
Summary of progress since Portland towards Transactional Language Constructs for C++ (N3589)

Document Number: N3589
Date: 2013-03-15
Authors: Hans Boehm, HP, hans.boehm@hp.com

Justin Gottschlich, Intel, justin.e.gottschlich@intel.com
Victor Luchangco, Oracle, victor.luchangco@oracle.com
Maged Michael, IBM, maged.michael@acm.org
Mark Moir, Oracle, mark.moir@oracle.com
Torvald Riegel, Red Hat, triegel@redhat.com
Michael Scott, University of Rochester, scott@cs.rochester.edu
Michael Spear, Lehigh University, spear@cse.lehigh.edu
Tatiana Shpeisman, Intel, tatiana.shpeisman@intel.com
Michael Wong, IBM, michaelw@ca.ibm.com

Project: Programming Language C++, EWG
Reply to: victor.luchangco@oracle.com
Revision: 1

Summary of Progress Since Portland towards
Transactional Language Constructs for C++

Introduction

This document summarizes progress that has been made by the SG5 Transactional Memory Working
Group since the Portland meeting and is a follow-on to N3341 Transactional Language Constructs for
C++ [4] presented in Kona in 2012. Since then, Transactional Memory was presented in May 2012 in a
special advanced Parallel Summit hosted by Microsoft at which point, it was agreed by all present to form
SG5 Transactional Memory Subgroup for the purpose of future C++ standardization of Transactional
Memory. This subgroup has been meeting by telecon twice monthly making steady progress, held a 3
days SG5 face-2-face meeting at Portland (mostly in Vietnamese restaurants) and presented status report
at the full plenary.

We restrict attention in this document to issues that we have agreed upon for the next version of the
specification, which we are preparing. Other accompanying documents are:

• Draft Specification of Transactional Language Constructs for C++(v1.1) [1]
• Summary of discussions on explicit cancellation (N3591) [2]
• Alternative proposal for cancellation and exceptions (N3592) [3]

1. Necessity of cancellability

In hallway (and Vietnamese restaurant!) conversations in Portland, there was a lot of discussion about
whether trivial implementations that simply use a global lock to implement transactions and use Hardware
Transactional Memory (HTM) to address the resulting scalability bottleneck using lock elision would be
viable. The conclusion is that this is not the case (for a summary, see the email by Mark Moir titled
“Atomic transactions should be cancelable” from 27 Oct 2012 on the reflector). We have agreed on this
point, even though some implementors may use the above-described simple implementation for limited
support of a subset of the desired features in the short term.

mailto:triegel@redhat.com�

Summary of progress since Portland towards Transactional Language Constructs for C++ (N3589)

2. Relaxing transaction_safe requirements

In Portland, we reported that we have received feedback to the effect that the need to apply the
[[transaction_safe]] attribute1

 to functions intended for use in atomic transactions, and to make
all declarations and definitions of such functions consistently do so, was too much burden on
programmers. In particular, they found it frustrating that they had to make so much effort before they
could even compile and run their program during development and testing.

To address this issue, we have decided to move to a “safe by default” model, in which a function is
assumed to be safe for use in atomic transactions unless i) there is unsafe code in the function, or ii) the
function is explicitly labeled [[transaction_unsafe]].

While the compiler can determine whether there is unsafe code directly in a given function, it cannot
always make this determination for all functions called directly or indirectly from it. This is the reason
that previous version of the specification [1] have insisted that the [[transaction_safe]] attribute
be consistently applied to all declarations and definitions of a function intended for use in atomic
transactions: it allows the compiler to statically ensure that all functions called within an atomic
transaction do not contain unsafe code, even if some of those functions are in different compilation units.

In the “safe by default” model, the compiler assumes that any function that is called---directly or
indirectly---from a given function does not contain any unsafe code unless there is an indication to the
contrary. The compiler and linker cooperate to ensure that all assumptions are validated before a program
can be run. In particular, they ensure that no function that can be called from within an atomic transaction
contains any unsafe code. (We explain below how this restriction can be relaxed via the
__forbidden_in_atomic construct.)

This approach makes it unnecessary for the compiler to be told exactly which functions are thought to be
safe for use in atomic transactions, and thus eliminates the need for consistent labeling in every
declaration and definition of every function. Consider this simple example:

file1.cpp

void foo() {
 <safe stuff only>
 bar();
}

void main() {
 __transaction_atomic {
 foo();
 }
}

file2.cpp

1 We recognize that attributes may not be the best syntax for the proposed features. However, to avoid confusion,
we retain this syntax in our current discussions.

Summary of progress since Portland towards Transactional Language Constructs for C++ (N3589)

void bar() {
 <unsafe stuff here>
}

Although the transaction can call a function (bar) that contains unsafe code, the compiler does not issue
an error when compiling either of these files, because there is no way for it to know when compiling
file1.cpp that bar() is not transaction-safe (so it assumes bar is transaction-safe), and there is no way for
it to know when compiling file2.cpp that bar() is intended for use in a transaction.

