
Doc No: WG21 N3630
Date: 2013-04-12
Reply to: Herb Sutter (hsutter@microsoft.com)
Subgroup: SG1 – Concurrency
Previous Version: N3451

async, ~future, and ~thread (Revision 1)
Herb Sutter

This paper is an update of paper N3451, “async and ~future.” [1]

“Fundamentally, functions should return a non-blocking future since they don’t know

whether the caller needs it to block or not. Whether the lifetime of the task needs to be

contained to the current scope is caller’s decision.”

 – Niklas Gustafsson

C++11 futures are a hit. Their most important benefit is composability: that they provide a wonderfully

useful lingua franca type for combining asynchronous operations from multiple libraries (e.g., use two

libraries that launch concurrent or parallel work and be able to wait on both), and they are gaining

widespread adoption and usage experience.

Practical field experience with futures has demonstrated one major problem, which was discussed in

May 2012 at the SG1 meeting in Bellevue and with a previous version of this paper (N3451) in Portland.

~future/~shared_future Must Never Block
The good news is that the Standard’s specification of future and shared_future destructors specifies that

they never block (via the shared state semantics in 30.6.4 which carefully describe only basic reference

counting, and do not specify any blocking). This is vital.

The bad news is that 30.6.8/5 specifies that the associated state of an operation launched by std::async

(only!) does nevertheless cause future destructors to block. This is very bad for several reasons, three of

which are summarized below in rough order from least to most important.

Example 1: Consistency
First, consider these two pieces of code:

// Example 1

// (a) // (b)

{ {

 async([]{ f(); }); auto f1 = async([]{ f(); });

 async([]{ g(); }); auto f2 = async([]{ g(); });

} }

Example 1(a) has no concurrency; 1(b) does. Users are often surprised to discover that (a) and (b) do not

have the same behavior, because normally we ignore (and/or don’t look at) return values if we end up

deciding we’re not interested in the value and doing so does not change the meaning of our program.

The two cannot have the same behavior if ~future joins.

Example 2: Correctness
Consider the following natural code, with surprising(?) semantics:

// Example 2: “Async, async everywhere! but…”

{

 async(launch::async, []{ f(); });

 async(launch::async, []{ g(); });

}

Users are often surprised to discover that there is no concurrency at all in this “async-rich” code and the

standard requires it to be executed sequentially. They did not care about the return values, only wanted

to launch some work (fire-and-forget).

Example 3: Composability (major)
The most important benefit of std:: futures is that they provide a single common lingua franca type for

combining asynchronous operations from multiple libraries.

The fact that std:: future destructors sometimes block strikes a blow to the heart of this their most

important strength, composability. Consider:

// Example 3: What does this code do? In particular, can it block?

void func() {

 future<int> f = start_some_work();

 /*... more code that doesn’t f.get() or f.wait(), and performs no other synchronization … */

} // Q: can this code block here?

The answer is different depending on whether the function (transitively) chose to launch its work via a

std::async or via anything else (such as a std::thread). But it should not matter, because if the caller ends

up not caring to know the value, it shouldn’t have to block on the operation that produces the value.

Note the situation would be worse (in degree only, not in kind) if the above code instead used a

shared_future, because then whichever thread happens to be unlucky enough to run last will be the one

that blocks.

This is not composable – when the primary purpose and advantage of std:: futures is composability –

because this potential blocking makes it difficult or impossible to use standard futures in many common

situations, notably in nonblocking code. We must always be able to tell if code might block. For example,

because ~future might block, this code cannot reliably be called (transitively!) on a thread that must

remain responsive, such as a GUI thread – not func, not even start_some_work. The workaround is to

put the future on the heap (strange, and begging the question of how to clean it up) or not use std::

futures (a defeat for futures).

Example 3 makes futures nearly unusable as a common composability type. The eventual calling code

that handles a future must know whether something blocks, and so cannot use ~future with the

expectation that it won’t block, as is common in modern non-blocking code. So the alternative might

seem to be that with status quo people must write their code as if ~future always blocks, but they can’t

do that because they can’t rely on it blocking either. So ~future really is in this unusable netherworld

where we fail to give any guarantee and so don’t know how to tell people to write code that uses it if

that code may not need to .get() or .wait() (see Objection 3 below which notes some problematic

workarounds). And this damage to futures is only because of the async quirk – futures and shared state

themselves are otherwise not specified to block.

