
Simplifying C++0x Concepts
Author: Doug Gregor
Document number: N3629
Date: 2013-04-09
Project: Programming Language C++, Evolution Working Group
Reply-to: Doug Gregor <doug.gregor@gmail.com>

Introduction
C++0x concepts provided a comprehensive solution for Generic Programming in C++, with an expressive
system for expressing the requirements of templates, complete type checking for both template
definitions and template uses, concept-based overloading, and syntactic remapping via concept maps.
However, concepts failed as a language feature due to its overwhelming complexity, both in the language
and in its use in the library. This paper dissects the reasons for this complexity and makes concrete
suggestions that drastically reduce it while maintaining the essence of concepts. Each suggestion is
accompanied by a discussion of the trade offs involved, for example, what kinds of programs could be
written elegantly with C++0x concepts that become less elegant or impractical after that simplification.

Motivation
Concepts lite is an alternative, simplified form of concepts intended to provide many of the benefits of
concepts without the complexity of the full C++0x design. Unfortunately, concepts lite misses the mark in
several important ways:

• It only attempts to solve the easy half of the type checking problem: concepts lite only provides
checking of template uses; template definitions remain completely unchecked.

• It doesn't solve the problem of spectacularly poor error messages: template instantiation error
messages are poor because the compiler does not know whom to blame when the implicit contract
between template user and author breaks down. Concepts lite lets one specify the contract, but
because only the use side is verified mechanically, instantiation-time errors will still persist with alarming
frequency.

• It does not provide language support for Generic Programming: concepts lite doesn't provide a
constraint language for describing concepts, so the core vocabulary of Generic Programming is absent
from this feature. Programmers must still use the vocabulary of template tricks (traits, specialization,
etc.) to express their ideas.

• It purports to provide a partial solution that will pave the way to full concepts in the future. However,
there is no clear path to that solution, and the authors admit that such a solution will likely require
completely new syntax for describing constraints.

Type-Checking C++0x Concepts
Much of the implementation complexity of C++0x concepts comes from the type checking model. Given a
constrained template such as the following

template<typename T>
requires LessThanComparable<T>
const T& min(const T &x, const T &y) {
 return y < x? y : x;
}

mailto:doug.gregor@gmail.com
mailto:doug.gregor@gmail.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3580.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3580.pdf

Where LessThanComparable is defined as the following concept:

concept LessThanComparable<T> {
 bool operator<(const T &x, const T &y);
}

The implementation performs a complete type check of the template definition. The only operations the
template definition may use are those specified by the concept (e.g., operator< on Ts), generic
operations in the context whose parameters are a subset of the template’s requirements, and built-in
operations (e.g., ?:). Anything else is a violation of the stated requirements
(LessThanComparable<T>), and will be diagnosed as an error. The result of a successful type check
transforms the function body to use calls into the concept itself, e.g.,

template<typename T>
requires LessThanComparable<T>
const T& min(const T &x, const T &y) {
 return LessThanComparable<T>::operator<(y, x)? y : x;
}

On the caller side, the user must provide a concept map that specifies how the template argument (say,
int) provides each of the operations of each required concept.1 For example,
LessThanComparable<int>:

concept_map LessThanComparable<int> {
 bool operator<(const int &x, const int &y) {
 return x < y; // uses built-in operator <
 }
}

The compiler checks both the presence of the required concept maps and that each concept map
satisfies all of the requirements of the corresponding concept. Any errors here cause either the use of the
template or the definition of the concept map, respectively, to be rejected.

The final piece of the type checking puzzle is the template instantiation process. During instantiation,
references into a concept requirement (e.g., LessThanComparable<T>::operator<) are replaced
with references to a specific function in the corresponding concept map
(LessThanComparable<T>::operator<). Because the only operations allowed in the template
definition are those from the concept requirements, and concept maps are guaranteed to provide the
same function signatures as the concepts they satisfy, template instantiation cannot fail.2

The guarantee that template instantiations will succeed is key to the usability of concepts: errors are
diagnosed in the code that erred, because both sides of the template user/author contract are enforced
by the compiler. Moreover, writing a correct template definition actually becomes easier, because the
compiler helps you make sure you get all of the syntax, types, and requirements correct.

1 That most concept maps are implicitly generated by the compiler, or partially generated, is
irrelevant to the type checking model. It is, however, extremely important for the usability of
concepts.

2 There are a few intentional holes in this model for class template (partial) specializations,
instantiation-time overload resolution, and the generally-disliked late_check, but the core
model provides the instantiation-safety guarantee.

The Simplified Model
The proposed simplified C++0x concepts model relies on the following five simplifications.