However, the linker will have all information available to it to determine that foo is called inside a
transaction, foo calls bar, and bar is not transaction-safe. Thus, the linker can report an error in this
case, and thus we ensure that the program will not run if unsafe code can be executed within an atomic
transaction.

While this approach imposes much less burden on programmers, it does have some potential downsides:
inflexibility, code bloat, increased compilation time, and the use of functions in atomic transactions that
are not intended for that purpose (and may not be suitable for it in the future).

The inflexibility mentioned above arises from the restriction that a function intended for use in an atomic
transaction cannot include any unsafe code. As described so far, this restriction applies even to functions
that would never actually execute the unsafe code when called from within an atomic transaction. To
address this issue, we allow programmers to explicitly indicate that a given block of code is not intended
to be executed within an atomic transaction; this is indicated using the __forbidden_in_atomic
keyword to demarcate such a block of code. A function that contains no unsafe code except within such a
block is deemed to be safe for use in atomic transactions. If the belief expressed by the programmer is
incorrect, and in fact the program attempts to execute such a block of code within an atomic transaction, a
runtime error will be displayed and the program will terminate.

The remaining potential issues all stem from the possibility that the compiler will assume that some
functions are intended for use in atomic transactions when in fact this is not the case. If such functions
are in fact not used in atomic transactions, then link-time optimizations may be able to automatically
address code bloat. But this will not address the other two potential issues: the compiler will still spend
time unnecessarily preparing the functions for use in transactions, and if someone uses a function (say a
library function) in an atomic transaction when the implementor of that function does not intend this to be
supported, then future changes to that function might make it no longer usable in that context.

For all of these reasons, we still plan to support the [[transaction_safe]] and
[[transaction_unsafe]] attributes. This allows programmers to mark as transaction-unsafe any
functions not intended for use in atomic transactions, which will allow them to address all of the issues
mentioned above. Note that they can do so incrementally, after they are already running and testing their
code.

Furthermore, we will no longer require that all function definitions and declarations consistently use these
annotations. Instead, we will simply require that there are no inconsistent annotations: if a function is
annotated as transaction-safe in one definition or declaration, it cannot be declared as transaction-unsafe
in another, and vice versa. Note that violations of this rule might not be reported at compile time, but will
be reported at link time at the latest.

The advantages of using these annotations, even though they are optional, include:

Summary of progress since Portland towards Transactional Language Constructs for C++ (N3589)

• [[transaction_unsafe]]
o Avoiding unnecessary compilation time and code bloat for functions not intended for use

in atomic transactions.
o Avoiding unintended use of functions in atomic transactions, preserving the right to use

unsafe code in future implementations without breaking client code.

• [[transaction_safe]]
o Allowing accidental use of unsafe code in a function intended for use in atomic

transactions to be caught at compile time, rather than only at link time when someone
tries to link a program that actually calls the broken function. (Note that, if a programmer
(eventually) adheres to the stricter rules imposed in the previous version of the
specification[1], then errors due to accidental use of unsafe code in functions intended for
use in atomic transactions will always be caught at compile time at the latest, just as with
the previous version. The difference is that this can be done incrementally, after the
program is already running, rather than requiring these rules to be obeyed before running
for the first time.)

o Communicating to users the intent that the function is safe for use in atomic transactions,
allowing them to be more confident that this will continue to be true.

Finally, we note that version 1.1 of the specification [1] allowed for some functions to be “implicitly
declared safe”. Considering functions to be declared safe by default is closely enough related that the
safe-by-default direction might be considered to just be a broadening of the scope of “implicitly declared
safe”. But in practice there are some important differences, as summarized above. In particular, with the
new approach, the compiler does not need to be able to see all code that might be called from a function
in order to allow its use in atomic transactions.

3. SEMANTICS OF __transaction_relaxed

There has been a lot of confusion over the semantics and purpose of relaxed transactions, and how they
compare to atomic transactions. Even within the drafting group, there have been different opinions and
significant confusion in discussions over it.

We have made significant progress on this front, in that we have agreed that the semantics of relaxed
transactions can be stated in terms of features that people already understand, namely locks. Briefly, the
semantics is the same as if the body of the relaxed transaction were in the critical section of a specially
designated lock and atomic transactions do not take effect while the lock is held. (Of course, this is the
semantics, and does not dictate that it must actually be implemented literally this way.)

The clarification of the semantics of the __transaction_relaxed keyword has also enabled us to
see some potential ways of specifying the same semantics in a way that may allow for much more
flexibility and better performance and scalability. However, while we have some ideas in this direction,
we have not fleshed them out in detail or decided on an approach, and furthermore we don’t yet have the
problem that would necessitate doing so (such as people complaining of scalability issues due to the basic
use of the __transaction_relaxed keyword).

