
Three <random>-related Proposals

Document #: WG21 N3547
Date: 2013-03-12
Revises: None
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Additions to <algorithm> 1
2 Additions to <random> 3
3 Deprecations in <cstdlib> and <stdlib.h> 4
4 Proposed wording 5
5 Summary and conclusion 8
6 Acknowledgments 8
7 Bibliography 8
8 Revision history 9

Abstract

This paper proposes (1) to add one function template to <algorithm>, (2) to add a few novice-
friendly functions to <random>, and (3) to deprecate some related legacy interfaces. The unifying
factor in this tripartite proposal is the entities’ respective connection with random numbers.

1 Additions to <algorithm>

1.1 Proposal
In [Aus08a], Matt Austern proposed a number of additional algorithms for the standard library.
Among these were random_sample and random_sample_n, based respectively on the well-known
algorithms S (“selection sampling technique”) and R (“reservoir sampling”) elucidated in [Knu97,
§3.4.2]. The paper succinctly describes these algorithms as “. . . two important versions of random
sampling, one of which randomly chooses n elements from a range of N elements and the other of
which randomly chooses n elements from an input range whose size is initially unknown. . . .”

After WG21 consideration at the Sophia-Antipolis meeting, Austern updated the proposal.
Among other changes, he withdrew these two algorithms: “The LWG was concerned that they
might not be well enough understood for standardization. . . . It may be appropriate to propose
those algorithms for TR2” [Aus08b]. The wiki minutes of the discussion are equally terse: “Bjarne
feels rationale is insufficient. PJ worries we will get it wrong. Lawrence worries that people will
roll their own and get it wrong. Good candidate for TR2” [LWG08]. The subsequent vote regarding
these proposed algorithms achieved a solid LWG consensus (10-1, 2 abs.) in favor of their future
inclusion in a Technical Report (now termed a Technical Specification).

Since WG21 is now preparing updates to C++11 and drafting new Technical Specifications,
it is an appropriate time to reconsider adding these algorithms, which (as Austern pointed out)
have long been part of SGI’s STL implementation. Unlike the SGI implementation on which the
previous proposal was based, the present proposal features a unified (common) interface, sample,
that selects between algorithms R and S based on the categories of the iterators supplied at the
point of call.

1

mailto:webrown.cpp@gmail.com

2 N3547: Three <random>-related Proposals

1.2 Expository implementation1

First, here is the common interface. It relies on overload resolution with tag dispatch to select the
appropriate algorithm based on its arguments’ iterator categories:

1 template< class PopIter, class SampleIter, class Size, class URNG >
2 inline SampleIter
3 sample(PopIter first, PopIter last
4 , SampleIter out
5 , Size n, URNG && g
6)
7 {
8 using pop_t = typename iterator_traits<PopIter >::iterator_category;
9 using samp_t = typename iterator_traits<SampleIter>::iterator_category;

11 return _sample(first, last, pop_t{}
12 , out, samp_t{}
13 , n, std::forward<URNG>(g)
14);
15 }

We next exhibit the reservoir sampling algorithm R.2 It requires only input interators for access
to the population being sampled, but needs a random access iterator to (the start of) the reservoir
that will ultimately hold the resulting sample:

1 template< class PopIter, class SampleIter, class Size, class URNG >
2 SampleIter
3 _sample(PopIter first, PopIter last, input_iterator_tag
4 , SampleIter out, random_access_iterator_tag
5 , Size n, URNG && g
6)
7 {
8 using dist_t = uniform_int_distribution<Size>;
9 dist_t d{};

11 Size sample_sz{0};
12 while(first != last && sample_sz != n)
13 out[sample_sz++] = *first++;

15 for(Size pop_sz{sample_sz}; first != last; ++first) {
16 using param_t = typename dist_t::param_type;
17 param_t const p{0, ++pop_sz};
18 Size k{ d(g, p) };
19 if(k < n)
20 out[k] = *first;
21 }
22 return out + sample_sz;
23 }

We conclude this section with the selection sampling algorithm S. It needs forward iterators to
access the population, but only an output iterator to the resulting sample:

1 Beware of bugs in this code; I have only tried it, not proved it correct. [, Apologies to Knuth.]
2 Knuth’s original algorithm R guarantees stability, but at the cost of an extra level of indirection, an additional

sorting step, etc. The SGI version, as proposed here and in Austern’s earlier paper, sacrifices stability in the interest of
performance, but retains all other characteristics, especially the all-important randomness of the resulting sample.

