
Document Number: N3614

Date: 2013-03-11

Authors: Herb Sutter (hsutter@microsoft.com)

unwinding_exception

Motivation
std::uncaught_exception is known to be “nearly useful” in many situations, such as when

implementing an Alexandrescu-style ScopeGuard. [1]

In particular, when called in a destructor, what C++ programmers often expect and what is basically true

is: “uncaught_exception returns true iff this destructor is being called during stack unwinding.”

However, as documented at least since 1998 in Guru of the Week #47 [2], it means code that is

transitively called from a destructor that could itself be invoked during stack unwinding cannot

correctly detect whether it itself is actually being called as part of unwinding. Once you’re in unwinding

of any exception, to uncaught_exception everything looks like unwinding, even if there is more than

one active exception.

Example 1: GotW #47
Consider this code taken from [2], which shows an early special case of ScopeGuard (ScopeGuard is

described further in the following section):

 Transaction::~Transaction() {
 if(uncaught_exception()) // unreliable, ONLY if Transaction could be
 Rollback(); // used from within a dtor (transitively!)
 }

 void LogStuff() {
 Transaction t(/*...*/);
 // :::
 // do work
 // :::
 } // oops, if U::~U() was being called as part of unwinding another exception
 // uncaught_exception will “erroneously” return true and t will not commit

 U::~U() {
 /* deep call tree that eventually calls LogStuff() */
 }

 // for example:
 int main() {
 try {
 U u;
 throw 1;
 } // U::~U() invoked here
 catch(...) {

mailto:hsutter@microsoft.com

 }
 }

The key is that, inside ~Transaction, there is no way to tell whether ~Transaction is being called as

part of stack unwinding. Asking uncaught_exception() will only say whether some unwinding is in

progress, not whether ~Transaction is being called to perform unwinding.

Example 2: ScopeGuard
Alexandrescu’s ScopeGuard [1, 3] is a major motivating example, where the point is to execute code
upon a scope’s:

a) termination in all cases == cleanup à la finally;
b) successful termination == celebration; or
c) failure termination == rollback-style compensating “undo” code.

However, currently there is no way to automatically distinguish between (b) and (c) in standard C++
without requiring the user to explicitly signal successful scope completion by calling a Dismiss function
on the guard object, which makes the technique useful but somewhere between tedious and fragile.
Annoyingly, that Dismiss call is also usually right near where the failure recovery code would have been
written without ScopeGuard, thus not relieving the programmer of having to think about the placement
of success/failure determination and compensating actions shouldn’t/should occur.

For example, adapted from [1]:

void User::AddFriend(User& newFriend)
{
 friends_.push_back(&newFriend);
 ScopeGuard guard([&]{ friends_.pop_back(); });
 :::
 pDB_->AddFriend(GetName(), newFriend.GetName());
 :::
 guard.Dismiss();
}

Nevertheless, despite that current drawback, as demonstrated for example in [4], ScopeGuard is known
to be useful in practice in C++ programs. Further, it leads to simpler code, as shown by the following
example from D…

Example 3: D scope statement
The following side-by-side code example (drawn from [3]) is written in the D programming language,
which has language support for ScopeGuard in the form of the scope statement. Note the simplification
achieved by the D scope(exit) and scope(failure) statements:

Proposal
This paper does not propose adding language support for D-style scope statements.

Instead, it proposes a new function std::unwinding_exception that returns true iff we are executing
a destructor of a stack-based object that is being called to perform stack unwinding.

This enables ScopeGuard and similar uses to automatically and reliably distinguish between success and
failure in standard C++ without requiring the user to explicitly signal success or failure by calling a
Dismiss function on the guard object. This makes the technique even more useful and less tedious. The
adapted example from [1] would be:

void User::AddFriend(User& newFriend)
{
 friends_.push_back(&newFriend);
 ScopeGuard guard([&]{ friends_.pop_back(); });
 :::
 pDB_->AddFriend(GetName(), newFriend.GetName());
 :::
 // no need to call guard.Dismiss();

}

This code would now work the same way whether transitively invoked from a destructor or not.

Proposed Wording
In clause 15.5, insert:

15.5.x The std::unwinding_exception() function [except.unwinding]

1 The function bool std::unwinding_exception() returns true if called inside a destructor

body and the destructor is being invoked to perform stack unwinding, and returns false

otherwise.

Acknowledgments
Thanks to Andrei Alexandrescu for prompting this paper and providing examples.

References
[1] A. Alexandrescu. “Change the Way You Write Exception-Safe Code – Forever” (Dr. Dobb’s, December

2000).

[2] H. Sutter. “Guru of the Week #47: Uncaught Exceptions” (November 1998).

[3] A. Alexandrescu. “Three Unlikely Successful Features of D” (video) (Lang.NEXT, April 2012).

[4] K. Rudolph et al. “Does ScopeGuard use really lead to better code?” (StackOverflow, September

2008).

http://www.drdobbs.com/cpp/generic-change-the-way-you-write-excepti/184403758
http://www.gotw.ca/gotw/047.htm
http://ecn.channel9.msdn.com/events/LangNEXT2012/AndreiLangNext.pdf
http://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2012/Three-Unlikely-Successful-Features-of-D
http://stackoverflow.com/questions/48647/does-scopeguard-use-really-lead-to-better-code