#1: Eliminate concept maps
Concept maps are a powerful feature, allowing one to make a type satisfy the requirements of a concept
without changing the concept at all. For example, consider a simple Stack concept:

concept Stack {
 typename value_type;

 void Stack::push(const value_type &value);
 void Stack::pop();
 void Stack::empty() const;
 const value_type &Stack::top() const;
}

One can fairly easily write a type that conforms to the Stack concept (e.g., std::stack). However,
concept maps allow one to make an existing container (here we use std::vector) into a Stack
without having to introduce an adaptor type like std::stack:

template<typename T>
concept_map Stack<std::vector<T>> {
 typedef T value_type;

 void std::vector<T>::push(const T &value) { push_back(value); }
 void std::vector<T>::pop() { pop_back(); }
 // std::vector<T>::empty() is already suitable
 const T &std::vector<T>::top() const { return back(); }
}

The interface of std::vector is unchanged by the addition of this concept map, except that a
std::vector can now be used with any template that expects a Stack: no adaptor required. If we had
a BackInsertionConcept concept, as follows, this concept map could be further generalized:

concept BackInsertionContainer<C> {
 typename value_type;

 void C::push_back(const value_type &);
 void C::pop_back(const value_type &);

 value_type &C::back();
 const value_type &C::back() const;

 bool C::empty() const;
}

template<BackInsertionContainer C>
concept_map Stack<C> {
 typedef BackInsertionContainer<T>::value_type value_type;

 void C::push(const T &value) { push_back(value); }
 void C::pop() { pop_back(); }
 // C::empty() is already suitable
 const T &C::top() const { return back(); }

}

While this is a powerful feature for composing generic libraries, it also greatly increases the surface
complexity of concepts: it is no longer possible to think of concepts as “just” being more type checking for
templates. Instead, one must always consider that concept maps could have some non-trivial mapping,
which might make code harder to comprehend. Moreover, the presence of concept maps complicates the
interaction with unconstrained templates, because the syntactic mapping in a concept map would get
“dropped” when a constrained template called into an unconstrained template.

Eliminating the syntactic remapping ability of concept maps simplifies the user model for concepts
considerably, especially reducing its surface complexity. It also simplifies the interaction with
unconstrained templates. However, it does not (by itself) make implementing concepts all that much
simpler, because removing concept maps does not actually change the type checking model.

#2: Type checking with archetype instantiation
The type checking model described in the third section, while fairly easy to reason about, is particularly
hard to implement in today’s C++ compilers. The basic problem is that C++ compilers tend not to type-
check template definitions very thoroughly: some skip validation of the template definition entirely, opting
to cache the preprocessed tokens to be re-parsed at template instantiation time, while others perform a
partial type-check to produce an Abstract Syntax Tree for the template that will be realized with each
instantiation. Either way, transitioning existing compilers from their existing template-parsing model to one
that fully type-checks every aspect of a constrained template definition (while tracking how each operation
maps back to a concept requirement) is a huge undertaking. Experience with the ConceptGCC prototype
showed that while most concepts features are fairly straightforward (including checking concept maps,
checking the use of constrained templates, concept-based overloading, refinement, etc.), the type-
checking of template definitions was an order of magnitude more complicated than all of the others
combined.

Instead, I propose a simpler model of type checking, based on David Abrahams’ use of archetypes to
check polymorphic lambdas. While this model does not guarantee that instantiations will not fail, it covers
nearly all cases programmers are likely to encounter. In this model, the type check of a template definition
simply performs an instantiation with a special set of template arguments that are archetypes. An
archetype is a type that exhibits the minimal set of operations required of a type parameter. Returning to
our min example, the archetype T’ for T might look like this:

class T’ {
 T’() = delete;
 T’(const T’ &) = delete;
 T’(T’ &&) = delete;
 T’ &operator=(const T’ &) = delete;
 T’ &operator=(T’ &&) = delete;
 ~T’() = delete;
 void operator&() const = delete;

public:
 // From LessThanComparable<T>:
 friend bool operator<(const T’ &x, const T’ &y);
};

Note that all of the implicitly-generated special member functions have been suppressed, operator&
has been deleted, etc. This archetype is the “worst case” template argument for min, and if min<T’> is a
well-formed instantiation, the min definition type-checks. Let’s consider a slightly modified min:

http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/
http://cpp-next.com/archive/2011/12/a-breakthrough-for-concepts/

template<LessThanComparable T>
T min2(T x, T y) {
 return y < x? y : x;
}

The archetype is the same, but instantiating min2<T’> will result in an error because T’ has a deleted
copy constructor. Adding CopyConstructible and Destructible requirements changes the
archetype (call it T’’) to the following:

class T’’ {
 T’’() = delete;
 T’’ &operator=(const T’’ &) = delete;
 T’’ &operator=(T’’ &&) = delete;
 void operator&() const = delete;

public:
 // From CopyConstructible<T>:
 T’’(const T’ &);
 // From Destructible<T>:
 ~T’’();
 // From LessThanComparable<T>:
 friend bool operator<(const T’’ &x, const T’’ &y);
};

Instantiating min2<T’’> would then succeed.

The main advantage of this approach is simplicity: constructing a set of archetypes based on the
requirements of a constrained template is straightforward, and instantiation with an archetype is identical
to instantiation with any other type (except perhaps for some customization of diagnostics).3 Specifically,
implementing this model of type checking requires no changes to the way in which a compiler implements
parsing of template definitions, nor any other major structural changes.

