define Totally_ordered like this:

template<typename T>
constexpr bool Totally_ordered()
{
return Weakly_ordered<T>() && Equality_comparable<T>();

}

The relationship set-theoretic relationship between the requirements of Totally_ordered
and Equality_comparable can be pictured like this:

Totally_ordered

Equality_comparable

21

If we fully decompose each concept into its lists of atomic propositions then
we find that Totally_ordered is a superset of Equality_comparable. This means
that Totally_ordered subsumes Equality_comparable since there is no way to
satisfy the requirements of the former without satisfying those of the latter.

It is often the case the case that constraints overlap, with neither subsum-
ing the other. For example, this is true of the Container and Range concepts
described in the previous section. The relationship between those constraints
can be pictured this way:

Container Range

Here, neither concept subsumes the other. If we fully decompose both con-
cepts into their sets of propositions, we will find that neither is a superset of the
other.

An algorithm for computing the subsumption relation is given below. Again,
this discussion is primarily targeted at compiler implementers and tool vendors.

Let p and q denote reduced constraints, and let P be the list of lists (goals)
resulting from decomposition of p, and let Pi denote the ith goal in P . De-
termining if p subsumes q is equivalent to determining if the atoms in each Pi

contains the the atoms contained in the subexpressions of q. For each Pi, this
is determined by recursively analyzing the subexpressions of q such that

• If q is of the form a && b then P subsumes q iff P subsumes q and P
subsumes b.

• If q is of the form a || b then P subsumes q iff P subsumes a or P
subsumes b.

• Otherwise P subsumes q iff there is an expression p’ in P that matches q.

If, for every Pi, the result of this computation is true, then p subsumes q.
In general two, expressions always match when they have the same syntax.

It must be the case that whenever p’ evaluates to true, so does the matched
atom q. If the expressions are the same, that property is trivially satisfied—it
must be since state cannot escape constant expressions.

However, there are some special cases. For example, Same<T, U> (as p’) will
match Convertible<T, U> (as q) since the former implies the latter. Note that
the converse is not a valid implication: convertibility does not imply equality.
A complete list of special cases or known implications is given in Section ??.

The subsumes relation is used to determine which of two templates is more
constrained. In particular, a template T is more constrained than another, U iff

22

they have the same generic type and the requirements of T subsume those of U.
This relation is used to different templates with the same type when computing
which is more specialized. Note that a constrained template is always more
specialized than an unconstrained template.

Two constraints P and Q are equivalent when P subsumes Q and Q sub-
sumes P . This is analogous to two sets being supersets of each other, or two
propositions being logically equivalent.

This concludes the logical foundation of the constraints language and its
associated relations. The remaining sections of this chapter describe how con-
straints interact with the C++ programming language.

3.2 Declarations, Redeclarations, and Overloading
Constraints are a part of a declaration, and that affects the rules for declarations,
definitions, and overloading.

First, any two declarations having the same name, equivalent types, and
equivalent constraints declare the same element. For example:

template<Floating_point T>
class complex; // #1

template<typename T>
requires Floating_pont<T>()

class complex; // #2

template<typename T>
requires Same<T, float>()

|| Same<T, double>()
|| Same<T, long double>()

class complex; // #3

The first two declarations introduce the same type, since the shorthand
constraint in #1 is equivalent to writing #2. If Floating_point is defined as a
disjunction of same-type constraints, then all three declarations would introduce
the same type since their sets of propositions are the same.

This holds for functions as well:

template<Totally_ordered T>
const T& min(const T&, const T&); // #1

template<Totally_ordered T>
const T& min(const T& a, const T& b) { ... } // #2

Here, #2 gives a definition for the function declaration in #1.
When two functions have the same name and type but different constraints,

they are overloads.

template<Input_iterator I>
ptrdiff_t distance(I first, I last); // #1

23

template<Random_access_iterator I>
ptrdiff_t distance(I first, I last); // #2

int* p = ...;
int* q = ...;
auto n = distance(p, q);

When distance is called, the compiler determines the best overload. The
process of overload resolution is described in 3.3. In this case, this is determined
by the most constrained declaration. Because Random_access_iterator subsumes
Input_iterator, the compiler will select #2.

Defining two functions with identical types and identical constraints is an
error.

Classes cannot be overloaded. For example:

template<Floating_point T>
class complex; // #1

template<Integral T>
class complex; // Error, redeclaration of #1 with different constraints

The reason this is not allowed is that C++ does not allow the arbitrary over-
loading of class templates. This language extension does not either. However,
constraints can be used in class template specializations.

template<Arithmetic T>
class complex;

template<Floating_point T>
class complex<T>; // #1

template<Integral T>
class complex; // #2

complex<int> g; // Selects #2

As with function overloads, the specializations are differentiated by the
equivalence of their constraints. Choosing among constrained specializations
is similar to the selection of constrained overloads: choose the most constrained
specialization.

Suppose Arithmetic has the following definition:

template<typename T>
constexpr bool Arithmetic()
{
return Integral<T>() || Floating_point<T>();

}

The reason that the compiler selects #2 is that a) int is not a floating
point type, and b) Integral subsumes the set of requirements denoted by
Integral<T>() || Floating_point<T>().

24

Note that partial specializations must be more specialized than the primary
template (see Section 3.3 for more information). The reason is simply that if
this is not the case, then the partial specialization will never be selected.

Member functions, constructors, and operators can be constrained and over-
loaded just like regular function templates, although the syntax varies slightly.
For example, the constructors of the vector class are declared like this:

template<Object T, Allocator A>
class vector
{
vector(vector&& x);
requires Movable<T>()

vector(const vector& x); // Copy constructor
requires Copyable<T>()

// Iterator range constructors
template<Input_iterator I>
vector(I first, I last);

template<Forward_iterator I>
vector(I first, I last);

};

Member function, constructor, and operator overloads are disambiguated by
their template constraints, just like regular function templates.

When a class template is instantiated, the non-template member constraints
may be evaluated and the results cached, but the instantiated declarations re-
main as part of the template specialization, even when the constraints are not
satisfied. Member constraints do not change the set of members in the instan-
tiated class.

Definitions of constrained members be written outside the class declaration
by re-stating the requirements. For example:

template<Object T, Allocator A>
vector<T, A>::vector(const vector& x)
requires Copyable<T>()

{ ... }

template<Object T, Allocator A>
template<Input_iterator I>
vector<T, A>::vector(I first, I last)
{ ... }

The nested name specifiers are matched class declarations that are declared
with the same constraints associated with the corresponding depth in the tem-
plate parameters lists. The declarator is also matched to the nested declaration
having the equivalent “left over” constraints.

25

3.3 Overloading, and Specialization
In this section, we describe when and how constraints are checked for function
templates, member functions, class templates, and partial specializations.

For function templates and member functions constraints are checked during
overload resolution. Briefly, for some call expression, that process is:

1. Construct a set of candidate functions

• If a candidate is a template, deduce the template arguments.

• If the template is constrained, instantiate and check constraints.

• If the constraints are satisfied, instantiate the declaration.

2. Exclude non-viable candidates

3. Select the best of the viable candidates.

• If there is one viable candidate, select it.

• If there are multiple viable candidates, select the most specialized.

Constructing the candidate set entails the instantiation of function tem-
plates declarations. This is done by first deducing the template arguments from
the function arguments. If the template is constrained, then those constraints
must also be checked. This is done immediately following template argument
deduction. Once all template arguments have been deduced, those arguments
are substituted into the declaration’s constraints and evaluated as a constant
expression. If the constraints expression evaluates to true, then the declaration
is instantiated (but not the definition).

If the candidate is a non-template member function, then the declaration has
already been formed by the instantiation of its enclosing class. If that member
function’s template declaration is constrained, then those constraints must be
instantiated with the same arguments as the class and evaluated.

A constrained function is not a viable candidate if a) template argument
deduction fails, b) the constraints are not satisfied, or c) instantiating the dec-
laration results in a substitution failure.

If there are multiple viable candidates in the candidate set, the compiler
must choose the most specialized. When the candidates are both template
specializations, having equivalent types, we compare the templates to see which
is the most constrained.

Consider the following:

template<Container C>
void f(const C& c); // #1

template<typename S>
requires Container<S>() || Range<S>()

void f(const S& s); // #2

26

template<Equality_comparable T>
void f(const T& x); // #3

...
vector<int> v { ... };
f(v) // calls #1
f(filter(v, even)); // calls #2
f(0); // calls #3

The first call of f resolves to #1. All three overloads are viable, but #1 is
more constrained than both #2 and #3. Assuming filter returns a range
adaptor (as in boost::filter), the second call to f resolves to #2 because
a range adaptor is not a Container and Equality_comparable is subsumed by
Container<S>() || Range<S>(). The third call resolves to #3 since int is nei-
ther a Container nor a Range.

For class and alias templates, constraints are checked on lookup, prior to the
instantiation of the class. The means that constraints are always checked even
if the type is not required to be complete. For example:

template<Object T>
class vector;

vector<int&> v; // Error
vector<int&>* p; // Error

Clearly, v will result in an error since the declaration requires a complete
type, and int& does not satisfy the Object requirement. The declaration of p is
also invalid even though vector<int&> is not required to be a complete type. This
applies even when (especially when) the template has partial specializations. It
is not possible to create a partial specialization that is less constrained than the
primary template.

Selecting partial specializations is a similar process to overload resolution.
The compiler is required to:

1. Construct a set of candidate specializations

• If the candidate is a partial specialization, deduce the template ar-
guments.

• If the candidate is constrained, instantiate and check the constraints.

• If the constraints are satisfied, instantiate the non-deduced special-
ization arguments

2. Exclude non-viable candidates

3. Select the best viable specialization

• If there is one one viable candidate, select it.

• If there are multiple viable candidates, select the most specialized.

27

When collecting candidates for instantiation, the compiler must determine
if the specialization is viable. This is done by deducing template arguments and
checking that specializations constraints. A specialization is not viable if tem-
plate argument deduction fails, constraints are not satisfied, or the instantiation
of the non-deduced arguments results in a substitution failure.

If there are multiple viable specializations, the compiler must select the most
specialized template. When no other factors clearly distinguish two candidates,
we select the most constrained, exactly as we did during overload resolution.

For example, we can implement the is_signed trait using constraints.

template<typename T>
struct is_signed : false_type { };

template<Integral T>
struct is_signed<T> : integral_constant<bool, (T(-1) < T(0))> { };

template<Floating_point T>
struct is_signed<T> : true_type { };

The definitions corresponding to Integral and Floating_point types are par-
tial specializations of the primary template. Note that they are also more spe-
cialized, since any constrained template is more constrained than an equivalently
typed unconstrained template. Because of this, the instantiation of this trait
will always select the correct evaluation for its type argument. That is, the
result is computed for integral types, and trivially true for floating point types.
For any other type, the result is false.

3.4 Non-Type Constraints
Thus far, we have only constrained type arguments. However, predicates can
just as easily be used for non-type template arguments as well.

For example, in some generic data structures, it is often more efficient to
locally store objects whose size is not greater than some maximum value, and
to dynamically allocate larger objects.

template<size_t N, Small<N> T>
class small_object;

Here, Small<N> is just like any other type constraint except that it takes
an integer template argument, N. The equivalent declaration written using a
requires clause is:

template<size_t N, typename T>
requires Small<T, N>()

class small_object;

The constraint is true whenever the sizeof T is smaller than N. It could have
the following definition:

template<typename T, size_t N = sizeof(void*)>
concept bool Small()

28

{
return sizeof(T) <= N;

}

The parameter N defaults to sizeof(void*) . Default arguments can be
omitted when using shorthand. We might, for example, provide a facility for
allocating small objects:

template<Small T>
class small_object_allocator { ... };

Shorthand constraints can also introduce non-type parameters. Suppose we
define a hash_array data structure that has a fixed number of buckets. To reduce
the likelihood of collisions, the number of buckets should be prime. The Prime
constraint has the following declaration:

template<size_t N>
constexpr bool Prime() { return is_prime(N); }

Note that the expression is_prime(N) does not denote a constraint check
since the is_prime function takes an argument (it may also be overloaded) so it
is an atomic proposition.

The hash table’s can declared like this:

template<Object T, Prime N>
class hash_array;

or equivalently:

template<typename T, size_t N>
requires Object<T>() && Prime<N>()

class hash_array;

Because constraints are constexpr functions, we can evaluate any property that
can be computed by constexpr evaluation, including testing for primality. Ob-
viously, constraints that are expensive to compute will increase compile time
and should be used sparingly.

Note that the kind of the template parameter N is size_t, not typename. A
shorthand constraint declares the same kind of parameter as the first template
parameter of the constraint predicate.

The proposed language does not currently support refinement based on in-
teger ranges. That is, suppose we have the two predicates:

template<int N>
constexpr bool Non_negative() { return N >= 0; }

template<int N>
constexpr bool Positive() { return N > 0; }

Both N >= 0 and N > 0 are atomic propositions. Neither constraint subsumes
the other, nor do they overlap.

29

3.5 Template Template Parameters
Template template parameters may both use constraints and be constrained.
For example, we could parameterize a stack over an object type and some
container-like template:

template<Object T, template<Object, Allocator>> class Cont>
class stack
{
Cont<T> container;

};

Any argument substituted for the Cont must have a conforming template
“signature” (same number and kinds of parameters) and also be at least as con-
strained as that parameter. This is exactly the same comparison of constraints
used to differentiate overloads and partial specializations. For example:

template<Object T, Allocator A>
class vector;

template<Regular T, Allocator A>
class my_list;

template<typename T, typename A>
class my_vector;

stack<int, vector> a; // OK: same constraints
stack<int, list> b; // OK: more constrained
stack<int, my_vector> c; // Error: less constrained.

The vector and list templates satisfy the requirements of stack Cont. How-
ever, my_vector is unconstrained, which is not more constrained than Object<T>()
&& Allocator<T>().

Template template parameters can also be introduced by shorthand con-
straints. For example, we can define a constraint predicate that defines a set of
templates that can be used in a policy-based designs.

template<template<typename> class T>
constexpr bool Checking_policy()
{
return is_checking_policy<T>::value;

}

Below are the equivalent declarations of a policy-based smart_ptr class using
a constrained template template parameter.

// Shorthand
template<typename T, Checking_policy Check>
class smart_pointer;

// Explicit
template<typename T, template<typename> class Check>

30

requires Checking_policy<Check>()
class smart_pointer;

This restricts arguments for Check to only those unary templates for which
a specialization of is_checking_policy yields true.

3.5.1 Variadic Constraints

Constraints can also be used with variadic templates. For example, an algorithm
that computes an offset from a stride descriptor and a sequence of indexes can
be declared as:

template<Convertible<size_t>... Args>
void offset(descriptor s, Args... indexes);

The name Convertible<size_t> is just like a normal constraint. The ...
following the constraint means that the constraint will be applied to each type
in the parameter pack Indexes. The equivalent declaration, written using a
requires clause is:

template<typename... Args>
requires Convertible<Args, size_t>()...

void offset(descriptor s, Args... indexes);

The meaning of the requirement is that every template argument in the pack
Args must be convertible to size_t. When instantiated, the argument pack ex-
pands to a conjunction of requirements. That is, Convertible<Args, size_t>()...
will expand to:

Convertible<Arg1, size_t>() && Convertible<Arg2, size_t>() && ...

For each Argi in the template argument pack Args. The constraint is only
satisfied when every term evaluates to true.

A constraint can also be a variadic template. These are called variadic con-
straints, and they have special properties. Unlike the Convertible requirement
above, which is applied to each argument in turn, a variadic constraint is ap-
plied, as a whole, to an entire sequence of arguments.

For example, suppose we want to define a slicing operation that takes a
sequence of indexes and slice objects such that an index requests all of the
elements in a particular dimension, while a slice denotes a sub-sequence of
elements. A mix of indexes and slices is a “slice sequence”, which we can describe
using a variadic constraint.

template<typename... Args>
constexpr bool Slice_sequence()
{
return is_slice<Args...>::value;

}

It is a variadic function template taking no function arguments and returning
bool. The definition delegates to a metafunction that computes whether the
property is satisfied.

31

Our function that computes a matrix descriptor based on a slice sequence
has the following declaration.

template<Slice_sequence... Args>
descriptor sub_matrix(const Args&... args);

Or equivalently:

template<typename... Args>
requires Slice_sequence<Args...>()

descriptor sub_matrix(const Args&... args);

Note the contrast with the Convertible example above. When the constraint
declaration is not variadic, the constraint is applied to each argument, individu-
ally (the expansion is applied to constraining expression). When the constraint
is variadic, the constraint applies to all of the arguments together (the pack
expansion is applied directly to the template arguments).

3.6 Overload Arguments
The combination of constraints and lambdas allows provides C++ with the abil-
ity to use overload sets as function arguments. For example, I could implement
the geometric mean like so.

template<typename T>
T geometric_mean(initializer_list<T> list)
{
T p = accumulate(list.begin(), list.end(), operator*);
return root(list.size(), p);

}

Note that the third argument to accumulate is the name of an overload set.
This is shorthand notation for having written the following:

T p = accumulate(list.begin(), list.end(),
[](T a, T b) -> T { return operator*(a, b); });

The signature and implementation of the lambda are deduced from the re-
quirements of the accumulate function.

The motivation for this particular example comes from the use of operator
symbols as function (or property) arguments in Elements of Programming [5].

3.7 Designing Concepts
Constraints provide use-site checking for template arguments, which is only one
part of what a full definition of concepts will do. But constraints are an impor-
tant stepping stone in that direction. They provide a basis for experimenting
with the required interfaces of concepts moving forward. In this section, we
discuss what makes a good concept based on our experience from our concept
design experience [1, 8], and our work with constraints.

32

3.7.1 Intensional and Extensional Definitions

The first observations we make is that good concepts are defined intensionally
by specifying all of the properties that are required to model that concept.
Concepts defined in this way can be readily refined to define more specialized
abstractions simply by adding more requirements.

The opposite is to define concepts extensionally by providing a list of types
known to be models of that concept. Many of the type traits in the Standard
Library are defined extensionally (e.g., Integral, Floating_point). These exten-
sional definitions are rigid and difficult to extend. For example, the Arithmetic
constraint in our implementation is defined as:

template<typename T>
constexpr bool Arithmetic()
{
return Integral<T>() || Floating_point<T>();

}

However, any program that would wish to use complex<double> with an
Arithmetic algorithm would be unable to do so. The programmer would have
to create a new constraint and define a new algorithm (probably with the same
syntax) to accommodate complex numeric types.

We note that the design of effective concepts for mathematic structures has
not proven to be an easy task and requires a good understanding of abstract
algebra.

3.7.2 Expressivity

There has been an unfortunate tendency in the generic programming community
over the past decade to reduce the requirements of algorithms to a minimal
kernel of valid expressions. For example, an algorithm comparing values for
equality, or more specifically its inverse, must be written as !(a == b) instead
of the more natural expression a != b.

This reduction has been made for the sake of users, so they don’t have to
implement the full set of overloads for inherently related operations, only ==, <,
+=, etc. But this reduction has also been made at the expense of expressiveness
and specifiability within templates. Library implements may not be able to use
syntax that is natural to the expression of an algorithm, and its requirements
must be made in terms of the least syntactic units.

In Elements of Programming, Stepanov and McJones state that a computa-
tional basis must be efficient and expressive [5]. This ideal was used throughout
the design of concepts in both [8] and [1]. Concepts must not be reduced to the
least syntactic requirement of a set of related operations.

We think it is both possible and desirable to have expressive concepts and
also a mechanism for simplifying implementations. We have not yet thoroughly
investigated how such a mechanism might be provided, but we see it as being
separate from the design and specification of concepts.

33

4 Constraints and Concepts
Template constraints (concepts-lite) provide a mechanism form constraining
template arguments and overloading functions based on constraints. Our long-
term goal is a complete definition of concepts, which we see as a full-featured
version of constraints. With this work, we aim to take that first step. Con-
straints are a dramatic improvement on enable_if, but they are definitely not
complete concepts.

First, constraints are not a replacement for type traits. That is, libraries
written using type traits will interoperate seamlessly with libraries written us-
ing constraints. In fact, the motivation for constraints is taken directly from
existing practice—the use of enable_if and type traits to emulate constraints
on templates. Many constraints in our implementation are written directly in
terms of existing type traits (e.g., std::is_integral).

Second, constraints do not provide a concept or constraint definition lan-
guage. We have not proposed any language features that simplify the definition
of constraints. We hold this as future work as we move towards a complete
definition of concepts. Any new language features supporting constraint defi-
nition would most likely be obviated by concepts in the future. That said, our
implementation does provide some compiler intrinsics that support the imple-
mentation of constraints and would ease the implementation of concepts. This
feature is detailed in Section ??.

Third, constraints are not concept maps. Predicates on template arguments
are automatically computed and do not require any additional user annota-
tions to work. A programmer does not need to create a specialization of
Equality_comparable in order for that constraint to be satisfied. Also unlike
C++0x concepts, constraints do not change the lookup rules inside concepts.

Finally, constraints do not constrain template definitions. That is, the mod-
ular type checking of template definitions is not supported by template con-
straints. We expect this feature to be a part of a final design for concepts.

The features proposed for constraints are designed to facilitate a smooth
transition to a more complete concepts proposal. The mechanism used to eval-
uate and compare constraints readily apply to concepts as well, and the language
featurese used to describe requirements (type traits and compiler intrinsics) can
be used to support various models of separate checking for template definitions.

The constraints proposal does not directly address the specification or use
of semantics; it is targetted only at checking syntax. The constraint language
described in this papers has been designed so that semantic constraints can be
readily integrated in the future.

However, we do note that virtually every constraint that we find to be useful
has associated semantics (how could it not?). Semantics should be documented
along with constraints in the form of e.g., comments or other external definitions.
For example, we might document Equality_comparable as:

template<typename T>
constexpr bool Equality_comparable()
{

34

... // Required syntax
}
// Semantics:
// For two values a and b, == is an equivalence relation that
// returns true when a and b represent the same entity.
//
// The != operator is equivalent to !(a == b).

Failing to document the semantics of a constraint leaves its intent open to
different interpretations. Work on semantics is ongoing and, for the time being,
separate from constraints. We hope to present on the integration of these efforts
in the future. We see no problems including semantic information in a form
similar to what was presented in N3351 [1].

35

5 Terse Notation
In this section, we present design notes for a terse notation for templates and
generic lambdas. This notation is aimed to make constrained lambdas suffi-
ciently concise to be in the spirit of lambdas as a terse notation for function
objects and to address concerns about the verbosity of constrained templates
and of templates in general. The “terse notation” is pure “syntactic sugar.” It
is defined in terms of the simple predicates and requires clauses of constraints
(“concepts lite”). The terse notation provides a common notation (and seman-
tics) for lambdas and templates.

[This note is a major revision of the “Terse Templates” note posted to SG8
before the Bristol meeting and modified after presentations to hundreds and dis-
cussions with dozens of people. Thanks to the many who contributed in minor
and major ways.]

5.1 Introduction
The purpose of what has been called “terse templates” is to provide a very
terse notation to constrain simple templates and lambdas. This design aims
for minimalism, not completeness. If you want completeness, write a template,
possibly with a requires clause. We see this “terse notation” as an exercise in
making simple things simple.

The aim is to come up with a uniform notation that can be used to constrain
both templates and generic lambdas. For lambdas, we are convinced that we
want a terse syntax, primarily for relatively simple sets of template argument
types. We would hate to see an “unconstrained lambda” subculture grow up as
a result of a clumsy syntax.

We also briefly discuss the interaction between generic lambdas and any
constraint or concept system. Note that lambdas are a form of templates, so
semantic differences in how type checking is done or types are specified are
bound to lead to confusion and language-technical problems.

5.2 The basics
Consider Container as an example of a concept. We can define a constrained
lambda like this:

[](Container& c) ...

This means that c must be a reference to a type that is a Container, that is a
type X for which the constraint Container<X>() is true, a constrained parameter
type. Let us first explain how this works for templates, and then come back to
lambdas.

For a template, we can write:

void sort(Container& c);

This is shorthand notation for

36

template<Container __Container>
void sort(__Container& c);

which again is a shorthand for

template<typename __Container>
requires Container<__Container>()

void sort(__Container& c);

Here, __Container is a compiler-generated name of a type than meets the
concept Container. The name __Container is an implementation artifact (hence
the leading underscores) and not available to be used directly by users. Imple-
menters can choose how best to implement the semantics.

We note that when programmers first see something new, they clamor for
“heavy” syntax, such as the last version of sort(). Later, they complain about
verbosity, and prefer the terser forms. Later generations of programmers typ-
ically fail to understand why the long form exists at all. If you prefer the
traditional “heavy syntax,” you can simply use that.

Note that the meaning (semantics) of the terse notation is defined in terms
of the traditional (“heavy”) notation, so it is pure syntactic sugar and does not
add new semantic rules to the language.

5.3 Type compatibility
What if we need two argument types of the same concept? Consider

void sort(Random_access_iterator p, Random_access_iterator q);

For this to make sense, p and q must be of the same (random-access iterator)
type, and that is the rule. By default, if you use the same constrained parameter
type name for two arguments, the types of those arguments must be the same.
We chose to make repeated use of a constrained parameter type name imply
“same type” because that (in most environments) is the most common case,
it would be odd to have an identifier used twice in a scope have two different
meanings, and the aim here is to optimize for terse notation of the simplest case.

This also follows from the rewrite rule (above). That sort() declaration is
equivalent to

template<Random_access_iterator __Ran>
void sort(__Ran p, __Ran q);

or equivalently

template<typename __Ran>
requires Random_access_iterator<__Ran>()

void sort(__Ran p, __Ran q);

To our eyes, this last version looks verbose and the first is still so “heavy” that
we predict problems for lambdas. We must look for something better/terser.

Part of the problem is that concept names tend to be long (for good reasons),
so that repeating them becomes a bother.

37

5.4 Concepts as Type introducers
Consider what to do when we want two argument types of the same concept
that may differ? Consider the C++11 merge() :

template<typename For, typename For2, typename Out>
void merge(For p, For q, For2 p2, For2 q2, Out p);

Merge has been a long-standing example of (necessary) complexity of spec-
ification. Consider:

template<typename For, typename For2, typename Out>
requires Forward_iterator<For>()
&& Forward_iterator<For2>()
&& Output_iterator<Out>()
&& Assignable<Value_type<For>,Value_type<Out>>()
&& Assignable<Value_type<For2,Value_type<Out>>()
&& Comparable<Value_type<For>,Value_type<For2>>()

void merge(For p, For q, For2 p2, For2 q2, Out p);

We can do better still. The three template argument types for this merge()
are not independent, but must meet some fairly intricate constraints that can
be expressed as a concept taking three type arguments. For details, see the Palo
Alto TR [?]. At a minimum, we need to introduce the three type name and
express their relations:

template<Forward_iterator For, Forward_iterator For2, Output_iterator Out>
requires Mergeable<For,For2,Out>()

void merge(For p, For q, For2 p2, For2 q2, Out p);

This is still quite redundant. We first introduce the three names (For,
For2, and Out) and then we state that they must meet some joint constraint
(Mergeable). We can introduce the three names and at the same time require
that they meet the constraint

Mergeable{For,For2,Out} // Mergeable is a concept requiring three types
void merge(For p, For q, For2 p2, For2 q2, Out p);

Here, Mergeable is a concept and the name of a concept followed by { is
recognized as an introducer of constrained template argument names. We use
{} rather than <> after the constraint to avoid confusion and ambiguities with
the usual notation for specialization.

For any variant of the “terse notation” to work, concept names must be
known to the parser as names of concepts (just like type names must be known
to be names of types). Also, any future ideas of checking template bodies and
for adding semantic information requires concepts to be known as concepts and
not just constant expression. The Palo Alto TR has examples.

5.5 Examples

template<class T>
concept bool Number() { /∗ what it takes to be a number ∗/ }

38

Simply replacing constexpr with concept allows a bit of extra checking.
Given that, we can write

[](Number n) { return n*n; } // deduce return type

and

auto square(Number n) { return n*n; } // deduce return type

as desired and without introducing new syntax, potentially confusing dual names,
or conventions. We assume that there will be many uses of lambdas where a
concept/type is used only once. For example predicates, numbers, and strings.

Let’s look at a more elaborate example, find():

// #1 most verbose
template<class In, class V>
requires Input_iterator<In>() && Equality_comparable<Value_type<In>,V>()

In find(In p, In q, V v);

// #2 use short-hand for Input_iterator
template<Input_iterator In, class V>
requires Equality_comparable<Value_type<In>,V>()

In find(In p, In q, V v);

// #3 use shorthand for both arguments:
template<Input_iterator In, Equality_comparable<Value_type<In>> V>
In find(In p, In q, V v);

// define concept:
template<class In, class V>
concept bool Input_comparable()
{
return Input_iterator<In>() && Equality_comparable<Value_type<In>,V>();

}

Input_comparable{In, V} // #4 Use Input_comparable
In find(In p, In q, V v);

These alternatives are semantically equivalent. Which notation is better de-
pends on the example (e.g., how many template arguments? how many function
arguments? What are the semantics of the concepts? How long are the concept
names?) and on the aesthetic sense of the programmer. We think they all have
their places and there is no significant implementation burden.

Given that, consider a lambda that calls find():

// #0 unconstrained:
[](auto p, auto q, auto v) { return find(p,q,v); }

The example is not great, but equivalents will be used fairly widely. If passed
as an operation to an unconstrained template, we have a problem. For example,
this doesn’t even say that p and q are of the same type, so we could call that

39

lambda with p being an int* and q being a vector<string>::const_iterator
and get a much delayed error message.

So how do we constrain the types of p, q, and v? We have exactly the
alternatives shown above for templates.

// #1 use shorthand:
[](Input_iterator p, Input_iterator q, Equal_comparable<Value_type<Input_iterator> v)
{ return find(p,q,v); }

// #2 Factor constraints:
[]<Input_iterator In, Equal_comparable<Value_type<In> V> (In p, In q, V v)
{ return find(p,q,v); }

// #3 use concept to shorten:
[] Input_comparable{In, V} (In p, In q, V v) { return find(p,q,v); }

They are all pretty verbose, but the last seems plausible. We suspect that
terse notation increase in importance as the lambda argument type constraints
get simpler, so this find() is a relatively complicated example.

5.6 Why Are Constrained Lambdas Important?
We use lambdas for many things. Consider first a simple example

sort(p,q,[](const string& a, const string& b) { return a > b; });

This will, of course work, only if *p is “string like”, such as a std::string
or a const char*, but that’s fine because in real use, we’ll know that and if we
make a mistake, the compiler will catch it at the point of call of the lambda:
*p cannot be converted to const string&. Now consider making the lambda
generic:

sort(p,q,[](auto a, auto b) { return a > b; });

The notation is terser, which is part of the attraction of “generic” lambdas,
possibly their main attraction, and the reason for people pushing for even terser
syntax. Also, the exact source text will work for other inputs, say, for the case
where p and q are iterators into a vector<double>. However, we also lost some-
thing. Errors are caught later. For example (assuming sort() is unconstrained):

void f(vector<double>& v)
{
sort(v,[](double x, double y) { return x%100 < y%100; }); // error
sort(v,[](auto x, auto y) { return x%100 < y%100; }) ; // error
};

The first error could (and should) be caught when the lambda is defined.
The second cannot (easily) be caught until sort() calls its predicate, instantiates
the generic lambda, and find that we have applied % to a double. Then, and
only then, do we get one of the error messages that is a reason for the widespread
desire for concepts and constraints.

When passing a lambda as a template argument, there are four combinations:

40

• Unconstrained lambda + unconstrained template argument

– late checking, you’re on your own

• Unconstrained lambda + constrained template argument

– Use constraint from template

• Constrained lambda + unconstrained template argument

– Use constraint from lambda

• Constrained lambda + constrained template argument

– Use (constraint from lambda and constraint from template)

Checking is straightforward whenever there are any constraints involved. We
hope that the first case (no constraints anywhere) will become rare. We suspect
that it will mostly be used by people unacquainted with constraints and for
expression templates where only minimal constraints can be specified. From
a language-technical point of view constrained lambdas are essential because
lambdas are a notation for templates, so constraining one and not the other is
incoherent.

Lambdas with few arguments are likely to be very common (because function
objects with few arguments are). For example:

[](Range& c) { ... }
auto trim = [](const String& s) { return trim_at_both_ends(s); };
[](Unary_predicate p) { ... }
auto func = [](Forward_iterator first, Forward_iterator last) { ... }
callback1.register = func;
callback2.register = func;

Here Range, String, Unary_predicate, and Forward_iterator must be con-
cepts.

5.7 Concepts and auto
For lambdas, we gain precise specification (implying early checking and im-
proved error messages) by replacing auto with a concept. This is logically
equivalent to replacing typename with a concept in a template declaration.
The equivalent can be done when auto is used as a return type or as a type in
an object definition. Consider:

auto r = find(p,q,v);

What is the type of r? Well, it is the type of p, but we have to know find()
to know that. Using auto, there is no way to express our expectation about
the type of a result of a computation. Using concepts, we can express such an
expectation:

Random_access_iterator r = find(p,q,v);

41

Now if we wanted a random-access iterator and passed we get an early error.
Similarly, we could write:

Value_type<Range> x = [](Range& c) { ...} // we expect a value
Range x = [](Range& c) { ...} // we expect a Range
String trim = [](const String& s) { return trim_at_both_ends(s); };

We can write find() like this:

Forward_iterator
find(Forward_iterator p, Forward_iterator q,

Equality_comparable<Value_type<Forward_iterator>> v);

Here, the concept Forward_iterator is used as a return type. As in the case
of a concept used as an argument type, it is recognized by being a concept and
is used as the name of an argument type. A concept used as a return type must
be defined in terms of argument types that are deduced. The declaration of
find() above is equivalent to:

template<Forward_iterator __For,
Equality_comparable<Value_type<__For>> __Val>

__For find(__For p, __For q, __Val v);

Alternatively, we can use the suffix return type notation:

auto find(Forward_iterator p, Forward_iterator q,
Equality_comparable<Value_type<Forward_iterator> v) -> Forward_iterator;

Or we can rely on C++14 return type deduction:

auto find(Forward_iterator p, Forward_iterator q,
Equality_comparable<Value_type<Forward_iterator> v)

{ ... }

We can, of course, shorten further using a suitable concept for the two parameter
types:

Input_comparable{For,Val}
For find(For p, For q, Val v);

For a lambda, we get:

[] Input_comparable{For,Val}
(For p, For q, Val v) { ... }

As ever, the notation is consistent between lambdas and (other) templates.

