
Exploring constexpr at Runtime – N3583

1

Exploring constexpr at Runtime
Doc No: SC22/WG21/N3583
Date: 2013-03-13
Author: Scott Schurr
Reply To: s dot scott dot schurr at gmail dot com

Abstract

The paper explores motivations for either a) constraining selected constexpr functions and

constructors so they may only be used during translation, or b) overloading on constexpr so different

implementations could be provided for translation-time vs. run-time execution. Two examples are

examined for motivation. Then the paper explores four approaches to providing the constraints.

Contents
1 Introduction .. 2
2 Motivating Examples ... 2

2.1 A constexpr Function That Computes a BCD Value ... 2

2.2 A constexpr Function that Computes a Square Root .. 6
2.3 A Note about Recursion .. 11

3 Isn’t constexpr a Compile-time Thing? .. 11
4 Do These Observations Motivate a Change to the Standard? .. 13

4.1 Prefer Compile- and Link-Time Errors to Run-Time Errors ... 13
4.2 Is Execution Time Observable? ... 14
4.3 Can Optimization Paper Over the Issues? ... 14
4.4 How Could the Standard Be Changed? ... 15

5 Approach A: a constexpr Qualifier .. 16
5.1 How Could Such a Qualifier Be Spelled? ... 18

6 Approach B: Mandatory Tail Recursion .. 18
7 Intermission .. 19

7.1 Evaluation Based on Call Site Context .. 20
7.2 Evaluation Based on Availability of Literals .. 21

8 Approach C: a Trait.. 22

9 Approach D: Overloading on constexpr .. 24
9.1 How Does constexpr Participate in Overloading in C++11 Today? 25
9.2 Overload Resolution for constexpr ... 25

9.3 Examples of constexpr Overloading .. 26
9.4 Forbidding Runtime Execution with Overloading ... 29
9.5 Consequences of Overloading .. 31

10 Summary ... 32
11 Acknowledgements ... 33
12 References .. 33

Exploring constexpr at Runtime – N3583

2

1 Introduction
The constexpr feature, added in C++11, is a powerful and easy-to-use tool for compile-time

programming. Thanks to constexpr, things that were done with the preprocessor or with templates

can now just be written as code and evaluated by the compiler at compile time. Here’s an example of

code that might have previously been implemented using the preprocessor or at runtime, but now can

be handled directly during translation:

template <typename T = double>

constexpr T eulers_num()

{ return static_cast<T>(2.718281828459045235360287471); }

constexpr double e_d = eulers_num();

constexpr float e_f = eulers_num<float>();

constexpr int e_i = eulers_num<int>();

// The following happens at compile time!

static_assert(e_d != e_f, "Precision matters!");

static_assert(e_i < e_f, "Precision really matters!");

But constexpr is much more capable. Prior to the introduction of constexpr, compile-time

computations required using macros or template metaprogramming tricks. Macros have the

disadvantage of not being scoped. Template metaprogramming techniques tend to be opaque at best.

By using constexpr, average coders can now write their own compile-time computations. Even better,

they can look at someone else’s computations and have a chance of understanding them.

But constexpr is even more than that. A constexpr function or constructor can be passed values

that are only known at run-time. In this case the compiler generates code so the evaluation of the

constexpr function or constructor can happen at runtime. The constexpr feature is a tool for all

seasons.

This is all good as far as it goes, but while constexpr behavior is great most of the time, there are some

situations where it has disadvantages. This paper looks at two of those situations. The paper also looks

at ways a future version of the C++ standard might address these situations.

2 Motivating Examples
It’s easier to talk about software when there’s a real example to point at. Let’s make one.

2.1 A constexpr Function That Computes a BCD Value

Suppose we’d like to build a collection of packed binary-coded-decimal (BCD) values at compile time.

BCD packs one decimal digit into each 4-bits of a nibble. BCD encoding strikes one particular balance of

storage efficiency against computational ease. BCD encoded values might, for example, be used in an

embedded system. The following is a possible implementation. There’s nothing unusual about the code

if you wish to skip to the next normal text. The code is only included for completeness.

Exploring constexpr at Runtime – N3583

3

namespace constexpr_bcd_detail

{

 using namespace std;

 // Literal char[] class. Attribution:

 // http://en.cppreference.com/w/cpp/language/constexpr

 class str_const {

 private:

 const char* const p_;

 const size_t sz_;

 public:

 template<size_t N>

 constexpr str_const(const char(&a)[N]) : p_(a), sz_(N-1) {}

 constexpr char operator[](size_t n) {

 return n < sz_ ? p_[n] : throw out_of_range("Bad index");

 }

 constexpr size_t size() { return sz_; }

 };

 // Return maximum number of bits T allows

 template <typename T>

 constexpr size_t max_bits()

 {

 using lim = numeric_limits<T>;

 static_assert(lim::radix == 2, "bcd requires a base 2 type");

 static_assert(lim::is_integer == true,

 "bcd requires an integer type");

 return

 lim::is_signed == true ? lim::digits + 1 : lim::digits;

 }

 // Put the BCD sign code into the least significant nibble

 template <typename T>

 constexpr T bcd_end(size_t bits, int sign, T x)

 {

 return

 (bits+4) > max_bits<T>() ?

 throw range_error("Too many bits in bcd") :

 (x * 16) + sign;

 }

Exploring constexpr at Runtime – N3583

4

 // Recursively compute packed BCD

 template <typename T>

 constexpr T bcd_recurse(

 const str_const& bcd, size_t n, size_t bits, int sign, T x)

 {

 return

 (bits+4) > max_bits<T>() ?

 throw range_error("Too many bits in bcd") :

 n == bcd.size() ? bcd_end<T>(bits, sign, x) :

 bcd[n] == ',' ? bcd_recurse<T>(bcd, n+1, bits, sign, x) :

 bcd[n] == ' ' ? bcd_recurse<T>(bcd, n+1, bits, sign, x) :

 (bcd[n] >= '0') && (bcd[n] <= '9') ?

 bcd_recurse<T>(bcd,n+1,bits+4,sign,(x*16)+bcd[n]-'0') :

 throw std::domain_error(

 "Only '0'...'9', ',', and ' ' may be in bcd body");

 }

 static const int pos = 0xC; // BCD code for a '+' sign (Credit)

 static const int neg = 0xD; // BCD code for a '-' sign (Debit)

 // Skip leading spaces and capture the sign if there is one

 template <typename T>

 constexpr T capture_sign(const str_const& bcd, size_t n)

 {

 return

 n == bcd.size() ? bcd_end<T>(0, pos, 0) :

 bcd[n] == ' ' ? capture_sign<T>(bcd, n+1) :

 bcd[n] == '+' ? bcd_recurse<T>(bcd, n+1, 0, pos, 0) :

 bcd[n] == '-' ? bcd_recurse<T>(bcd, n+1, 0, neg, 0) :

 bcd[n] >= '0' && bcd[n] <= '9' ?

 bcd_recurse<T>(bcd, n, 0, pos, 0) :

 throw domain_error(

 "Only '0'...'9', '+', '-', and ' ' may start bcd");

 }

} // end constexpr_bcd_detail namespace

// Public face of the packed BCD computation

template <typename T = std::uint32_t>

constexpr T constexpr_bcd(constexpr_bcd_detail::str_const bcd)

{

 return constexpr_bcd_detail::capture_sign<T>(bcd, 0);

}

So, you may ask what did we get with our two-or-so pages of C++ code. We got a way of describing BCD

encoded literals using text. The compiler takes the text and produces an integral type filled in with the

appropriate nibbles to represent the specified value. This is not intended as a run-time feature. It is

intended as a compile-time evaluation only function that provides error checking and formatting. An

example follows.