These discussions have been very helpful in understanding the semantics and purposes of the
__transaction_relaxed keyword, and have helped some of us understand each other’s positions

Summary of progress since Portland towards Transactional Language Constructs for C++ (N3589)

better. Nonetheless, we have decided to postpone for now discussions of whether these insights should
result in changes in spelling or syntax for the __transaction_relaxed keyword.

We have therefore agreed for our next version to keep the keyword and its spelling, and to elucidate the
semantics so that we’ll be in a better position later to have a productive discussion about how the syntax
and/or spelling should eventually look.

4. Minimal exceptions proposal

We have spent a lot of time discussing nesting, exceptions, cancellation, and the interplay between these
issues. This has resulted in some ideas that some of us think are powerful and worth pursuing, while
others are not so convinced. Some of these ideas are discussed in separate documents (N3591 and
N3592). However, having not reached agreement about these ideas, we have decided that our next draft
will include:

• A minimal exception proposal

This proposal, summarized below, allows for transaction cancellation only in the case that an
exception escapes a transaction that is explicitly annotated as one that will be canceled if an
exception escapes it.

• Support for closed nesting

Previous attempts to avoid the implementation complexity of “closed nesting” (the ability to
cancel the effects of a nested transaction but commit the remaining effects of the transaction
within which it is nested) led to semantics that some people didn't like, and syntactic overhead
that nobody likes (anymore). Therefore, we have decided to bite the bullet and specify closed
nesting semantics.

• No explicit support for “cancellation at a distance” for now

This means that, if some code being executed within a transaction decides that the transaction’s
effects should be canceled, it will be necessary to communicate this back to the boundary of that
transaction using conventional means (e.g., exception propagation or return codes). The
consequence of this decision is that it imposes some additional burden on programmers and
disables some optimizations that are considered important by some of us. On the positive side, it
allows us to make progress on other important aspects of the specification while leaving open the
possibility to revisit such features in the future. Some of these ideas are briefly discussed in the
next section, but we have agreed not to hold up the next version of the specification in order to
resolve these issues.

The minimal exception proposal requires the exception handling behavior of every atomic transaction to
be stated explicitly using one of the following three attributes: [[noexcept]],
[[commit_on_escape]], [[cancel_on_escape]].

The reasons to require all cases to be stated explicitly are that there are potential surprises for any choice
of default, and that there is significant diversity of opinion about which of these surprises are most
important to avoid, and thus there is no agreement on what the default should be if there is one. By
requiring all handling to be indicated explicitly for now, we make all of the surprises less likely, while

Summary of progress since Portland towards Transactional Language Constructs for C++ (N3589)

leaving open the possibility to agree on a default behavior without breaking existing programs in the
future, once there is more experience with these features.

Although the minimal exception proposal defers a number of tricky issues, it still requires us to come up
with a reasonable medium-term answer to the question of what exceptions can escape from canceled
transactions, and how those that cannot are handled. We have decided for the next version of the
specification that we will also consider an alternative proposal on cancellation and exception [3].

Conclusion

The transition from the original drafting group to a formal Study Group (SG5) has brought in a number of
new people, new perspectives, and new expertise. This has greatly enhanced our discussions, and led to
significant progress, both in agreeing on how to handle some issues and in elucidating other issues and
stimulating new ideas, even if we have not yet converted these to agreement. The group will continue
work on completing drafting the next version of the specification.

Acknowledgement

This proposal is the culmination of work by at least the following individuals who contributed to the
“Draft Specification of Transactional Language Constructs for C++.” [1]

Ali-Reza Adl-Tabatabai (Intel), Kit Barton (IBM), Hans Boehm (HP), Calin Cascaval (IBM), Steve
Clamage (Oracle), Robert Geva (Intel), Justin Gottschlich (Intel), Richard Henderson (Red Hat), Victor
Luchangco (Oracle), Virendra Marathe (Oracle), Maged Michael (IBM), Mark Moir (Oracle), Ravi
Narayanaswamy (Intel), Clark Nelson (Intel), Yang Ni (Intel), Daniel Nussbaum (Oracle), Torvald Riegel
(Red Hat), Tatiana Shpeisman (Intel), Raul Silvera (IBM), Xinmin Tian (Intel), Douglas Walls (Oracle),
Adam Welc (Intel), Michael Wong (IBM), Peng Wu (IBM)

We also wish to acknowledge contributions from David Abraham, Jens Maurer, Lawrence Crowl, Paul
McKenney, Nevin Liber, Daniel Krügler, Niall Douglas and any others who joined the discussion on the
reflector or at meetings that we have left out unintentionally.

Reference
[1] Draft Specification of Transactional Language Constructs for C++(v1.1) :
https://sites.google.com/site/tmforcplusplus/

[2] WG21 N3591 : Summary of discussions on explicit cancellation

[3] WG21 N3592 : Alternative proposal for cancellation and exceptions

[4] WG21 N3341 : Transactional Language Constructs for C++

https://sites.google.com/site/tmforcplusplus/�

