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Introduction
C++0x concepts provided a comprehensive solution for Generic Programming in C++, with an expressive 
system for expressing the requirements of templates, complete type checking for both template 
definitions and template uses, concept-based overloading, and syntactic remapping via concept maps. 
However, concepts failed as a language feature due to its overwhelming complexity, both in the language 
and in its use in the library. This paper dissects the reasons for this complexity and makes concrete 
suggestions that drastically reduce it while maintaining the essence of concepts. Each suggestion is 
accompanied by a discussion of the trade offs involved, for example, what kinds of programs could be 
written elegantly with C++0x concepts that become less elegant or impractical after that simplification. 

Motivation
Concepts lite is an alternative, simplified form of concepts intended to provide many of the benefits of 
concepts without the complexity of the full C++0x design. Unfortunately, concepts lite misses the mark in 
several important ways:

• It only attempts to solve the easy half of the type checking problem: concepts lite only provides
checking of template uses; template definitions remain completely unchecked.

• It doesn't solve the problem of spectacularly poor error messages: template instantiation error
messages are poor because the compiler does not know whom to blame when the implicit contract
between template user and author breaks down. Concepts lite lets one specify the contract, but
because only the use side is verified mechanically, instantiation-time errors will still persist with alarming
frequency.

• It does not provide language support for Generic Programming: concepts lite doesn't provide a
constraint language for describing concepts, so the core vocabulary of Generic Programming is absent
from this feature. Programmers must still use the vocabulary of template tricks (traits, specialization,
etc.) to express their ideas.

• It purports to provide a partial solution that will pave the way to full concepts in the future. However,
there is no clear path to that solution, and the authors admit that such a solution will likely require
completely new syntax for describing constraints.

Type-Checking C++0x Concepts
Much of the implementation complexity of C++0x concepts comes from the type checking model. Given a 
constrained template such as the following

template<typename T>
requires LessThanComparable<T>
const T& min(const T &x, const T &y) {
  return y < x? y : x;
}
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Where LessThanComparable is defined as the following concept:

concept LessThanComparable<T> {
  bool operator<(const T &x, const T &y);
}

The implementation performs a complete type check of the template definition. The only operations the 
template definition may use are those specified by the concept (e.g., operator< on Ts), generic 
operations in the context whose parameters are a subset of the template’s requirements, and built-in 
operations (e.g., ?:). Anything else is a violation of the stated requirements 
(LessThanComparable<T>), and will be diagnosed as an error. The result of a successful type check 
transforms the function body to use calls into the concept itself, e.g.,

template<typename T>
requires LessThanComparable<T>
const T& min(const T &x, const T &y) {
  return LessThanComparable<T>::operator<(y, x)? y : x;
}

On the caller side, the user must provide a concept map that specifies how the template argument (say, 
int) provides each of the operations of each required concept.1 For example, 
LessThanComparable<int>:

concept_map LessThanComparable<int> {
  bool operator<(const int &x, const int &y) {
    return x < y; // uses built-in operator <
  }
}

The compiler checks both the presence of the required concept maps and that each concept map 
satisfies all of the requirements of the corresponding concept. Any errors here cause either the use of the 
template or the definition of the concept map, respectively, to be rejected.

The final piece of the type checking puzzle is the template instantiation process. During instantiation, 
references into a concept requirement (e.g., LessThanComparable<T>::operator<) are replaced 
with references to a specific function in the corresponding concept map 
(LessThanComparable<T>::operator<). Because the only operations allowed in the template 
definition are those from the concept requirements, and concept maps are guaranteed to provide the 
same function signatures as the concepts they satisfy, template instantiation cannot fail.2 

The guarantee that template instantiations will succeed is key to the usability of concepts: errors are 
diagnosed in the code that erred, because both sides of the template user/author contract are enforced 
by the compiler. Moreover, writing a correct template definition actually becomes easier, because the 
compiler helps you make sure you get all of the syntax, types, and requirements correct. 

1 That most concept maps are implicitly generated by the compiler, or partially generated, is 
irrelevant to the type checking model. It is, however, extremely important for the usability of 
concepts.  

2 There are a few intentional holes in this model for class template (partial) specializations, 
instantiation-time overload resolution, and the generally-disliked late_check, but the core 
model provides the instantiation-safety guarantee. 



The Simplified Model
The proposed simplified C++0x concepts model relies on the following five simplifications. 

#1: Eliminate concept maps
Concept maps are a powerful feature, allowing one to make a type satisfy the requirements of a concept 
without changing the concept at all. For example, consider a simple Stack concept:

concept Stack {
  typename value_type;
  
  void Stack::push(const value_type &value);
  void Stack::pop();
  void Stack::empty() const;
  const value_type &Stack::top() const;
}

One can fairly easily write a type that conforms to the Stack concept (e.g., std::stack). However, 
concept maps allow one to make an existing container (here we use std::vector)  into a Stack 
without having to introduce an adaptor type like std::stack:

template<typename T>
concept_map Stack<std::vector<T>> {
  typedef T value_type;

  void std::vector<T>::push(const T &value) { push_back(value); }
  void std::vector<T>::pop() { pop_back(); }
  // std::vector<T>::empty() is already suitable
  const T &std::vector<T>::top() const { return back(); }
}

The interface of std::vector is unchanged by the addition of this concept map, except that a 
std::vector can now be used with any template that expects a Stack: no adaptor required. If we had 
a BackInsertionConcept concept, as follows, this concept map could be further generalized:

concept BackInsertionContainer<C> {
  typename value_type;

  void C::push_back(const value_type &);
  void C::pop_back(const value_type &);

  value_type &C::back();
  const value_type &C::back() const;

  bool C::empty() const;
}

template<BackInsertionContainer C>
concept_map Stack<C> {
  typedef BackInsertionContainer<T>::value_type value_type;

  void C::push(const T &value) { push_back(value); }
  void C::pop() { pop_back(); }
  // C::empty() is already suitable
  const T &C::top() const { return back(); }



}

While this is a powerful feature for composing generic libraries, it also greatly increases the surface 
complexity of concepts: it is no longer possible to think of concepts as “just” being more type checking for 
templates. Instead, one must always consider that concept maps could have some non-trivial mapping, 
which might make code harder to comprehend. Moreover, the presence of concept maps complicates the 
interaction with unconstrained templates, because the syntactic mapping in a concept map would get 
“dropped” when a constrained template called into an unconstrained template.

Eliminating the syntactic remapping ability of concept maps simplifies the user model for concepts 
considerably, especially reducing its surface complexity. It also simplifies the interaction with 
unconstrained templates. However, it does not (by itself) make implementing concepts all that much 
simpler, because removing concept maps does not actually change the type checking model.

#2: Type checking with archetype instantiation
The type checking model described in the third section, while fairly easy to reason about, is particularly 
hard to implement in today’s C++ compilers. The basic problem is that C++ compilers tend not to type-
check template definitions very thoroughly: some skip validation of the template definition entirely, opting 
to cache the preprocessed tokens to be re-parsed at template instantiation time, while others perform a 
partial type-check to produce an Abstract Syntax Tree for the template that will be realized with each 
instantiation. Either way, transitioning existing compilers from their existing template-parsing model to one 
that fully type-checks every aspect of a constrained template definition (while tracking how each operation 
maps back to a concept requirement) is a huge undertaking. Experience with the ConceptGCC prototype 
showed that while most concepts features are fairly straightforward (including checking concept maps, 
checking the use of constrained templates, concept-based overloading, refinement, etc.), the type-
checking of template definitions was an order of magnitude more complicated than all of the others 
combined.

Instead, I propose a simpler model of type checking, based on David Abrahams’ use of archetypes to 
check polymorphic lambdas. While this model does not guarantee that instantiations will not fail, it covers 
nearly all cases programmers are likely to encounter. In this model, the type check of a template definition 
simply performs an instantiation with a special set of template arguments that are archetypes. An 
archetype is a type that exhibits the minimal set of operations required of a type parameter. Returning to 
our min example, the archetype T’ for T might look like this:

class T’ {
   T’() = delete;
   T’(const T’ &) = delete;
   T’(T’ &&) = delete;
   T’ &operator=(const T’ &) = delete;
   T’ &operator=(T’ &&) = delete;
   ~T’() = delete;
  void operator&() const = delete;

public:
  // From LessThanComparable<T>:
  friend bool operator<(const T’ &x, const T’ &y); 
};

Note that all of the implicitly-generated special member functions have been suppressed, operator& 
has been deleted, etc. This archetype is the “worst case” template argument for min, and if min<T’> is a 
well-formed instantiation, the min definition type-checks. Let’s consider a slightly modified min:
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template<LessThanComparable T>
T min2(T x, T y) {
  return y < x? y : x;
}

The archetype is the same, but instantiating min2<T’> will result in an error because T’ has a deleted 
copy constructor. Adding CopyConstructible and Destructible requirements changes the 
archetype (call it T’’) to the following:

class T’’ {
   T’’() = delete;
   T’’ &operator=(const T’’ &) = delete;
   T’’ &operator=(T’’ &&) = delete;
  void operator&() const = delete;

public:
  // From CopyConstructible<T>:
  T’’(const T’ &);
  // From Destructible<T>:
  ~T’’();
  // From LessThanComparable<T>:
  friend bool operator<(const T’’ &x, const T’’ &y); 
};

Instantiating min2<T’’> would then succeed.

The main advantage of this approach is simplicity: constructing a set of archetypes based on the 
requirements of a constrained template is straightforward, and instantiation with an archetype is identical 
to instantiation with any other type (except perhaps for some customization of diagnostics).3 Specifically, 
implementing this model of type checking requires no changes to the way in which a compiler implements 
parsing of template definitions, nor any other major structural changes.

The downside of this simplified model is that admits errors into the template instantiation process. For 
example, consider a simple find_if algorithm:

template<InputIterator Iter, typename P>
requires Predicate<P, InputIterator<Iter>::value_type>
Iter find_if(Iter first, Iter last, P pred) {
  while(first != last && !pred(*first))
    ++first;
  return first;
}

Next, let’s consider an “evil” predicate with an evil bool-like type that has an overloaded operator:

struct EvilBool {
  operator bool() const;
  EvilBool operator!() const;
  friend void operator &&(bool, EvilBool);
};

3 The Boost Concept Check library provides hand-written archetypes that one can use 
to test one’s own templates using similar techniques. However, writing archetypes by 
hand is extremely tedious and quite error-prone.
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template<typename T>
struct EvilPred {
  EvilBool operator()(const T &value) const;
};

Instantiating an unconstrained find_if with EvilPred<some_value_type> will obviously cause an 
instantiation-time error, because EvilBool’s operator== has a void return type. It will also break the 
simplified type checking model described here, because the archetypes don’t account for this behavior, 
and template instantiation remains the same as in today’s unconstrained templates.

The C++0x concepts type checking model makes this code work predictably, because every operation is 
rewritten into an operation on a concept requirement:

template<InputIterator Iter, typename P>
requires Predicate<P, InputIterator<Iter>::value_type>
Iter find_if(Iter first, Iter last, P pred) {
  while(InputIterator<Iter>::operator!=(first, last) && 
        !Predicate<P, InputIterator<Iter>::value_type>
           ::operator()(InputIterator<Iter>::operator*(first)))
    InputIterator<Iter>::operator++(first);
  return first;
}

Because Predicate’s operator() is specified to return a bool, the rewritten call to operator() is 
guaranteed to return a bool, so EvilBool’s operator&& will not be picked at instantiation time, 
eliminating the problem.

The extent to which potential problems of this nature are a problems in practice is unknown. Some 
standard library implementations have changed their find_if definitions (as well as other templates) to 
avoid these problems, although it is unclear whether such changes were motivated by actual, reasonable 
user code.

#3: Eliminate concept refinement semantics
C++0x concepts provided both refinement and nested requirements to compose concepts together. 
Refinement is meant for hierarchical relationships, where one concept “is-a” another concept. For 
example, a random access iterator is-a bidirectional iterator:

concept RandomAccessIterator<typename Iter>
  : BidirectionalIterator<Iter> { }

Nested requirements are meant more for requirements on associated types. For example, the iterator 
type of a container must be a ForwardIterator with the same value_type as the container.

concept Container<typename C> {
  typename iterator;
  typename value_type;
  requires ForwardIterator<iterator>;
  requires SameType<ForwardIterator<iterator>::value_type,
                    value_type>;
}

Despite the intended differences in usage, the two features are quite similar semantically... but not 
identical. Specifically, refinement requires that identical requirements that occur in multiple concepts 
within the refinement hierarchy have identical implementations in their concept maps (to support is-a). 



However, this distinction disappears when concept maps can no longer remap syntax, per simplification 
#1. As such, there is no cost to eliminating the semantic differences between concept refinement and 
semantics. One could also eliminate the concept refinement syntax (because nested requirements are 
more general), which would reduce surface complexity somewhat but would not allow concept authors to 
express the notion of a concept hierarchy directly.

#4: Eliminate axioms
Axioms in C++0x concepts are a way to describe the semantics of concepts. For example, the 
CopyConstructible requirement would have an axiom specifying that the result of copying a value is 
the same as the original value:

concept CopyConstructible<typename T> {
  T::T(const T&);

  axiom CopyResult(T x) {
    T(x) == x;
  }
}

Theoretically, one could use axioms to implement various compiler optimizations (e.g., copy propagation 
for class types) and automated testing tools (e.g., randomly test whether values of a given type meet the 
axioms). However, such tools are a long way off, and without having those tools, it is likely that the axiom 
language provided by C++0x concepts will not be sufficient to support them. Given that, the downside of 
removing axioms seems fairly small.

#5: Make concepts implicit by default
By default, C++0x concepts are explicit, requiring one to (by default) write a concept map to state that a 
particular type meets the (syntactic and semantic) requirements of concepts. By removing syntactic 
remapping in concept maps (simplification #1) and removing any way to express semantics in concepts 
(simplification #4), we eliminate much of the motivation for this choice. Swapping the defaults (so 
concept allows implicit conformance and explicit concept requires explicit conformance) reduces 
the surface complexity, while still retaining the ability to deal with problematic cases (such as the syntactic 
collision between InputIterator and ForwardIterator).

Conclusion
C++0x concepts failed because of their complexity, but inside that large feature is a kernel of functionality 
that can make templates easier to write and use, and provide first-class support for the Generic 
Programming paradigm in C++. This paper proposes to strip out the inessential parts of C++0x concepts 
and replace the type-checking model with one that is less comprehensive but easily implementable in 
today’s C++ compilers, drastically simplifying both the surface complexity and the implementation 
complexity of concepts. The resulting concept system maintains the core functionality of C++0x concepts, 
including great support for the Generic Programming paradigm, type checking for both template uses and 
definitions, and greatly improved error messages.
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