Exploring constexpr at Runtime – N3583

5

int main()

{

 // Packed BCD conversion at compile time

 constexpr std::uint32_t good1 = constexpr_bcd("+8,765,432");

 static_assert(good1 == 0x8765432C, "Yipes!");

 constexpr std::uint64_t good2 =

 constexpr_bcd<std::uint64_t>("-123 234 345 456 567");

 static_assert(good2 == 0x123234345456567D, "Yipes!");

 // If the target variables were declared constexpr you'd get a

 // compile-time error. Using gcc 4.7.0, they are run-time errors.

 std::uint32_t bad1 = constexpr_bcd("12,345,678");

 assert(bad1 == 0x12345678C);

 std::uint32_t bad2 = constexpr_bcd("+A");

 assert(bad2 == 0xAC);

 return 0;

}

As the preceding example shows, it’s not that hard to hand-pack a packed BCD value into an integer if

you use hex. Yeah, you have to put the sign at the wrong end. And with a different endian-ness the

coding might get more awkward, but what’s the big deal?

The point is this. The BCD encoding is constrained to follow a particular format. Using

constexpr_bcd() provides a convenient way for every packed BCD literal to be validated by the

compiler. If a tired programmer tries to use an invalid value in the BCD encoding then the compiler will

catch it at compile time. The compiler identifies the problem before the code can possibly leak out into

the wild.

But there’s a hole in the argument. You’ll note that the variables bad1 and bad2 are not declared

constexpr. Since they are not constexpr, the compiler has the option of evaluating them at run

time, not compile time. What was once a compile-time error can now become a run-time error with a

thrown exception. All of the necessary information was available at compile time. But the C++11

standard does not require translation-time evaluation of constexpr functions except under very

specific circumstances. We’ll look more closely at those circumstances later. For the moment it is

sufficient to say that the designers of constexpr_bcd() did not get all of the compile-time checking

that they hoped for. To get the full benefit of compile-time checking the user of constexpr_bcd()

must diligently follow a specific rule with each use: the variable that receives the constexpr_bcd()

result must also be declared constexpr.

While declaring each variable constexpr is not onerous, it is error prone. It’s very easy to forget, and it

must be applied in every case. If the constexpr is accidentally omitted, then the code compiles

correctly and the string may be evaluated at runtime. That’s usually okay. But if the BCD string contains

an error, that error may turn into a run-time exception.

Exploring constexpr at Runtime – N3583

6

2.2 A constexpr Function that Computes a Square Root

While the previous example showed code that was only ever intended to execute at compile time, this

next example is different. Here we’ll look at code that can compute a square root. Square root

computations are really useful at run-time as well as at compile time. Often a processor will provide

intrinsics that help speed computation of a square root. However if we want the square root during

translation, say to provide initialization for a static double, then we need to do the work ourselves.

The following is not a full-blown square root implementation. It is, however, representative of what an

ordinary non-numerics coder might resort to. Once again, there’s nothing unusual about the code if you

wish to skip to the next normal text. The code is only included for completeness.

namespace constexpr_sqrt_detail

{

 class neg_sqrt_exception : public std::bad_exception

 {

 virtual const char* what() const noexcept override

 { return "A negative number has no square root"; }

 };

 class big_sqrt_exception : public std::bad_exception

 {

 virtual const char* what() const noexcept override

 { return "Value too big for constexpr_sqrt"; }

 };

 class modulus_numeric_type : public std::bad_exception

 {

 virtual const char* what() const noexcept override

 { return "Modulus types not allowed by this function."; }

 };

 // "Babalonian method" of successive square root approximation.

 template <typename T>

 constexpr T sqrt_approx(T value, T approx)

 {

 return ((approx + (value / approx)) / 2);

 }

 // The recursing part of the recursive square root calculation.

 template <typename T>

 constexpr T sqrt_recurse(int count, T value, T approx)

 {

 return

 ((count <= 0) || // if limit

 (approx == sqrt_approx(value, approx)) ? // or exact

 approx : // then done

 sqrt_recurse(count-1, value, sqrt_approx(value, approx)));

 }

Exploring constexpr at Runtime – N3583

7

 // Before we run the "Babalonian method" it's good to get in the

 // ball park. The following lookup works for modulus types.

 template <typename T>

 constexpr T sqrt_rough(T approx)

 {

 return

 approx <= 10LL ? approx :

 approx <= 100LL ? 10 :

 approx <= 10000LL ? 100 :

 approx <= 1000000LL ? 1000 :

 approx <= 100000000LL ? 10000 :

 approx <= 10000000000LL ? 100000 :

 approx <= 1000000000000LL ? 1000000 :

 approx <= 100000000000000LL ? 10000000 :

 approx <= 10000000000000000LL ? 100000000 :

 approx <= 1000000000000000000LL ? 1000000000 :

 approx <= 9223372036854775807LL ? 2147483647 :

 throw big_sqrt_exception();

 }

 // Before we run the "Babalonian method" it's good to get in the

 // ball park. This recursive approach works for non-modulus types.

 template <typename T>

 constexpr T sqrt_rough_recurse(

 int count, T target, T bound = 16, T approx = 4)

 {

 return std::numeric_limits<T>::is_modulo == true ?

 throw modulus_numeric_type() :

 target <= 1 ? target :

 target <= bound ? approx :

 count <= 0 ? throw big_sqrt_exception() :

 sqrt_rough_recurse(count-1,target,1024*bound,32*approx);

 }

} // end constexpr_sqrt_detail namespace

// Public facade for the constexpr_sqrt implementation

template <typename T>

constexpr T constexpr_sqrt(T value)

{

 using namespace constexpr_sqrt_detail;

 return value == 0 ? value : // No divide-by-0

 (value < 0) ? throw neg_sqrt_exception() : // No sqrt of neg

 (std::numeric_limits<T>::is_modulo == true) ?

 sqrt_recurse<T>(100, value, sqrt_rough<T>(value)) :

 sqrt_recurse<T>(100, value, sqrt_rough_recurse<T>(100, value));

}

Exploring constexpr at Runtime – N3583

8

This time out, our two-or-so pages of code give us a way to compute square roots of many kinds of

numbers during translation. Integers are well covered and a wide range of floats and doubles are

covered as well. Here’s an example of the code in use.

int main1()

{

 // Example of square root calculated at compile time.

 constexpr double sqrt_2 = constexpr_sqrt(2.0);

 static_assert((sqrt_2 > 1.41421356) && (sqrt_2 < 1.41421357),

 "Bad square root of 2");

 constexpr double sqrt_half = constexpr_sqrt(0.5);

 static_assert((sqrt_half > 0.70710678) && (sqrt_half < 0.70710679),

 "Bad square root of 0.5");

 constexpr unsigned int sqrt_82 = constexpr_sqrt(82U);

 static_assert(sqrt_82 == 9, "Bad integer square root of 82");

 constexpr long long sqrt_big = constexpr_sqrt(0x7FFFFFFFFFFFFFFLL);

 static_assert(sqrt_big == 759250124, "Bad sqrt_big value");

 constexpr double sqrt_dbl = constexpr_sqrt(1e20);

 static_assert((sqrt_dbl < (1e10 + 0.1)) &&

 (sqrt_dbl > (1e10 - 0.1)), "Bad square root 1e20");

 assert(sqrt_dbl == std::sqrt(1e20));

 constexpr double sqrt_big_dbl = constexpr_sqrt(1e200);

 static_assert((sqrt_big_dbl < (1e100 + 1e84)) &&

 (sqrt_big_dbl > (1e100 - 1e84)), "Bad square root 1e200");

 assert(sqrt_big_dbl == std::sqrt(1e200));

 // The following won't compile because the rough

 // approximation recursion runs out of steam.