5.8 Clusters of templates
We considered whether an even terser syntax (more minimal notation) was
possible. It is, but we deemed it an unnecessary complication.

Consider again Mergeable. There are five algorithms in the STL that requires
Mergeable, so we could use some form of recouping mechanism to make a single
Mergeable{For,For2,Out} apply to all five.

There are two variants of this idea. A form of using-directive:

42

using Mergeable{For, For2, Out}; // from here on until the end scope

Given that, For, For2, and Out in template declarations and lambdas must
meet the Mergeable constraint.

Alternatively, we could explicitly specify the scope of Mergeable{For, For2, Out}
and get a form of block:

using Mergeable{For,For2,Out}
{

// Here, For, For2, and Out in template declarations and lambdas
// must meet the Mergeable

}

Either can be made to work. That is, there are no significant implementation
problems. The question is “is it worth the effort.” Will it be used often enough
to warrant the effort teaching and learning yet another construct? Together
with some students, we conducted a small study clustering all STL algorithms.
We need to write up that experiment, but the conclusion was clear: There are
not enough clean “clusters” of algorithms with identical constraints for this kind
of clustering syntax to be valuable. So, we have dropped this line of inquiry and
would need new evidence of utility to revisit this question. Obviously, leaving
this out gives us a simpler language.

5.9 But it doesn’t look like a template!
When first seeing something like

Number sqrt(Number n);

or

Input_comparable{In, V}
In find(In p, In q, V v);

Many C++ programmers exclaim “But it doesn’t look like a template!” It
doesn’t, but other languages with generic functions do not require a long key-
word to precede a generic function declaration. Many C++ programmers com-
plain about the verbosity of the current template syntax, and in fact the earliest
designs for C++ templates did not have the template keyword. When a com-
piler knows whether an identifier is a concept name or not the terse notation
is simple to parse. I consider most uses of template analogous to the use of
struct in C. Do not confuse the familiar with the simple. The proposed syntax
is readable and parsable. We considered “louder”, more verbose notations, but
did not find them consistently better than what is described here.

43

6 Standard Wording
The proposed wording for concepts lite is written against the current Working
Paper, targeting C++14.

5.1.1 General [expr.prim.general]

primary-expression::
literal
this
...
requires-expression

5.1.3 Requires expressions [expr.prim.requires]

A requires expression provides a concise way to express syntactic requirements
for template constraints. [Example:

template<typename T>
constexpr bool Readable() {
return requires (T i) {
typename Value_type<T>;
const Value_type<T>& = {*i};

};
}

— end example]

requires-expression::
requires requirement-parameter-list requirement-body

requirement-parameter-list::
(parameter-declaration-clauseopt)

requirement-body::
{ requirement-list }

requirement-list::
requirementopt
requirement-list ; requirementopt

requirement::
simple-requirement
compound-requirement
type-requirement
nested-requirement

simple-requirement::
expression

compound-requirement::
{ expression } trailing-requirements

44

trailing-requirements::
constraint-specifer-seq result-type-requirementopt

constraint-specifier-seq::
constexproptnoexceptopt

result-type-requirement::
-> type-id

nested-requirement::
requires-clause

A requires-expression shall only appear inside a template.

The type of a requires-expression is bool, and it is a constant expression.

The requires-expression may be introduce local arguments via a parameter-
declaration-clause. These parameters have no linkage, storage, or lifetime. They
are used as notation for the purpose of writing requirements.

The body of requires-expression is a list of requirements. If each requirement in
that list is satisfied, the result of the expression is true, or false otherwise.

5.1.3.1 Simple requirements [expr.req.simple]

A simple-requirement introduces a requirement that the expression is a valid
expression when instantiated. If the instantiation of the constraint results in a
substitution failure, the the requirement is not satisfied.

5.1.3.2 Compound requirements [expr.req.compound]

A compound-requirement introduces a set of requirements involving a single
expression. The expression must compile when instantiated.

If a result-type-requirement is present then the result type of the instantiated
expression must satisfy that requirement. If the required type-id is a constrained
placeholder type (7.1.6.5), then those constraints must also be satisfied.

If the constexpr specifier is present, the instantiated expression must be constexpr-
evaluable. If the noexcept specifier is present, instantiated expression must not
propagate exceptions.

5.1.3.3 Type requirements [expr.req.type]

A type-requirement introduces a requirement that an associated type name can
be formed when instantiated. If the instantiation of the type requirement results
in a substitution failure, the requirement is not satisfied.

45

5.1.3.4 Nested requirements [expr.req.type]

A nested requirement introduces additional constraints to be evaluated as part
of the requires expression. The requires-clause is constexpr evaluated, and the
requirement is satisfied only when that evaluation yields true.

7.1 Specifiers [dcl.spec]

decl-specifier:
...
concept

7.1.6 Simple type specifiers [dlt.type.simple]

type-name:
...
concept-name
partial-concept-id

concept-name:
identifier

partial-concept-id:
concept-name < template-argument-list >

7.1.6.5 Constrained type specifiers [dcl.spec.constrained]

The type denoted by a concept-name or partial-concept-id is a constrained place-
holder types. A constraint is formed from the application of the concept to the
placeholder type. The placeholder type is used as the first template argument
of the constraint. If the type specifier is a partial-concept-id, the specified argu-
ments follow the placeholder type in the formed constraint. [Example:

Real y = f(x); // decltype(y) is a placeholder type,
// constrained by Real<decltype(y)>

Same_as<T> a = f(b); // decltype(a) is a placeholder type,
// constrained by Same_as<T, decltype(a)>

— end example]

The first use of concept-name or partial-concept-id within a scope binds that
name to the placeholder type so that subsequent uses of the same name refer to
the same type. [Example:

template<typename T>
concept bool Number() { ... }

46

auto mul = [](Number a, Number b) { return a * b; }

The types of a and b are the same. This is equivalent to having written:
auto mul = []<Number N>(N a, N b) { return a * b; }

— end example]

7.1.7 The concept specifier [dcl.concept]

The concept specifier shall be applied to only the definition of a function tem-
plate. A function template definition having the concept specifier is called a
concept definition.

Every concept definition is also a constexpr declaration (7.1.5).

Concept definitions have the following restrictions:

• The template must be unconstrained.

• The result type must be bool.

• The declaration may have no function parameters.

• The declaration must be defined.

• The function shall not be recursive.

[Example:
template<typename T>
concept bool C() { return true; } // OK: Concept definition

template<typename T>
concept int c() { return 0; } // error: must return bool

template<typename T>
concept bool C(T) { return true; } // error: must have no parameters

concept bool p = 0; // error: not a function template

— end example]

If a program declares a non-concept overload of a concept definition with the
same template parameters and no function parameters, the program is ill-
formed. [Example:
template<typename T>
concept bool Totally_ordered() { ... }

template<Graph G>
constexpr bool Totally_ordered() // error: subverts concept definition
{ return true; }

47

— end example]

14 Templates [temp]

A template defines a family of classes or functions or an alias for a family of
types.

template-declaration:
template < template-parameter-list > requires-clauseopt declaration
concept-introduction declaration

requires-clause:
constant-expression

Add new paragraphs:

A template declaration with a requires-clause is a constrained template. A
requires-clause introduces template constraints in the form of a constant-expression
whose result type is bool.

A declaration introduced by a concept-introduction (14.9.5) is a constrained
template.

14.1 Template parameters [temp.param]

The syntax for template-parameters is:

template-parameter:
type-parameter
parameter-declaration
constrained-parameter

constrained-parameter:
constraint-id ...opt identifier
constraint-id ...opt identifier = constrained-default-argument

constraint-id:
concept-name partial-concept-id

constrained-default-argument:
type-id
template-name
expression

Add new paragraphs:

A constrained-parameter is introduced by a constraint-id, which is either a
concept-name or a partial-concept-id. The concept definition referred to by the
constraint-id determines the kind of template parameter and the constraints
applied to that argument.

48

The template parameter introduced by the constraint-id has the same kind and
constraints as the first template parameter of the concept definition. If that
template parameter is a parameter pack, then the constrained parameter shall
also be declared as a parameter pack. [Example:

template<typename... Ts>
concept bool Same_types() { ... }

template<Same_types Args> // error: Must be Same_types...
void f(Args... args);

— end example]

The constraint-id is used to form a constraint on the declared template param-
eter by applying the concept-name to that parameter. If the constraint-id is
a partial-concept-id, then the supplied template-arguments follow the declared
parameter in the application. [Example:

template<Input_iterator I, Equality_comparable<Value_type<I>> T>
I find(I first, I last, const T& value);

The constraints formed from these constrained template parameters are equiv-
alent to the following declaration:

template<typename I, typename T>
requires Input_iterator<I>() && Equality_comparable<T, Value_type<I>>()
I find(I first, I last, const T& value);

— end example]

The kind of constrained-default-arg shall match the kind of parameter intro-
duced by the constrained-id.

A template-declaration having constrained-parameters in its template-parameter-
list is a constrained template.

14.2 Template names [tmp.names]

Modify paragraph 6.

A simple-template-id that names a class template specialization is a class-name
provided that the template-arguments satisfy the constraints (if any) of the
referenced primary template. Otherwise the program is ill-formed. [Example:

template<Object T> // T must be an object type
class optional;

optional<int&>* p; // error: int& is not an object type

— end example] [Note: This ensures that a partial specialization cannot be less
specialized than a primary template.]

49

14.3.3 Template template arguments [tmp.arg.template]

Modify paragraph 3.

A template-argument matches a template template-parameter (call it P) when
each of the template parameters in the template-parameter-list of the template-
argument ’s corresponding class template or alias template (call it A) matches
the corresponding template parameter in the template-parameter-list of P, and
when P is not less constrained (14.9.3) than A. [Example

// ... from standard

template<template<Copyable>> class C>
class stack { ... };

template<Regular T> class list1;
template<Object T> class list1;

stack<list1> s1; // OK: Regular is more constrained than Copyable
stack<list2> s2; // error: Object is not more constrained than Copyable

— end example]

14.5.1.5 Constrained members of class templates [temp.mem.func]

A member function of a class template can be constrained by writing a requires
clause after the member declarator. [Example:

template<typename T>
class S {
void f() requires Integral<T>();

};

— end example]

The member function’s constraints are not evaluated during class template in-
stantiation. [Note: Member function constraints are checked during overload
resolution].

14.5.5.1 Matching of class template partial specializations
[temp.class.spec.match]

Modify paragraph 2.

A partial specialization matches a given actual template argument list if the
template arguments of the partial specialization can be deduced from the actual
template argument list (14.8.2), and the deduced template arguments satisfy the
constraints of partial specialization (if any) (14.9.2).

50

14.5.5.1 Partial ordering of class template specializations
[temp.class.spec.match]

Modify paragraph 1.

For two class template partial specializations, the first is at least as specialized
as the second if, given the following rewrite to two function templates, the
first function template is at least as specialized as the second according to the
ordering rules for function templates (14.5.6.2):

• the first function template has the same template parameters and con-
straints as the first partial specialization and has a single function pa-
rameter whose type is a class template specialization with the template
arguments of the first partial specialization, and

• the second function template has the same template parameters and con-
straints as the second partial specialization and has a single function pa-
rameter whose type is a class template specialization with the template
arguments of the second partial specialization.

Add paragraph 3.

[Example:

template<typename T> class S { };
template<Integer T> class S<T> { }; // #1
template<Unsigned_integer T> class S<T> { }; // #2

template<Integer T> void f(S<T>); // A
template<Unsigned_integer T> void f(S<T>); // B

The partial specialization #2 will be more specialized than #1 for template
arguments that satisfy both constraints because A will be more specialized than
B. — end example]

14.5.6.1 Function template overloading [tmp.over.link]

Modify paragraph 6.

Two function templates are equivalent if they are declared in the same scope,
have the same name, have identical template parameter lists, and have return
types and parameter lists that are equivalent using the rules described above to
compare expressions involving template parameters, and have equivalent con-
straints (14.9.2).

14.5.6.2 Partial ordering of function templates [tmp.func]

Modify paragraph 2.

51

Partial ordering selects which of two function templates is more specialized
than the other by transforming each template in turn (see next paragraph)
and performing template argument deduction using the function type. The
deduction process determines whether one of the templates is more specialized
than the other. If so, the more specialized template is the one chosen by the
partial ordering process. If both deductions succeed, the the more specialized
template is the one that is more constrained (14.9.3).

14.9 Constraints [temp.con]

A template-declaration declared with constrained-parameters, a requires clause,
or introduced by a concept-introduction is a constrained template. Otherwise,
the declarations is an unconstrained template.

The actual constraints of a constrained template are taken to be the conjunc-
tion of constraints formed from constrained template parameters, a requires
clause, and those derived from an concept-introduction, inclusively. The ac-
tual constraints can be represented as a logical-and-expression that is also a
constant-expression.

For constrained templates, these constraints determine if the template decla-
ration can be instantiated (14.7). For constrained member functions of class
templates, the constraints determine if the instantiated member function is a
viable candidate during overload resolution (14.5.1.1).

The actual constraints of a constrained template are represented as an logical
expression comprised of atomic propositions, concept checks, and the logical
connectives, && and ||.

An atomic proposition is any C++ expression except a concept-check, logic-or-
expression, or logical-and-expression. [Example: The following are examples of
atomic propositions:

true
is_integral<T>::value
!(a == b)
max(a, b) == a
(N == 0)
(M < 3)

Assuming that a, b, max(a, b), M, and codeN, and are constant expressions. —
end example]

A concept check is a call to concept definition.

14.9.1 Constraint reduction [temp.con.reduce]

A constrained template’s actual constraints are reduced by inlining concept
checks, and producing an expression comprised of only atomic propositions and

52

logical-and-expressionss and logical-or-expressions.