The downside of this simplified model is that admits errors into the template instantiation process. For
example, consider a simple find_if algorithm:

template<InputIterator Iter, typename P>
requires Predicate<P, InputIterator<Iter>::value_type>
Iter find_if(Iter first, Iter last, P pred) {
 while(first != last && !pred(*first))
 ++first;
 return first;
}

Next, let’s consider an “evil” predicate with an evil bool-like type that has an overloaded operator:

struct EvilBool {
 operator bool() const;
 EvilBool operator!() const;
 friend void operator &&(bool, EvilBool);
};

3 The Boost Concept Check library provides hand-written archetypes that one can use
to test one’s own templates using similar techniques. However, writing archetypes by
hand is extremely tedious and quite error-prone.

http://www.boost.org/libs/concept_check/
http://www.boost.org/libs/concept_check/

template<typename T>
struct EvilPred {
 EvilBool operator()(const T &value) const;
};

Instantiating an unconstrained find_if with EvilPred<some_value_type> will obviously cause an
instantiation-time error, because EvilBool’s operator== has a void return type. It will also break the
simplified type checking model described here, because the archetypes don’t account for this behavior,
and template instantiation remains the same as in today’s unconstrained templates.

The C++0x concepts type checking model makes this code work predictably, because every operation is
rewritten into an operation on a concept requirement:

template<InputIterator Iter, typename P>
requires Predicate<P, InputIterator<Iter>::value_type>
Iter find_if(Iter first, Iter last, P pred) {
 while(InputIterator<Iter>::operator!=(first, last) &&
 !Predicate<P, InputIterator<Iter>::value_type>
 ::operator()(InputIterator<Iter>::operator*(first)))
 InputIterator<Iter>::operator++(first);
 return first;
}

Because Predicate’s operator() is specified to return a bool, the rewritten call to operator() is
guaranteed to return a bool, so EvilBool’s operator&& will not be picked at instantiation time,
eliminating the problem.

The extent to which potential problems of this nature are a problems in practice is unknown. Some
standard library implementations have changed their find_if definitions (as well as other templates) to
avoid these problems, although it is unclear whether such changes were motivated by actual, reasonable
user code.

#3: Eliminate concept refinement semantics
C++0x concepts provided both refinement and nested requirements to compose concepts together.
Refinement is meant for hierarchical relationships, where one concept “is-a” another concept. For
example, a random access iterator is-a bidirectional iterator:

concept RandomAccessIterator<typename Iter>
 : BidirectionalIterator<Iter> { }

Nested requirements are meant more for requirements on associated types. For example, the iterator
type of a container must be a ForwardIterator with the same value_type as the container.

concept Container<typename C> {
 typename iterator;
 typename value_type;
 requires ForwardIterator<iterator>;
 requires SameType<ForwardIterator<iterator>::value_type,
 value_type>;
}

Despite the intended differences in usage, the two features are quite similar semantically... but not
identical. Specifically, refinement requires that identical requirements that occur in multiple concepts
within the refinement hierarchy have identical implementations in their concept maps (to support is-a).

However, this distinction disappears when concept maps can no longer remap syntax, per simplification
#1. As such, there is no cost to eliminating the semantic differences between concept refinement and
semantics. One could also eliminate the concept refinement syntax (because nested requirements are
more general), which would reduce surface complexity somewhat but would not allow concept authors to
express the notion of a concept hierarchy directly.

#4: Eliminate axioms
Axioms in C++0x concepts are a way to describe the semantics of concepts. For example, the
CopyConstructible requirement would have an axiom specifying that the result of copying a value is
the same as the original value:

concept CopyConstructible<typename T> {
 T::T(const T&);

 axiom CopyResult(T x) {
 T(x) == x;
 }
}

Theoretically, one could use axioms to implement various compiler optimizations (e.g., copy propagation
for class types) and automated testing tools (e.g., randomly test whether values of a given type meet the
axioms). However, such tools are a long way off, and without having those tools, it is likely that the axiom
language provided by C++0x concepts will not be sufficient to support them. Given that, the downside of
removing axioms seems fairly small.

#5: Make concepts implicit by default
By default, C++0x concepts are explicit, requiring one to (by default) write a concept map to state that a
particular type meets the (syntactic and semantic) requirements of concepts. By removing syntactic
remapping in concept maps (simplification #1) and removing any way to express semantics in concepts
(simplification #4), we eliminate much of the motivation for this choice. Swapping the defaults (so
concept allows implicit conformance and explicit concept requires explicit conformance) reduces
the surface complexity, while still retaining the ability to deal with problematic cases (such as the syntactic
collision between InputIterator and ForwardIterator).

Conclusion
C++0x concepts failed because of their complexity, but inside that large feature is a kernel of functionality
that can make templates easier to write and use, and provide first-class support for the Generic
Programming paradigm in C++. This paper proposes to strip out the inessential parts of C++0x concepts
and replace the type-checking model with one that is less comprehensive but easily implementable in
today’s C++ compilers, drastically simplifying both the surface complexity and the implementation
complexity of concepts. The resulting concept system maintains the core functionality of C++0x concepts,
including great support for the Generic Programming paradigm, type checking for both template uses and
definitions, and greatly improved error messages.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1798.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1798.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1798.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1798.html