// constexpr double sqrt_too_big = constexpr_sqrt(1.79e308);

 // The following won't compile because of the throw

// constexpr double sqrt_neg = constexpr_sqrt(-1.0);

 return 0;

}

There are those who might question the value of computing a square root during translation. What’s

the use? The use may be in a chain of other calculations that validate limits during compile time. Or

there may be tables of values that can be computed prior to execution where the square root plays a

role. Are these huge use cases? No. But they are, nevertheless, valid use cases.

So what’s the big deal? We now have the function that we want. We’ll use it at compile time. Yes, we

have what we want. But like the previous example, this one is also easily prone to accidental misuse. If

Exploring constexpr at Runtime – N3583

9

the variable that captures the result of a consexpr_sqrt() call is not declared constexpr, then our

compile-time only code may execute at runtime. Let’s do some timing to see what happens. We’ll call

our constexpr_sqrt() function in a loop. One loop declares the target as constexpr, the other does

not. Again there is nothing out of the ordinary in the code. You may wish to skip the code and look at

the results.

int main()

{

 using clk_t = std::chrono::steady_clock;

 static constexpr double sq {1.1};

 // Time the constexpr computations

 const std::int32_t loop_count = 1000000000;

 volatile double constexpr_sqrt_result = 0;

 {

 const clk_t::time_point ta_0 = clk_t::now();

 for (int i = 0; i < loop_count; ++i)

 {

 constexpr double constexpr_value = // constexpr here

 constexpr_sqrt(sq);

 constexpr_sqrt_result = constexpr_value;

 }

 const clk_t::time_point ta_1 = clk_t::now();

 const auto deltaA = ta_1 - ta_0;

 std::cout << "True constexpr_sqrt ticks: "

 << deltaA.count() << std::endl;

 }

 volatile double runtime_sqrt_result = 0;

 {

 const clk_t::time_point tb_0 = clk_t::now();

 for (int i = 0; i < loop_count; ++i)

 {

 runtime_sqrt_result = constexpr_sqrt(sq); // not constexpr

 }

 const clk_t::time_point tb_1 = clk_t::now();

 const auto deltaB = tb_1 - tb_0;

 std::cout << "Runtime constexpr_sqrt ticks: "

 << deltaB.count() << std::endl;

 }

 assert(constexpr_sqrt_result == runtime_sqrt_result);

 return 0;

}

This code will show us the penalty extracted for forgetting to declare the target of the

constexpr_sqrt() calculation as constexpr. If we compile and execute the previous code on an old

Dell laptop using gcc 4.7.0 with full optimization we get the following results:

True constexpr_sqrt ticks: 312500

Runtime constexpr_sqrt ticks: 81609375

Exploring constexpr at Runtime – N3583

10

Of course your results will certainly vary, depending on your compiler and computing device. But, at

least in this particular case, there is about a 250:1 time penalty for calling constexpr_sqrt() at

runtime.

But perhaps that’s a reasonable price to pay. Let’s adjust our test code so we can compare the time for

a call to std::sqrt() to the time taken by our constexpr_sqrt() function. The test code is included here,

again for completeness. You may wish to skip the code and jump to the results.

int main()

{

 using clk_t = std::chrono::steady_clock;

 static constexpr double c_sq {1.1};

 volatile double v_sq {c_sq}; // force each call of std::sqrt()

 // Time the computations

 const std::int32_t loop_count = 1000000000;

 volatile double sqrt_lib_result = 0;

 {

 const clk_t::time_point ta_0 = clk_t::now();

 for (int i = 0; i < loop_count; ++i)

 {

 sqrt_lib_result = std::sqrt(v_sq); // runtime library

 }

 const clk_t::time_point ta_1 = clk_t::now();

 const auto deltaA = ta_1 - ta_0;

 std::cout << "std::sqrt ticks: "

 << deltaA.count() << std::endl;

 }

 volatile double runtime_constexpr_sqrt_result = 0;

 {

 const clk_t::time_point tb_0 = clk_t::now();

 for (int i = 0; i < loop_count; ++i)

 {

 runtime_constexpr_sqrt_result =

 constexpr_sqrt(c_sq); // not constexpr

 }

 const clk_t::time_point tb_1 = clk_t::now();

 const auto deltaB = tb_1 - tb_0;

 std::cout << "Runtime constexpr sqrt ticks: "

 << deltaB.count() << std::endl;

 }

 assert(sqrt_lib_result == runtime_constexpr_sqrt_result);

 return 0;

}

Now we’ll compile this test with the same optimization settings and execute on the same old Dell

laptop. This will give us a sense for the runtime execution speed difference between std::sqrt() and

our constexpr_sqrt().

Exploring constexpr at Runtime – N3583

11

std::sqrt ticks: 7015625

Runtime constexpr sqrt ticks: 80234375

This time the time difference is not so stark. We see that std::sqrt() is a bit more that 10 times

faster than our constexpr_sqrt() executed at runtime. Not quite as breathtaking as a 250:1 ratio,

but still not peanuts.

Why is it that std::sqrt() runs so much faster, at least in this particular case? If we dig into the

disassembly with this particular compiler on this particular old Dell laptop we see that the compiler has

availed itself of (what is effectively) an intrinsic. It’s using the X86 fsqrt assembly instruction. All our

two pages of C++ code are wrapped up in a single assembly instruction. That’s tough to beat.

At this point it is hopefully clear why, if we’re computing a square root during runtime, we’d rather not

use constexpr_sqrt(). It’s only a matter of speed of execution. Still, the very best choice would be

to compute the square root during translation, if that’s possible.

A thoughtful person might at this point say, “Let’s declare std::sqrt as constexpr in the standard.”

We’ll let the compiler straighten it out.

That solves an individual problem, but it ignores any number of other intrinsic instructions that might be

available to a specific processor. There may be sine, cosine, and tangent intrinsics. There may be an

intrinsic that computes log2 of a value. And different processors will have different capabilities. It would

be hard for the standard to predict all of the intrinsics that processor implementations might include. So

declaring std::sqrt as constexpr would only be a patch to one small corner of a larger concern.

2.3 A Note about Recursion
One last point worth noting is that both of the preceding examples use recursion, not iteration, to

perform repeated calculations. The rules for constexpr require that such computations be made

recursively to accommodate compile-time evaluation. The constexpr_sqrt() function explicitly

limits its recursion depth to 100, although the FDIS sets a lower limit of 512 recursive constexpr

function invocations [see FDIS (N3242) Annex B (informative) Implementation quantities]. In most

situations on modern processors, a recursion depth of 512 is nothing to worry about. But in an

embedded environment with limited memory such recursion might exceed the stack limits. In such

cases it could be vitally important for constexpr_sqrt() to be evaluated during translation.

3 Isn’t constexpr a Compile-time Thing?
The C++11 standard gives constexpr the ability to perform computations during translation. But it

only requires those computations to be done at translation under very specific circumstances. Here are

some specific circumstances identified in the FDIS (N3242).

Section 3.6.2 Initialization of non-local variables, paragraph 2 says if an object with static or thread

local storage duration is initialized with a constexpr constructor then the constructor is evaluated

during translation:

Exploring constexpr at Runtime – N3583

12

Constant initialization is performed:

— if an object with static or thread storage duration is initialized by a constructor call, if the

constructor is a constexpr constructor, if all constructor arguments are constant

expressions (including conversions), and if, after function invocation substitution (7.1.5),
every constructor call and full-expression in the mem-initializers is a constant expression;

Section 7.1.5 The constexpr specifier, paragraph 9 says if an object declaration includes the

constexpr specifier, that object is evaluated during translation (i.e., is a literal):

A constexpr specifier used in an object declaration declares the object as const. Such an

object shall have literal type and shall be initialized. If it is initialized by a constructor call, that call

shall be a constant expression (5.19). Otherwise, every full-expression that appears in its

initializer shall be a constant expression. Each implicit conversion used in converting the initializer

expressions and each constructor call used for the initialization shall be one of those allowed in a

constant expression (5.19).

