
Doc No: WG21 N3636
Date: 2013-04-17
Reply to: Herb Sutter (hsutter@microsoft.com)
Subgroup: SG1 – Concurrency
Previous Version: N3630

~thread Should Join
Herb Sutter

This paper extracts a separable portion of paper N3630, “async, ~future, and ~thread.”

Summary
SG1 discussion of N3630 resulted in direction in favor of the proposal that ~thread calls join, not

terminate, if the thread was not already joined.

This has no effect on programs that do not currently terminate. It just replaces the requirement to call

terminate with the requirement to instead call join.

Proposed Wording
Change 30.3.1.3 as follows:

 ~thread();

1 If joinable(), calls join() std::terminate(). Otherwise, has no effects. [Note: Either

implicitly detaching or joining a joinable() thread in its destructor could result in difficult to

debug correctness (for detach) or performance (for join) bugs encountered only when an

exception is raised. Thus the programmer must ensure that the destructor is never executed

while the thread is still joinable. —end note] [Note: Because ~thread is required to be

noexcept (17.6.5.12), if join() throws then std::terminate() will be called. —end note]

Change 30.3.1.4 as follows:

 thread& operator=(thread&& x) noexcept;

1 Effects: If joinable(), calls join() std::terminate(). Otherwise,Then assigns the state of x

to *this and sets x to a default constructed state. [Note: If join() throws then

std::terminate() will be called. —end note]

2 Postconditions: x.get_id() == id() and get_id() returns the value of x.get_id() prior

to the assignment.

3 Returns: *this