Potential resolutions include:

 (Preferred change) Remove the requirement that releasing an async operation’s shared state

shall block.

 (Status quo workaround) Teach programmers not to use launch::async, including not to use the

default launch policy which includes launch::async, in order to avoid this problem.

Objections
There were several arguments that caused the current design where ~future blocks if the future was

produced by std::async and/or have been raised in the discussion of this question.

Objection 1: Detachment
First, it was felt that because the returned future was the only handle to the async operation, if it did not

block then there would be no way to join with the async operation, leading to a detached task that could

run beyond the end of main off into static destruction time, which was considered anathema.

Detached fire-and-forget tasks are indeed problematic, but the right place to fix this is not ~future, but

rather would be to provide what is actually desired, namely a way to join with async tasks.

Potential resolutions include:

 (Preferred) Require the return from main and every call to exit to implicitly join with all unjoined

async tasks.

 Provide a join_all_asyncs function that the user could call anytime, including at the return from

main and before every call to exit. However, this would join with all async tasks launched by any

library, and so would generally be appropriate only at the return from main or at a call to exit (it

could be problematic to call anywhere else) and required in those places as a best practice (so

why not automate it so the programmer can’t forget).

 Do both and specify the first in terms of the second.

 (Preferred) Also add a local_future whose destructor does wait(). (See next section.)

Objection 2: Reference Capture of Locals
Similarly, it was felt that it was too easy for a lambda spawned by an async operation to capture a local

variable by reference but then outlive the function. For example:

// Example 4

void func()

{

 int i = 0;

 future<int> f = async([&]{ i = 1; return i; }); // crashes, if f’s destructor doesn’t wait

} // status quo: f’s destructor waits, this is okay

We will dwell on this argument because it has been raised again and again. (Note: We captured this

particular example, but there are slightly longer examples others also gave as objections, that this paper

did not capture. Those examples should also be raised again by those who are concerned about them.)

However, this argument likewise fails to motivate a blocking ~future because:

 This does not even solve the problem it wants to solve, because it’s still broken for

shared_futures, return values, moving/copying to non-local locations, etc. Consider:

// Example 4, cont.: Why the status quo doesn’t even solve the problem it targets

// Status quo doesn’t address the same code for shared_future

void func()

{

 int i = 0;

 shared_future<int> f = async([&]{ i = 1; return i; });

 g(f); // may store a copy of f

} // ~shared_future does not always join – error... sometimes! the very worst kind...

Aside: shared_future is problematic for the status quo argument in general. In the email

discussion that started with the above case, the comment was made by one

expert that: “You could change ~future to always wait, but this will not help the

shared_future cases in which someone else holds a shared_future (and if

someone else did not, you wouldn't have used a shared_future). Or you could

make ~shared_future wait too, but I suspect that this would be rather unhelpful.”

– This is an excellent point because making ~shared_future also wait would be

exactly in the spirit of the status quo, as well as obviously undesirable. And so it’s

a helpful way to demonstrate that the status quo is already on the wrong path,

and illustrates why, in arguing by “forcing the conclusion”: If there are valid

reasons why we should block in ~future, then those reasons also apply to

~shared_future, and for the same reasons we should indeed block also in

~shared_future. Since that would be obviously wrong, it helps to demonstrate

that the status quo is taking us to the wrong place.

// Status quo doesn’t address a slight modification of the code

void func()

{

 future<int> f;

 {

 int i = 0;

 f = async([&]{ i = 1; return i; });

 }

 f(); /*boom*/ // still leaks a reference

}

// Status quo doesn’t address a returned future

future<int> func()

{

 int i = 0;

 future<int> f = async([&]{ i = 1; return i; });

 return f; // moves the associated state, still leaks a reference

}

// Status quo doesn’t address a moved future

void func()

{

 int i = 0;

 future<int> f = async([&]{ i = 1; return i; });

 some_obj.store(move(f)); // moves the associated state, still leaks a reference

}

 The problem is not specific to lambdas passed to std::async or std::thread, or even to lambdas. It

applies to all pointers and references to locals (whether contained in lambdas or not) since they

could be returned, or copied to a non-stack location, or otherwise outlive the function. The right

place to address the problem would more generally be to warn (or prevent where possible)

whenever a lambda that captures a local variable by reference or any pointer or reference to a

local variable captured or taken by any other means outlives the local variable’s scope by

asynchronous launching or any other means including by return value, out parameter, or any

other write to a non-local location. This really has nothing to do with std::async specifically, and

std::async shouldn’t be hacked in a mistaken attempt at solving one small corner of a far broader

and longstanding issue.

// Example 4, cont.: Why the status quo is targeting a problem in no way related to async

// Status quo doesn’t address same code without async

void func()

{

 function<size_t()> f;

 {

 int i = 0;

 f = [&]{ i = 1; return i; };

 }

 f(); /* boom */ // functor outlives func (NB: no async required)

}

// Status quo doesn’t address same code without async

function<int()> func()

{

 int i = 0;

 auto f = [&]{ i = 1; return i; };

 return f; // functor outlives func (NB: no async required)

}

// Status quo doesn’t address same code without async

void func()

{

 int i = 0;

 auto f = [&]{ i = 1; return i; };

 some_obj.store(f); // functor outlives func (NB: no async required)

}

// Status quo doesn’t address same code without async

void func()

{

 size_t* f;

 {

 int i = 0;

 f = &i;

 }

 f; / boom */ // pointer outlives func (NB: no async required)

}

// Status quo doesn’t address same code without async

int& func()

{

 int i = 0;

 return i; // reference outlives func (NB: no async required)

}

// Status quo doesn’t address same code without async

void func()

{

 int i = 0;

 some_obj.store(&i); // reference outlives func (NB: no async required)

}

 Fundamentally, functions should return a non-blocking future since they don’t know whether

the caller needs it to block or not. Whether the lifetime of the task needs to be contained to the

current scope is caller’s decision, which we propose he be able to make locally by choosing to

store the result in a future without calling .wait(), or by choosing to wait by calling .wait() or a

ScopeGuard or a new type local_future (as proposed by Peter Dimov) as appropriate. Note that

all of these are correct for both future and shared_future, unlike Example 4 above:

// Example 4(a): Callers that want to wait can say so

void func()

{

 int i = 0;

 auto f = async([&]{ i = 1; return i; }); // ok, because of f.wait later on

 // .. more code that doesn’t throw or return early …

 f.wait(); // ok, joins before return

}

// Example 4(b): Or just use any vanilla RAII/release-at-end-of-scope style

void func()

{

 int i = 0;

 auto f = async([&]{ i = 1; return i; }); // ok, because of f.wait at end of scope

 ScopeGuard finally([&]{ f.wait(); }); // ok, joins before return

 // .. more code that might throw or return early …

}

// Example 4(c)’: Or use a new local_future type (proposed by Peter Dimov)

void func()

{

 int i = 0;

 local_future<int> f = async([&]{ i = 1; return i; }); // ok, f’s destructor will wait

 // .. more code that might throw or return early …

}

Potential resolution: Add a local_future<T> that is just like future<T>except that its destructor always

performs a .wait(), and is constructible from either a future<T> or a shared_future<T>. Benefits:

1. It introduces only one new type.

2. It separates the RAII concern from the delayed-value concern.

3. The cases that some have raised and are rightly concerned about are those where local

knowledge of the danger is actually present: The issue cannot occur unless you are capturing

local variables by reference. We can teach users that this is (in general) dangerous, but if

passing a shared_ptr<T> by value instead of relying on by-reference capture isn’t feasible, then

catch the future in a local_future, by golly!

4. It would work for both future<T> and shared_future<T>, and would not depend on the origin

of the future or whether its associated state has been shared. The destructor makes a call to

wait(). Period.

5. It enables exception-safety for all futures, not just those that come from async: Since

exceptions can result from promise-based futures, too, this gives us an elegant way of saying,

in an RAII fashion, that this scope is where I want to observe any exceptions that may come my

way through the future. We are actually much more concerned about ignoring exceptions

(postponing them to exit from main is generally not a good idea, since so many programs never

exit from main, at least not in a reasonable time frame) than the local-reference issue, but this

proposal addresses both.

Objection 3: “Nearly no valid correct code wouldn’t block on ~future.”
This can be answered by many counterexamples. The following are two.

One counterexample is speculation:

void CalculateTrajectory(Spacecraft s, Location loc, Destination dest)

{

 vector<future<Trajectory>> result;

 for(auto& server : my_servers)

 result.push_back(async([=]{ return server.CalcTheTrajectoryPlease(s, loc, dest); });

 return wait_any(result).get(); // only care about the first answer

 // optionally cancel the losers if we have a way to do so, and care

 }

This function returns as soon as the first result is available. It doesn’t “work” as intended if ~future joins

– that would make it hit the worst case of all servers, not the best case. We see no correctness problem

in this code, particularly if all asyncs join automatically on return from main.

Another counterexample is optional work:

void SinkFunctionThatMightUseTheFuture(future<int>&& f)

{

 // f unused here

 if(some_condition()) {

 DoSomethingElseWith(f.get());

 }

 // f unused here

}

Why should this code be forced to block if it doesn’t end up needing the value of f?

Question: In such cases, what’s the workaround to write this code with the intended semantics if ~future

does join? Difficult and expensive: Somehow the futures must be put on the heap and their cleanup

managed by polling or wasting a cleanup thread.

Objection 4: Code Breakage
As with any intended or unintended behavior in the standard, there is now an unknown not nonzero

amount of existing code that relies on the current joining behavior of ~future. There is a valid concern

that removing the requirement that releasing an async operation’s shared state shall block could break

this code.

This section argues that the code that would be broken by this change is likely smaller, and more easily

fixed, than the complementary set of existing code that is being written in ignorance of the current

behavior quirk and so is already broken today.

(a) Code that relies on the status quo.

We argue that:

 The code that relies on this behavior is likely small, because it can only be relying on this with

futures known specifically to be derived from either a call to async(launch::async, f) or a call to

async(/*default-policy*/ f). Furthermore, this means the caller is typically also the author of the

async call and therefore both the future and the async call are usually or often in the same local

scope.

 There is less such code now than there will be at any time in the future.1

 Not breaking such code incurs more serious costs. If we don’t fix this now, then in the worst case

we may end up eventually having to deprecate (formally or informally) the existing futures and

replace them with a properly behaved type which would be a far larger breaking change. At

minimum we would feel we will have to teach people to avoid launch::async and any default that

includes it as “almost great but in practice subtly broken” because of this issue which is also a

real cost. So “staying with the status quo means we don’t break code that may rely on the

behavior” does not mean that staying with the status quo incurs no costs.

 The fix is simple. If any code does rely on ~future blocking and is broken if we accept the

proposed change, just add .wait().

(b) Code that relies on ~future not blocking.

On the other hand, we believe there is code being written that assumes the opposite, namely that

~future does not block. We have seen developers write code that uses futures and expects ~future not

block (on various compilers, not just ours because we’re nonconforming), because they do not realize

this problem and because today their code appears to (and does) work as expected in testing and in

release as long as they do not encounter a future attached to a non-ready task launched by async with

1 Note and disclaimer: Visual C++ does not yet implement the standard behavior for this case while awaiting for the

result of this discussion. Our implementation being not conforming in this place should not be viewed as ‘existing

practice’ or otherwise taken as a reason to take this change, and were are not arguing that not making the change

would break customers who rely on our nonconforming implementation. If the standard does not change, we will

conform and break any customer code that might rely on the nonstandard behavior as entirely our own

responsibility and this should not weigh in the decision. – However, what we are noting is that, if the committee

otherwise arrives at a consensus to view the current situation as a design flaw and wants to fix the problem but is

concerned about code breakage, then the fact that Visual C++ already has the new behavior mitigates that concern

by reducing the amount of code that might be relying on the old behavior.

launch::async. Their code will no longer work correctly (will block in a difficult to debug way, and in

extreme cases could deadlock) if eventually the future they’re handling is attached to a non-ready task

launched by async with launch::async.

If any code does rely on ~future not blocking and is broken if we do not accept the proposed change, the

fix is more difficult: It involves moving the future to the heap or another non-local location and then

managing its cleanup somehow. Note that we cannot tell whether the future is ready and therefore safe

to destroy without polling; the only obvious way to destroy the future without polling would be to waste

a thread, that is, to create a thread that does nothing but wait for the future.

We have no data about how much code is bring written with the expectation that ~future blocks vs. the

expectation that ~future does not block. However, we do know that the first is easier to fix.

~thread Should Join
For similar reasons to the notes above, we are in the peculiar situation where ~thread calls terminate if

not joined. That too is a problem, as noted for example in [2]:

// Example 5

void doSomeWork();

void f1()

{

 std::thread t(doSomeWork);

 ... // no join, no detach

}

What happens?

Your program is terminated.

Instead, exactly one of the following should be true:

 (preferred) either thread owns the resource as an RAII type and therefore ~thread should join

implicitly;

 or it is not and ~thread should do nothing.

We propose the former as this is consistent with the rest of the intent of the thread type, such as

movability.

Proposed Resolutions

1. Require that return-from-main and exit join with outstanding async operations.

2. Remove the requirement that releasing an async operation’s shared state shall block.
#1 guarantees those async operations will join before static destruction begins, while still permitting

programs that desire it to launch new async operations after the end of main during static destruction.

#2 solves the problem articulated in the first part of this paper.

Change 30.6.8/5 as follows:

5 Synchronization: Regardless of the provided policy argument,

— the invocation of async synchronizes with (1.10) the invocation of f. [Note: This

statement applies even when the corresponding future object is moved to another

thread. —end note]; and

— the completion of the function f is sequenced before (1.10) the shared state is made

ready. [Note: f might not be called at all, so its completion might never happen. —end

note]

 If the implementation chooses the launch::async policy,

— a call to a waiting function on an asynchronous return object that shares the shared state

created by this async call shall block until the associated thread has completed, as if

joined (30.3.1.5);

— the associated thread completion synchronizes with (1.10) the return from the first

function that successfully detects the ready status of the shared state or with the return

from the last function that releases the shared state, whichever happens first.; and

— if the invocation of async happens-before (1.10) the return from main or a call to exit,

then the associated thread completion synchronizes with (1.10) the return from main

and every call to exit.

3. Require that ~thread and thread::operator= implicitly join.
This has no effect on programs that do not currently terminate. It just replaces the requirement to call

terminate with the requirement to instead call join.

Change 30.3.1.3 as follows:

 ~thread();

1 If joinable(), calls join() std::terminate(). Otherwise, has no effects. [Note: Either

implicitly detaching or joining a joinable() thread in its destructor could result in difficult to

debug correctness (for detach) or performance (for join) bugs encountered only when an

exception is raised. Thus the programmer must ensure that the destructor is never executed

while the thread is still joinable. —end note]

Change 30.3.1.4 as follows:

 thread& operator=(thread&& x) noexcept;

1 Effects: If joinable(), calls join() std::terminate(). Otherwise,Then assigns the state of x

to *this and sets x to a default constructed state.

2 Postconditions: x.get_id() == id() and get_id() returns the value of x.get_id() prior

to the assignment.

3 Returns: *this

4. Add a “scoped” local_future whose destructor always blocks.
In 30.6, add a new subclause to specify a local_future<T> as follows.

Clone the text of 30.6.7 shared_future<T>, changing all occurrences of shared_future to local_future.

Add moving and copying from shared_future:

 In the class synopsis, add moving and copying from shared_future:
 local_future(const shared_future<R>& rhs);

 local_future(shared_future<R>&& rhs) noexcept;
 local_future& operator=(const shared_future<R>& rhs);

 local_future& operator=(shared_future<R>&&) noexcept;

 At the description of local_future(const local_future& rhs); add also (to share the same

description):
 local_future(const shared_future<R>& rhs);

 At the description of local_future(local_future&& rhs); add also (to share the same description):
 local_future(shared_future<R>&& rhs) noexcept;

 At the description of local_future& operator=(const local_future& rhs); add also (to share the

same description):
 local_future& operator=(const shared_future<R>& rhs);

 At the description of local_future& operator=(local_future&& rhs); add also (to share the same

description):
 local_future& operator=(shared_future<R>&&) noexcept;

Replace the destructor behavior with blocking behavior:

 Change the destructor description to:
 ~local_future();
 Effects:

 — calls wait();

 — releases any shared state (30.6.4);

 — destroys *this.

Acknowledgments
Thanks to Hans Boehm, Peter Dimov, Niklas Gustafsson, Artur Laksberg, and Anthony Williams for their

comments on drafts of this paper and contributing examples and discussion. Any errors or

mischaracterizations or missing examples are our fault, not theirs.

References
[1] H. Sutter. “async and ~future” (WG21 paper N3451, September 23, 2012).

[2] S. Meyers. “Thread Handle Destruction and Behavioral Consistency” (March 25, 2013). Retrieved on

April 10, 2013.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3451.pdf
http://scottmeyers.blogspot.com/2013/03/thread-handle-destruction-and.html