Some people argue that this paragraph leaves room for an implementation to postpone the initialization

until runtime unless the effect can be detected during translation due to, say, a static_assert. That

may not be an accurate view because whether a value is initialized during translation is observable

under some circumstances. This view is reinforced by Section 5.19 Constant expressions paragraph 4:

[Note: Although in some contexts constant expressions must be evaluated during program

translation, others may be evaluated during program execution. Since this International Standard

imposes no restrictions on the accuracy of floating-point operations, it is unspecified whether the

evaluation of a floating-point expression during translation yields the same result as the

evaluation of the same expression (or the same operations on the same values) during program

execution... — end note]

Section 9.4.2 Static data members, paragraph 3 says if a const static data member of literal type is

initialized by a constexpr function or constructor, then that function or constructor must be evaluated

during translation:

If a static data member is of const literal type, its declaration in the class definition can specify a

brace-or-equal-initializer in which every initializer-clause that is an assignment-expression is a

constant expression. A static data member of literal type can be declared in the class definition

with the constexpr specifier; if so, its declaration shall specify a brace-or-equal-initializer in

which every initializer-clause that is an assignment-expression is a constant expression. [Note: In

both these cases, the member may appear in constant expressions. —end note]

Outside of those circumstances the C++11 standard allows computations in constexpr functions and

constructors to be performed at compile time. But it does not require it. The computations could occur

at runtime. Which computations the compiler performs at compile time are, to a certain extent, a

quality of implementation question.

The end result of these observations is that the person writing code has only a few ways to guarantee

that a constexpr function or constructor is evaluated during translation. The most straight forward

Exploring constexpr at Runtime – N3583

13

way is to declare the target of the constructor or function result as constexpr. This specifier is easy to

forget. And if the constexpr specifier is omitted the code compiles beautifully. The primary

observable consequences of the omission will be:

 Whether an error is caught at compile-time or at runtime,

 The size of the resulting code,

 The speed of code execution, and possibly (in small embedded systems)

 A runtime error due to exceeding the stack size.

4 Do These Observations Motivate a Change to the

Standard?
First, let’s summarize the observations so far.

 Concern A: it’s easy to accidentally invoke a constexpr function or constructor so that its code

executes at runtime rather than during translation. This is unimportant for most constexpr

code, but is particularly relevant for constexpr code that is intended to catch errors during

translation.

 Concern B: a constexpr function or constructor, invoked at runtime, may run substantially

slower than non-constexpr code that accomplishes the same end.

 Concern C: a constexpr function or constructor, invoked at runtime, may use excessive

amounts of stack that would not be used at all by non-recursive code that accomplishes the

same end. This excessive stack usage may cause premature termination of a program in an

environment with limited memory (as exemplified by some embedded environments).

Clearly the author of this paper feels that a change to the standard is justified, or he would not have

droned on for so long. Each standard committee member must make their own call, however. Next

we’ll consider reasons that it might be good to change the standard.

4.1 Prefer Compile- and Link-Time Errors to Run-Time Errors
The heading for this section is stolen from Item 14 in C++ Coding Standards by Sutter and Alexandrescu.

Similar sentiments have been attributed to other notables, like Scott Meyers and Bjarne Stroustrup.

The C++11 formulation of constexpr gives us almost the perfect tool for opening vast vistas of

compile-time error checking. With constexpr such tools become easy to write. But such tools, once

written, violate Item 18 in Effective C++ Third Edition by Scott Meyers:

Item 18: Make interfaces easy to use correctly and hard to use incorrectly.

Any constexpr function or constructor that is intended for compile-time error checking is easy to use

incorrectly. If the target of a constexpr function result is not declared constexpr, then the error

Exploring constexpr at Runtime – N3583

14

checking that was intended to be done at compile-time may become a run-time error. It is easy to

forget that additional constexpr declaration which is required at every invocation site.

With a bit of adjustment, constexpr can become a tool that is as reliable at performing compile-time

error checking as macros and template metaprogramming are today. And constexpr can do so in a

way that is readable and maintainable, unlike the other two tools. But until that adjustment is made,

constexpr cannot be used to reliably perform such error checks during compilation. It is simply too

easy for any constexpr constructor or function to be accidentally evaluated at run-time, not at

compile-time.

4.2 Is Execution Time Observable?
Earlier we noted that our constexpr_sqrt() example ran about 10 times slower than std::sqrt() when they

are both invoked at runtime. For those of us who worry about execution speed it would be nice to get a

compile-time hint that we may be using the wrong function. But should this kind of concern influence

the standard?

According to the FDIS Section 1.9 Program execution paragraph 8 the observable behavior of a program

is quite limited.

The least requirements on a conforming implementation are:

— Access to volatile objects are evaluated strictly according to the rules of the abstract

machine.

— At program termination, all data written into files shall be identical to one of the possible

results that execution of the program according to the abstract semantics would have

produced.

— The input and output dynamics of interactive devices shall take place in such a fashion

that prompting output is actually delivered before a program waits for input. What

constitutes an interactive device is implementation-defined.

These collectively are referred to as the observable behavior of the program. [Note: More

stringent correspondences between abstract and actual semantics may be defined by each

implementation. —end note]

So, no, strictly speaking the standard does not consider speed of code execution to be observable.

But speed of execution is certainly relevant to many users of C++. Users often choose C++ as a language

because it runs fast. The constexpr feature plays to this strength since, as long as it is evaluated

during translation, it requires almost no runtime cycles or space in the code image.

4.3 Can Optimization Paper Over the Issues?
Much of the focus on constexpr to date has revolved around two things:

 What can we reasonably expect a C++ compiler to evaluate during translation?

 Given valid constexpr code, how can an optimizer make such code run fast?

Exploring constexpr at Runtime – N3583

15

These are great, and necessary, concerns to address. But they miss two important points:

1. If error checking, rather than speed, is the motivation for writing a constexpr constructor or

function then it is still easy to misuse the function, even though the function executes quickly at

runtime.

2. It seems unlikely that the optimizer folks, as clever as they are, could ever catch up with what

can be hand coded invoking hardware accelerators like intrinsics.

The preceding statement is not intended to dismiss efforts in expanding the C++ code that a compiler

can evaluate during compilation, or determining how the compiler can make such code execute quickly

during runtime if that’s necessary. Only certain specific constexpr constructors and functions need to

be evaluated during translation. And efforts in those areas will reduce the number of situations where

coders will worry about whether separate compile-time and run-time implementations are needed. But

improved runtime optimization can never help in situations where compile-time error checking is

desired.

4.4 How Could the Standard Be Changed?
In what ways could the C++ standard be changed to address issues with constexpr at runtime? During

discussions four different types of changes to the standard have been considered. In no particular order

the approaches are:

 Approach A: introducing a qualifier or attribute that allows a constexpr function or

constructor to be marked as only useable during translation, not at runtime.

 Approach B: changing the requirements on constexpr code so it can no longer use general

recursion. It must limit itself to tail recursion. Furthermore, compilers would be required to use

the tail recursion optimization when generating runtime code for constexpr functions and

constructors.

 Approach C: introducing a trait or a concept that specialized constexpr functions and

constructors for either translation-time or runtime use.

 Approach D: extending function overloading so both constexpr and non-constexpr

functions could share the same signature. The compiler would choose the correct function

based on context.

The remainder of this paper explores these four options for viability. Each section will evaluate its

approach for three concerns:

 Concern A: does it provide a mechanism to enforce compile-time error checking?

 Concern B: does it provide a means for invoking an appropriate function implementation at

runtime?

 Concern C: does it provide a way to avoid excessive recursion on the stack at runtime?

Exploring constexpr at Runtime – N3583

16

5 Approach A: a constexpr Qualifier
Suppose we added a qualifier to constexpr that required the compiler to only use that code during

translation. Code with such a qualifier would never be considered for runtime execution. The author of

a constexpr function or constructor could use such a qualifier if they wanted to guarantee that their

code was never used a runtime. This gives the author the ability to enforce that all errors caught by

their code would always be caught during translation.

To make the idea more concrete, suppose we introduce a new attribute:

[[constant_initialization_only]]. This attribute would only be applicable to constexpr

function and constructor declarations and implementations. To keep things simple, let us insist that any

declaration using the attribute must match the usage of the attribute by the implementation. The

conscientious coder of our previous constexpr_bcd() function example would then add the qualifier

to the five functions that make up its implementation. Like this:

namespace constexpr_bcd_detail

{

 [[constant_initialization_only]]

 template <typename T>

 constexpr size_t max_bits()

 { ... }

 [[constant_initialization_only]]

 template <typename T>

 constexpr T bcd_end(size_t bits, int sign, T x)

 { ... }

 [[constant_initialization_only]]

 template <typename T>

 constexpr T bcd_recurse(

 const str_const& bcd, size_t n, size_t bits, int sign, T x)

 { ... }

 [[constant_initialization_only]]

 template <typename T>

 constexpr T capture_sign(const str_const& bcd, size_t n)

 { ... }

}

[[constant_initialization_only]]

template <typename T = std::uint32_t>

constexpr T constexpr_bcd(constexpr_bcd_detail::str_const bcd)

{ ... }

With the qualifier in place the compiler would fail with a diagnostic if constexpr_bcd() were ever

called on to execute at runtime. This would force the user of the function to fix the invocation, probably

by adding a constexpr declaration to the result target. Otherwise they may need to decide on some

Exploring constexpr at Runtime – N3583

17

other mechanism that is appropriate for computing packed BCD at runtime, probably using a different

function.

How would such a qualifier help with the concerns raised earlier?

 Concern A: does it provide a mechanism to enforce compile-time error checking?

Yes. Such qualified constexpr functions and constructors would only be evaluated during

translation, so any detected errors would be reported during translation.

 Concern B: does it provide a means for invoking an appropriate function implementation at

runtime?

Yeah, sort of. If the code author wants to provide similar functionality at runtime they would have

to provide a separate non-constexpr function or constructor with a different name or signature.

This non-constexpr code could be designed to be as efficient as possible at runtime with regard to

speed and stack usage.

 Concern C: does it provide a way to avoid excessive recursion on the stack at runtime?

Yes. We explicitly forbid the recursive version of the function from ever executing at runtime.

What would be the downsides to such a qualifier?

 If two implementations of a function are provided, one for use during translation and one for

runtime, then those functions must be distinguished by name, or different parameter types, or

by placing the functions in different namespaces. In effect, the user of the function needs to

take responsibility for invoking the correct version in the correct circumstance. The good news

is that if the user of the function makes a mistake, then the compiler will straighten out the

situation. The two implementations can never be confused because the situations where they

execute (compile-time vs. run-time) have no overlap.

 The previous issue becomes a bit worse for constructors than for functions. Two constructors

for the same type cannot have differing names or be in different namespaces. So constexpr

constructors with the qualifier would need to take different arguments from other non-

constexpr constructors of the same type. Sometimes the different arguments would have to

be unused arguments included only to make the constructors distinct. It is worth noting that

the extra argument, while a bit silly to the caller of the function, would have no runtime

execution cost.

So this approach to the problem solves all of the previously identified problems. However it introduces

the necessity of new names that are visible to both the implementer and the user of the functions of

interest.

Exploring constexpr at Runtime – N3583

18

5.1 How Could Such a Qualifier Be Spelled?
The previous example spells the qualifier as an attribute. Attributes have the advantage of being

dedicated to a specific circumstance. But it might be possible to spell the constexpr qualifier in other

ways.

It’s tempting to suggest explicit constexpr as a possible spelling. But that won’t work. Using

explicit would cause trouble with constexpr constructors and conversion operators.

A possible, albeit quirky, spelling would be true constexpr, since true is never a return type and is

not a function or constructor qualifier.

This topic can be discussed further if using a qualifier is considered a good approach to solving the

problem, but members of the committee find using an attribute to be distasteful.

6 Approach B: Mandatory Tail Recursion
Two of the major concerns lofted earlier were the speed of execution and use of stack space at runtime

due to recursion. One way to address these problems would be to take the approach used by the

Scheme programming language. Scheme requires that all implementations must be properly tail

recursive. Here is a quote from the current Scheme programming language specification (found at

(http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-8.html#node_sec_5.11).

Implementations of Scheme must be properly tail-recursive. Procedure calls that occur in

certain syntactic contexts called tail contexts are tail calls. A Scheme implementation is properly

tail-recursive if it supports an unbounded number of active tail calls. A call is active if the called

procedure may still return. Note that this includes regular returns as well as returns through

continuations captured earlier by call-with-current-continuation that are later invoked.

In the absence of captured continuations, calls could return at most once and the active calls

would be those that had not yet returned. A formal definition of proper tail recursion can be found

in Clinger’s paper [5]. The rules for identifying tail calls in constructs from the (rnrs base (6))

library are described in section 11.20

C++ would not need to be as draconian as Scheme to solve the constexpr runtime issue. One

possibility would be to:

 Limit constexpr recursion so only tail recursion was allowed, and

 Require compilers to implement the tail recursion optimization only for constexpr functions

and constructors.

In terms of the success of the optimization, it appears that g++ 4.7.0 already takes this approach to

optimizing certain constexpr code when the optimization level is high enough. So g++ demonstrates

prior art of this technique with a history of success.

Requiring optimizations would be a bit of a break from tradition for the C++ standard. The standard has

usually said very little about requirements on implementations.

http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-8.html#node_sec_5.11
http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-21.html#node_bib_5
http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-14.html#node_sec_11.20

Exploring constexpr at Runtime – N3583

19

How would such a qualifier help with the concerns raised earlier?

 Concern A: does it provide a mechanism to enforce compile-time error checking?

No.

 Concern B: does it provide a means for invoking an appropriate function implementation at

runtime?

Not really, but it reduces the number of situations when a constexpr function or constructor

implementation is inappropriate for runtime execution.

 Concern C: does it provide a way to avoid excessive recursion on the stack at runtime?

Yes. Every recursive constexpr function must meet the tail recursion requirement, and every

compiler must implement the tail recursion optimization. Even though the code looks like it uses

the stack heavily, the compiler sidesteps the recursive function calls.

Downsides to requiring tail recursion would include:

 The new rules would make some amount of existing code (constexpr functions using recursion

that is not tail recursion) illegal. During the transition to the new rule compiler implementations

might choose to issue a warning regarding non-tail recursion in constexpr code. What is

unknown at this time is whether there is an important class of potentially constexpr functions

that cannot be implemented using only tail recursion.

 Insisting on only tail recursion would require compilers to identify and flag recursion of

constexpr calls that was not tail recursion. For example, A() calls B() calls A() is recursive, but

is not tail recursion. This suggested rule would make such recursion illegal in constexpr

functions, and the compiler would be required to identify the problem. Compiler writers might

find this constraint onerous.

All things considered, limiting constexpr functions and constructors to only using tail recursion and

requiring compilers to provide the tail recursion optimization would be an elegant and largely

transparent approach to solving one out of the three concerns described.

7 Intermission
The previous two approaches to addressing the runtime shortcomings of constexpr have been a bit

non-traditional from the C++ perspective. Function overloading, particularly overloading on const, has

a very long tradition with C++ and solves similar kinds of problems.

Traits have a tradition almost as long as overloading on const. Traits have been part of the C++ lexicon

at least since 1993. Traits allow template implementations to be specialized based on characteristics of

template parameter types.

Exploring constexpr at Runtime – N3583

20

It seems natural that one of these two techniques would be an excellent fit for addressing the concerns

raised about constexpr. We’ll see how that goes when we examine the two remaining approaches.

In anticipation of exploring those two approaches, it is worth talking through how a compiler might

decide when to attempt to perform constexpr computations during translation, and when it might

decide to postpone those computations until runtime. As shown in Section 3 of this paper, the FDIS

itself offers very little guidance. Each compiler design group must determine their own approach. Here

we’ll consider two likely approaches:

 Evaluation based on call site context, and

 Evaluation based on availability of literals.

There are, no doubt, other models that could be taken. Hopefully these two approaches will be

sufficient for our upcoming discussions of traits and overloading.

7.1 Evaluation Based on Call Site Context
Section 3 of this paper shows that the standard only mandates translation-time evaluation of

constexpr code in three circumstances:

1. If a value or object with static or thread local storage duration is initialized with a constexpr

function or constructor and all arguments are constant expressions.

2. If a value or object declaration includes the constexpr specifier.

3. If a const static data member of literal type is initialized by a constexpr function or

constructor, then that function or constructor must be evaluated during translation.

Additionally, although the FDIS does not explicitly mandate it, there seems to be an expectation that if a

constexpr computation result provides the extent of an array, that evaluation will occur during

translation.

All four of these requirements for translation-time evaluation are based on the characteristics of the call

site. Let’s make this distinction a bit more concrete with an example from Daniel Krügler.

#include <iostream>

// A constexpr function that can produce undesirable behavior

constexpr int inverse(int v) { return 1/v; }

int main()

{

#if 1

 constexpr int c = inverse(0); // Compile-time error

 static_assert(c != 1, "Unexpected value");

#endif

 const int r = inverse(0); // Possibly run-time error

 std::cout << r << std::endl;

 return 0;

}

Exploring constexpr at Runtime – N3583

21

If this code is compiled with g++ 4.7.0 the code inside the #if causes compilation to fail with a

diagnostic. If we disable the failing code (by entering #if 0) then compilation succeeds. The failure

now happens at runtime.

Note that the two calls to inverse() are identical. In both cases inverse() is called with a literal known at

compile time. The change in the failure mode is induced by the demands of the call site. In the case of

c, the compiler is required to determine a value for c during translation (due to the constexpr and

static_assert). In the case of r, the compiler chooses to postpone evaluation of inverse() until

runtime since the standard allows it to do so. So in the r case we won’t find out about the divide-by-

zero until runtime.

This point is worth belaboring because in C++11 both traits and overloading make most of their

decisions based on participants in the call – not due to the target at the call site. So, as long as the rules

for runtime evaluation of constexpr don’t change, we’ll need to hold our tongues very carefully if we

want to use traits or overloading to address shortcomings in constexpr.

7.2 Evaluation Based on Availability of Literals
A compiler doesn’t have to support constexpr the way g++ 4.7.0 does in order to comply with the

standard. Another approach, which would be fully compatible with the C++11 standard, would be to

aggressively identify literals during translation. Then whenever all of the arguments to a constexpr

function or constructor are literals, the compiler would always just go ahead and evaluate them during

translation. In the end, all of the situations where the standard requires constexpr evaluation will be

fully evaluated if at all possible. If constexpr evaluation was not possible where it was required then

the compiler would recognize that and fail with a diagnostic.

The above description would probably turn out to be harder to implement than it initially looks. At least

in part this happens because every time the compiler sees a literal, or something that might be a literal,

the compiler must aggressively attempt to convert anything that consumes that literal into more literals.

Only after such conversions fail would the compiler resort to generating runtime code. A compiler

designed around this approach would probably suffer long compilation times while attempting to

generate literals and, more often than not, failing to produce those literals.

Returning to the previous example, this more aggressive approach to constexpr evaluation would

have a compile time error when evaluating r where the usual approach does not.

Exploring constexpr at Runtime – N3583

22

#include <iostream>

// A constexpr function that can produce undesirable behavior

constexpr int inverse(int v) { return 1/v; }

int main()

{

 // Assuming a compiler that aggressively evaluates constexpr

 // during translation...

 const int r = inverse(0); // Compile-time error

 std::cout << r << std::endl;

 return 0;

}

Since inverse() is declared constexpr it can be evaluated during translation. Since the argument (0)

is a literal known during translation the compiler aggressively performs the evaluation during

translation. The evaluation results in a divide-by-zero, so the compilation fails.

A quick look around did not reveal any C++11 compilers that take this aggressive approach to

constexpr evaluation. So there is no evidence of prior art.

If the C++ standard were modified so all compilers were required to implement this more aggressive

stance regarding constexpr, then we could have very good luck using overloading to address the

concerns raised earlier in the paper. We’ll see that later in the paper.

Unless there are other significant improvements as a result, the effort of changing the way constexpr

functions and constructors are evaluated cannot be justified by the comparatively feeble complaints

that motivate this paper. The discussion is only included for completeness.

8 Approach C: a Trait
If you’ll recall, from Section 5 of this paper, a feasible solution to the constexpr issues was to use a

qualifier or attribute to tell the compiler that the code could only be considered to be used during

translation. But why do that with a qualifier? Why not use a trait?

Recall that, in C++11, constexpr functions and constructors are evaluated during translation based on

the demands of the call site. The types of the arguments to the constexpr code are irrelevant for this

determination. So we are wandering away from the usual use of traits. Instead we need the compiler to

tell us when it is choosing to evaluate the code during translation or during runtime. The compiler

certainly knows this information and it could make it available to the implementer.

To this end, suppose there were a standard library function that evaluated true at compile time and

false at runtime. We could name the function std::evaluated_during_translation(). For the

moment, let’s ignore how such a function would be implemented. For our constexpr_bcd() function

we could use it like this:

Exploring constexpr at Runtime – N3583

23

template <typename T = std::uint32_t>

constexpr T constexpr_bcd(constexpr_bcd_detail::str_const bcd)

{

 static_assert(std::evaluated_during_translation(),

 "constexpr_bcd may not be used at runtime. "

 "Please declare the target variable as constexpr.");

 ...

}

Elegant, no? It fits in well with existing C++ practice. Non-constexpr code would never have need of

such a static_assert because non-constexpr code can only ever be evaluated at runtime. And by

using a static_assert we allow the code designer to provide guidance to the user regarding the

remediation. And we did it all by introducing a single new (magic) library function.

But then some enterprising library writer starts to think about SFINAE. Why should we have two

different functions with different names? Thinking about our consexpr_sqrt() case, we might

consider writing…

template <typename T>

constexpr

typename std::enable_if<std::evaluated_during_translation(), T>::type

sqrt(T value)

{ /* constexpr_sqrt implementation */ }

template <typename T>

typename std::enable_if<! std::evaluated_during_translation(),T>::type

sqrt(T value)

{ std::sqrt(value); }

What you see here is an attempt to select an implementation for sqrt() based on how it is used at the

invocation site. From a naïve perspective, it seems as though a compiler could interpret this code in one

of two possible ways:

1. If the compiler re-evaluates the template instantiation each time it is invoked, then what we’ve

created is probably a violation of the one definition rule. The types of the template parameters

have no bearing on whether std::evaluated_during_translation() evaluates to true

or false; the result is controlled exclusively by the call site’s requirements. Consequently the

code could easily generate both implementations. The implementations would come from two

different call sites: one requiring evaluation during translation, and the other requiring runtime

evaluation. The only differences in the two signatures would be whether or not the functions

are declared constexpr.

2. More likely, the compiler only fully evaluates the template instantiation once for each set of

template parameters. The compiler probably saves the result of that first evaluation and re-

uses it when the same template parameters recur. In that case we’ve created a pseudo coin

toss as to which implementation will be instantiated. If the first use that the compiler sees

Exploring constexpr at Runtime – N3583

24

evaluates the function during translation, then the constexpr version is generated. Otherwise

the non-constexpr version is generated. And which was seen first would vary from one

translation unit to the next. So we again get a violation of the one definition rule, but it is one

that the translation tools are not required to diagnose.

Certainly there are other possible outcomes. But if the committee chooses the path of introducing a

trait, then some clever person will need to spend time determining the best way of handling attempts at

using the trait in an SFINAE context.

How would such a qualifier help with the concerns raised earlier?

 Concern A: Does it provide a mechanism to enforce compile-time error checking?

Yes.

 Concern B: Does it provide a means for invoking an appropriate function implementation at

runtime?

Yeah, sort of. The trait provides the same kind of capabilities as the qualifier, but improves on them

slightly. By using a well written static assert, the function’s author can tell the user which function

should be used in place of the one that was called. The function’s author must still supply two

distinct functions that are distinguished by name or signature.

 Concern C: Does it provide a way to avoid excessive recursion on the stack at runtime?

Yes. We can explicitly forbid the recursive version of the function from ever executing at runtime.

What would be the downsides to such a trait?

 As noted earlier, the trait is quite general and is open to abuse. One obvious abuse case was

identified, and there are probably others. Possible abuses should be identified and, if

appropriate, remediation put in place if the committee selects a trait as the best approach.

So we see that our std::evaluated_during_translation() function provides an elegant solution.

But, because the solution is quite general, it leads to other interesting questions. The constexpr

qualifier, described in Section 5 of this paper, is less elegant but it has a smaller impact since it can only

be used in limited contexts.

9 Approach D: Overloading on constexpr
A truly elegant solution to the runtime efficiency issues with constexpr would be to allow an

implementer to provide two implementations: one for use during translation and one for use at

runtime. This sounds like a perfect opportunity for overloading.

Exploring constexpr at Runtime – N3583

25

9.1 How Does constexpr Participate in Overloading in C++11 Today?

Before we consider overloading on constexpr, we should consider the existing rules within C++11.

In C++11 constexpr does play in overloading, but only because constexpr is a superset of const.

Overloading on constexpr is only supported for member functions. Since a constexpr declaration is

also const, it’s as though the constexpr declaration is a const declaration with a special capability –

it can be evaluated during translation. So C++11 does not support overloading a given member function

on both const and constexpr.

// Overload non-static non-const class member on constexpr compiles

struct test_a {

 bool is_constexpr() { return false; }

 constexpr bool is_constexpr() { return true; } // Succeeds

};

// Overload member on both const and constexpr fails

struct test_b {

 bool is_constexpr() { return false; }

 bool is_constexpr() const { return false; }

 constexpr bool is_constexpr() { return true; } // Error

}

Given this, our examination of overloading on constexpr need only make sure that const overloading

still works correctly when we’re done.

9.2 Overload Resolution for constexpr

Overload resolution for constexpr is based on three ideas:

1. A constexpr function, method, or constructor is the only way to evaluate a value during

translation. So, for situations involving evaluation during translation, a constexpr function,

method, or constructor is the only (and hence best) choice.

2. For non-static member functions, the constness of the object determines which overload is

called. This precisely models, but extends, overloading non-static member functions on const.

It would be allowed to overload a member function on constexpr, const, and not-const. If

all three overloads were provided for a given class member signature, the…

a. constexpr overload would be called for evaluation during translation, the

b. const overload would be called for runtime evaluation on a const object, and the

c. non-const overload would be called for runtime evaluation on a non-const object.

3. During runtime, a constexpr function, method, or constructor is likely to be the least efficient

choice – otherwise a non-constexpr version would not be provided. Therefore for runtime

execution, if a non-constexpr version of an overloaded function, method, or constructor is

available, then the non-constexpr version is preferred.

Exploring constexpr at Runtime – N3583

26

With the addition of these three simple rules, conceptually no other rules need to change. Of course

the actual textual changes to the standard would be much more extensive.

You’ll notice that constexpr overloading ends up being much more wide spread than overloading on

const. Overloading on const can only happen with non-static member functions. Overloading on

constexpr would need to apply to:

 free functions,

 static member functions, and

 constructors as well as with

 non-static member functions.

9.3 Examples of constexpr Overloading

Given these suggested rules, let’s examine overload resolution for free functions, static member

functions, constructors, and non-static member functions. The examples are short and sweet to show

intent. The functions would need to involve significant computations to provide motivation.

9.3.1 Overloading of Free Functions

The following would be legal:

// Overload free function on constexpr

bool is_constexpr() { return false; }

constexpr bool is_constexpr() { return true; }

int main()

{

 // Since test1 is declared constexpr, its value must be evaluated

 // during translation.

 constexpr bool test1 = is_constexpr();

 static_assert(test1 == true, "Yipes!");

 // In C++11 the compiler has discretion for whether to evaluate at

 // runtime or during translation. The assert may fail depending

 // on the mood of the compiler.

 const bool test2 = is_constexpr();

 assert(test2 == false); // May fail (or not)

 return 0;

}

And, since overloading on constexpr is not required, the following would still be legal:

Exploring constexpr at Runtime – N3583

27

constexpr bool can_constexpr() { return true; }

int main()

{

 constexpr bool test1 = can_constexpr();

 static_assert(test1 == true, "Yipes!");

 bool test2 = can_constexpr();

 assert(test2 == true);

 return 0;

}

9.3.2 Overloading of Static Member Functions

The following would be legal:

struct test_ba {

 // Overload static member function on constexpr

 static bool is_constexpr() { return false; }

 static constexpr bool is_constexpr() { return true; }

 // Non-overloaded constexpr static member function

 constexpr static bool can_constexpr() { return true; }

};

int main()

{

 // Using the overloaded static member functions...

 static_assert(test_ba::is_constexpr() == true, "Yipes!");

 // In C++11 the compiler has discretion for whether to evaluate at

 // runtime or during translation. The assert may fail depending

 // on the mood of the compiler.

 const bool tba_1 = test_ba::is_constexpr();

 assert(tba_1 == false); // May fail (or not)

 // Using the non-overloaded constexpr static member function...

 static_assert(test_ba::can_constexpr() == true, "Yipes!");

 const bool tba_2 = test_ba::can_constexpr();

 assert(tba_2 == true);

 return 0;

}

Exploring constexpr at Runtime – N3583

28

9.3.3 Overloading of Constructors

The following would be legal:

// Overload constructor on constexpr

struct test_aa {

 test_aa() : v_{false} { }

 constexpr test_aa() : v_{true} { }

 constexpr bool is_constexpr() { return v_; }

private:

 bool v_;

};

// Class that only has a constexpr constructor

struct test_ab {

 constexpr test_ab() { }

 constexpr bool can_constexpr() { return true; }

};

int main()

{

 // Overloaded constructor

 constexpr test_aa taa_1;

 static_assert(taa_1.is_constexpr() == true, "Yipes!");

 // In C++11 the compiler has discretion for whether to evaluate at

 // runtime or during translation. The assert may fail depending

 // on the mood of the compiler.

 const test_aa taa_2;

 assert(taa_2.is_constexpr() == false); // May fail (or not)

 // Non-overloaded constexpr constructor

 constexpr test_ab tab_1;

 static_assert(tab_1.can_constexpr() == true, "Yipes!");

 test_ab tab_2;

 assert(tab_2.can_constexpr() == true);

 return 0;

}

Exploring constexpr at Runtime – N3583

29

9.3.4 Overloading of Non-Static Member Functions

The following would be legal:

enum class my_constness {

 is_constexpr,

 is_const,

 is_not_const

};

// Overload non-static class member on constexpr and const

struct test_da {

 constexpr test_da() { }

 my_constness constness() { return my_constness::is_not_const; }

 my_constness constness() const { return my_constness::is_const; }

 constexpr my_constness constness()

 { return my_constness::is_constexpr; }

};

int main()

{

 // The constness of the object determines the overload used,

 // just like with const overloading...