14.9.2 Constraint Satisfaction [temp.con.sat]

A template’s constraints are satisfied if the constexpr evaluation of the reduced
constraints results in true.

14.9.3 Partial ordering of constraints [temp.con.ord]

Partial ordering of constraints is used to choose among ambiguous specializa-
tions during the partial ordering of function templates, the partial ordering
of class templates, and the use of template template arguments. The partial
ordering of two reduced constraints P and Q determines if P subsumes Q.

Determining the partial ordering of reduced constraints requires their decom-
position into a list of lists of atomic propositions. Decomposition of a reduced
constraint P begins with a single list (the current list) containing the reduced
constraint P (the current term). Decomposition proceeds by analyzing the cur-
rent term.

• If P is of the form a && b, then replace P in the current list with the
operands a and b so that a is the current term and b will be the next term.

• If P is of the form a || b, then create a copy of the current list, replacing
P with a in the original and replacing P with b in the copy so that a is the
current term in the original and b is the current term in the copy.

• Otherwise, advance to the next term. If there are no remaining terms,
advance to the next list. If there are no remaining lists, decomposition
terminates.

Given two reduced constraints P and Q, then P subsumes Q only if all of Q’s
atomic propositions can be found in the P. Denote this comparison as P ` Q.
This is computed by first decomposing P into a list of lists of atomic proposi-
tions, L, and then comparing the expression Q against each list Li in L, which is
equivalent to determining if Li ` Q according to the following rules:

• If Q is of the form a && b, then Li ` Q if and only if Li ` a and Li ` b.

• If Q is of the form a || b, then Li ` Q if and only if Li ` a or Li ` b.

• Otherwise Li ` Q if and only if there exist some atomic proposition A in Li
that matches Q (14.9.4).

Only when each Li ` Q does P ` Q.

53

For two template declarations with equivalent type, the first is at least as con-
strained as the second if both templates are unconstrained, the first is con-
strained and the second unconstrained, or the constraints of the first subsume
the constraints of the second.

14.9.3 Constraint equivalence [temp.con.eq]

Two constraints P and Q are equivalent if and only if P ` Q and Q ` P.
Two template declarations are equivalently constrained if they are both uncon-
strained or have equivalent constraints.

14.9.4 Matching propositions [temp.con.match]

Two propositions P and Q match (P ` Q) if they have the same spelling. The
names of arguments introduced in a requirement-parameter-list are not consid-
ered.

14.9.5 Concept Introductions [temp.con.intro]

A concept-introduction introduces a list of template parameters for trailing dec-
laration (14) or lambda expression. (5.1.2).

concept-introduction:
concept-name { introduced-parameter-list }

introduced-parameter-list:
identifier introduced-parameter-list , identifier

The concept name is matched, based on the number of introduced parameters
to a corresponding concept definition. If no such concept can be found, the
program is ill-formed.

The kind of each introduced parameter (type, non-type, template), is the same
as the corresponding template parameter in the matched concept definition.
The concept is applied introduced parameters as a constraint on the trailing
declaration. [Example:

template<typename I1, typename I2, typename O>
concept bool Mergeable() { ... }

Mergeable{A, B, C}
O merge(A first1, A last1, B first2, B last2 C out);

A, B, and C are introduced as type parameters. The constraint on the algorithm
is Mergeable<A, B, C>(). The declaration is equivalent to:

54

template<typename A, typename B, typename C>
requires Mergeable<A, B, C>()

O merge(A first1, A last1, B first1, B first2, C out);

— end example]

Acknowledgements

We are grateful for the input, comments, and corrections from Jason Merril,
Greg Marr, Chris Jefferson, Daveed Vandevoorde, Matt Austern, Herb Sutter,
Tony Van Eerd, and Michael Lopez. The feedback received from participants
in the ACCU and C++Now conferences has also been valuable.

This work is funded, in part, by the National Science Foundation through grant
ACI-1148461.

55

References

[1] Bjarne Stroustrup, Andrew Sutton, et al., A Concept Design for the STL,
Technical Report N3351=12-0041, ISO/IEC JTC 1, Information Technol-
ogy Subcommittee SC 22, Programming Language C++, Jan 2012.

[2] Pete Becker, Working Draft, Standard for Programming Language C++
Technical Report N2914=09-0104, ISO/IEC JTC 1, Information Technol-
ogy Subcommittee SC 22, Programming Language C++, Jun 2009.

[3] Gabriel Dos Reis, Bjarne Stroustrup, and Alisdair Meredith, Axioms:
Semantics Aspects of C++ Concepts Technical Report N2887=09-0077,
ISO/IEC JTC 1, Information Technology Subcommittee SC 22, Program-
ming Language C++, Sep 2009.

[4] Stephan Du Toit (ed), Working Draft, Standard for Programming Lan-
guage C++ Technical Report N3337=12-0027, ISO/IEC JTC 1, Informa-
tion Technology Subcommittee SC 22, Programming Language C++, Nov
2012.

[5] Alexander Stepanov and Paul McJones, Elements of Programming, Addison
Wesley, 2009, pp. 250.

[6] Douglas Gregor, Jaakko Järvi, Jeremy G. Siek, Bjarne Stroustrup, Gabriel
Dos Reis, and Andrew Lumsdaine, “Concepts: Linguistic Support for
Generic Programming in C++”, Proceedings of the 21th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’06), Oct 22-26, 2006, Portland, Oregon, pp.
291-310.

[7] Gabriel Dos Reis and Bjarne Stroustrup, “Specifying C++ concepts”, In
Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’06), Jan 11-13, 2006, Charleston,
South Carolina, pp. 295-308.

[8] Andrew Sutton and Bjarne Stroustrup “Design of Concept Libraries for
C++” In Proceedings of the 4th International Conference on Software Lan-
guage Engineering (SLE’11), Jul 3-4, 2011, Braga, Portugal, pp. xxx-yyy.

[9] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine, “Concept-
Controlled Polymorphism”, Proceedings of the 2nd International Confer-
ence on Generative Programming and Component Engineering (GPCE’03),
Sep 22-25, 2003, Erfurt, Germany, pp. 228-244.

[10] Larry Paulson, ML for the Working Programmer, Cambridge University
Press, 1996, pp. 500.

56

	Introduction
	Tutorial
	Introducing Constraints
	Defining Constraints
	Overloading

	More Shorthand
	Lambdas and Auto

	User's Guide
	Anatomy of a Constraint
	Concept Definitions
	Writing Requirements
	Constraint Reduction
	Relations on Constraints

	Declarations, Redeclarations, and Overloading
	Overloading, and Specialization
	Non-Type Constraints
	Template Template Parameters
	Variadic Constraints

	Overload Arguments
	Designing Concepts
	Intensional and Extensional Definitions
	Expressivity

	Constraints and Concepts
	Terse Notation
	Introduction
	The basics
	Type compatibility
	Concepts as Type introducers
	Examples
	Why Are Constrained Lambdas Important?
	Concepts and auto
	Clusters of templates
	But it doesn't look like a template!

	Standard Wording