 constexpr test_da tda_1;

 static_assert(

 tda_1.constness() == my_constness::is_constexpr, "Yipes!");

 // In C++11 the compiler has discretion for whether to evaluate at

 // runtime or during translation. So tda_2 may have been

 // constructed with either the constexpr or the const constructor

 // depending on the compiler’s mood. The assert may (or may not)

 // fail.

 const test_da tda_2;

 assert(tda_2.constness() == my_constness::is_const); // May fail

 // Since tda_3 is not const, the compiler must use the non-const

 // constructor. The following assert is guaranteed to succeed.

 test_da tda_3;

 assert(tda_3.constness() == my_constness::is_not_const);

 return 0;

}

9.4 Forbidding Runtime Execution with Overloading
One of the goals for any of the approaches described is to allow a developer to force a function or

constructor to either be evaluated during compilation or to fail to compile. Nothing in constexpr

overloading leads directly to that goal. We must be a little tricky. However, by using templates and

SFINAE we can achieve that goal. Here’s an example:

Exploring constexpr at Runtime – N3583

30

// Non-constexpr function that static_asserts

template <typename T>

bool during_compilation_with_arg(T arg)

{

 static_assert(

 sizeof (T) == 0,

 "Assign return value to a constexpr.");

 return false;

}

// Constexpr function overload that compiles, but only with bool

template <typename T>

constexpr bool during_compilation_with_arg(T arg)

{

 static_assert(std::is_convertible<T, bool>::value, "Pass a bool");

 return arg;

}

int main()

{

 // The following evaluates during translation

 constexpr bool compiling1 = during_compilation_with_arg(true);

 static_assert(compiling1 == true, "Yipes!");

 // The following fails with a static_assert

 volatile bool runtime_bool = true;

 bool compiling2 = during_compilation_with_arg(runtime_bool);

 assert(compiling2 == true);

}

The preceding example shows a possible technique using constexpr overloading to require that a

function either be evaluated during compilation or fail to compile. The goal has been achieved, but it

takes a bit of work to pull off. Here are two points worth noting:

1. Only template functions or constructors can perform this trick. In the example, we wish to

enforce the only-during-compilation rule on a plain (non-template) function that accepts a bool.

That won’t work because SFINAE only applies to templates. To only cause the static_assert

when the non-constexpr version is invoked, the non-constexpr version must be a template.

2. The declarations of the failing and succeeding cases must be identical other than the leading

constexpr. If they are not identical then overload resolution may thwart the attempt.

Therefore the successful (constexpr) version of the function must also be declared as a

template. If it is not also declared as a template then overload resolution will prefer the non-

template version which would side-step our attempt at requiring compile-time only evaluation.

The technique gets even trickier if the function or constructor takes no arguments.

Exploring constexpr at Runtime – N3583

31

So constexpr overloading does a great job of effortlessly substituting constexpr and non-

constexpr versions of functions or constructors. But constexpr overloading is much harder to apply

to the problem of guaranteeing that a function or constructor can only be evaluated during compilation.

9.5 Consequences of Overloading
A number of the preceding examples have indeterminate results. That’s unfortunate. It’s hard to use a

language feature in a program when the result of using the feature is unpredictable. The

unpredictability of constexpr overloading, which results from current C++11 rules for constexpr

evaluation, makes it undesirable as a programming tool of any sort.

If we ignore the unpredictability of overloading, we can return to the original set of three concerns

about a proposed approach. How would overloading on constexpr help with the concerns raised

earlier?

 Concern A: Does it provide a mechanism to enforce compile-time error checking?

Yes, but it takes some work. See Section 9.4 of this paper.

 Concern B: Does it provide a means for invoking an appropriate function implementation at

runtime?

Yes, beautifully and, for the user, transparently.

 Concern C: Does it provide a way to avoid excessive recursion on the stack at runtime?

Yes. By providing an appropriate non-constexpr overload the author can prevent the recursive

version of the function or constructor from ever executing at runtime.

What would be the downsides to overloading on constexpr?

 The unpredictability regarding which overload the compiler will choose seems like a difficult

issue to overcome. As noted in Section 7 of this paper, it might be possible to change the rules

for constexpr evaluation in such a way that constexpr overloading would become predictable.

Such an extensive change is far beyond the scope of this paper and would need strong

motivation.

 Using overloading it is possible, but awkward, to require a function or constructor to only be

evaluated during translation. Either the constexpr qualifier approach or the

std::evaluated_during_runtime trait would be easier to use in this arena.

 The added compiler complexity of constexpr overloading may be difficult for compiler

developers to support. Overloading rules are already quite complicated, and this would

increase the complexity.

Exploring constexpr at Runtime – N3583

32

10 Summary
The constexpr feature added by C++11 is great. We have, however, looked at two situations where

constexpr may fall a bit short:

1. It would be useful for there to be a way to guarantee that a certain select constexpr functions

and constructors are evaluated during translation. This capability would considerably enhance

detecting errors during compilation rather than at runtime.

2. There are situations where the techniques required for writing a constexpr function or

constructor must result in less than the fastest possible runtime code. In these cases it would be

useful to provide an exclusively constexpr version of the function or constructor and a distinct

runtime version of the same.

This paper argues that these considerations are significant enough that it would be appropriate to

change the standard in some way to improve the situation.

The trick is determining how the standard should be changed.

Four different approaches to changing the standard were examined:

 Approach A: introducing a qualifier or attribute that allows a constexpr function or

constructor to be marked as only useable during translation, not at runtime.

 Approach B: Changing the requirements on constexpr code so it can no longer use general

recursion. It must limit itself to tail recursion. Furthermore, compilers would be required to use

the tail recursion optimization when generating runtime code for constexpr functions and

constructors.

 Approach C: introducing a trait or a concept that could be used to specialize constexpr

functions and constructors for either translation-time or runtime use.

 Approach D: extending function overloading so both constexpr and non-constexpr

functions could share the same signature. The compiler would choose the correct function

based on context.

All four of these approaches have their own advantages and drawbacks. The drawbacks range from the

introduction of ugly keywords to the introduction of unpredictable behavior.

Exploring constexpr at Runtime – N3583

33

11 Acknowledgements
Many thanks to the folks who reviewed and contributed to this paper:

 Special thanks to Walter E. Brown. He suggested investigating overloading as a way to address

these constexpr issues. He also provided other editing and helpful comments on several early

drafts.

 Daniel Krügler kindly and thoroughly answered a question regarding constexpr on

comp.std.c++. The divide-by-zero example in Section 7.1 was directly lifted from his response.

See https://groups.google.com/forum/?fromgroups=#!topic/comp.std.c++/QQ34k_1b_Hs.

 Brian Schiller provided many useful comments.

 Marc Glisse provided information about anticipated consexpr-izations of std::array. His

information had significant impact on the motivating example and removed a concern from the

paper.

 Jeremiah Willcock correctly pointed out that compile-time error checking is a more significant

consideration than speed of code execution.

 Rick Coates contributed useful suggestions for organizing the paper.

 Thanks also to all the reviewers at std-proposals@isocpp.org. Their comments were invaluable

in finalizing the paper.

12 References
Information about packed BCD encoding is at http://en.wikipedia.org/wiki/Binary-coded_decimal

The implementation for the str_const class, used in the constexpr_bcd example, came from

http://en.cppreference.com/w/cpp/language/constexpr

Information about the Babylonian Method of finding square roots may be found at

http://en.wikipedia.org/wiki/Methods_of_computing_square_roots

https://groups.google.com/forum/?fromgroups=#!topic/comp.std.c++/QQ34k_1b_Hs
mailto:std-proposals@isocpp.org
http://en.wikipedia.org/wiki/Binary-coded_decimal
http://en.cppreference.com/w/cpp/language/constexpr
http://en.wikipedia.org/wiki/Methods_of_computing_square_roots