N3547: Three <random>-related Proposals 3

1 template< class PopIter, class SampleIter, class Size, class URNG >
2 SampleIter
3 _sample(PopIter first, PopIter last, forward_iterator_tag
4 , SampleIter out, output_iterator_tag
5 , Size n, URNG && g
6)
7 {
8 using dist_t = uniform_int_distribution<Size>;
9 dist_t d{};

11 Size unsampled_sz = distance(first, last);
12 for(n = min(n, unsampled_sz); n != 0; ++first, --unsampled_sz) {
13 using param_t = typename dist_t::param_type;
14 param_t const p{0, unsampled_sz};
15 if(d(g, p) < n)
16 *out++ = *first, --n;
17 }
18 return out;
19 }

2 Additions to <random>

2.1 Proposal
We propose to add to <random> the following modest 4-part toolkit of novice-friendly functions:3

• global_urng()
Grants access to a URNG object of implementation-specified type.

• randomize()
Sets the above URNG object to an (ideally) unpredictable state.

• pick_a_number(from,thru)
Returns an int variate uniformly distributed in the closed int range [from, thru].

• pick_a_number(from,upto)
Returns a double variate uniformly distributed in the half-open double range [from, upto).

We further propose to give the existing algorithm shuffle and the above-proposed algorithm
sample a default argument for their respective parameters of type UniformRandomNumberGenerator
&&.4 The proposed default value is the result of calling the above-proposed global_urng().

2.2 Representative implementation
Here, first, is a sample implementation of the global_urng() and randomize() functions,
demonstrating an implementor’s choice of an engine type for the shared URNG:

3 This proposal is in response to the near-incessant user ���
�XXXXwhining ���

�XXXXkvetching feedback, from even respected C++
cognoscenti, that <random>’s contents are insufficiently “friendly” to novices and other casual users.

4 Neither of these parameters currently specifies any default argument.

4 N3547: Three <random>-related Proposals

1 using __urng_t = std::default_random_engine;
2 __urng_t & global_urng()
3 {
4 static __urng_t u{};
5 return u;
6 }

8 void randomize()
9 {

10 static std::random_device rd{};
11 global_urng().seed(rd());
12 }

If the implementor chooses differently, the same functions might be implemented this way:

1 using __urng_t = std::random_device;
2 __urng_t & global_urng()
3 {
4 static __urng_t rd{};
5 return u;
6 }

8 void randomize() { }

In contrast, the pick_a_number functions can be written so as to be agnostic with respect to
the implementor’s choice of URNG type:

1 int pick_a_number(int from, int thru)
2 {
3 static std::uniform_int_distribution<> d{};
4 using parm_t = decltype(d)::param_type;
5 return d(global_urng(), parm_t{from, thru});
6 }

8 double pick_a_number(double from, double upto)
9 {

10 static std::uniform_real_distribution<> d{};
11 using parm_t = decltype(d)::param_type;
12 return d(global_urng(), parm_t{from, upto});
13 }

3 Deprecations in <cstdlib> and <stdlib.h>

By common consensus at several consecutive WG21 meetings during which the C++11 random
number facility was being discussed and shaped into its final form, it has for a number of years
been the long-term plan to excise the legacy C random number facility from the std namespace.
Indeed, obliquely acknowledging the quality5,6 of C++11’s <random> header, WG21 voted several
years ago to insert a Note7 into [c.math]/5 as a head start on this plan: “The random number
generation . . . facilities in this standard are often preferable to rand.”

5 “[B]y and large, I think it’s the best random number library design of all, by a mile. If I were a random number, I’d
think I died and went to heaven” [Ale07].

6 “The C++11 <random> is very STL-like in that it sets up requirements for random number generators. . . , and
random distributions. . . , and then the client can mix and match the two. It’s a really very cool design [Hin12].

7 The language for this Note was proposed in [Daw08]; [Bec08] was the first Working Paper to incorporate it.

N3547: Three <random>-related Proposals 5

In light of our concurrent proposal, above, for a more user-friendly interface to <random>, we
therefore propose to execute the next step of the plan to discourage the use of the traditional
C function rand() as well as its associated seeding function srand() and upper limit macro
RAND_MAX. (These are declared in the traditional C header <stdlib.h> and the corresponding
C++ header <cstdlib>.) We propose to begin this transition by formally deprecating:

• std::rand(), std::srand(), and (when obtained via <cstdlib>) RAND_MAX and

• algorithm random_shuffle() (keeping shuffle, however).

4 Proposed wording

All proposed wording is relative to WG21 draft [DuT12]. It is recommended to apply the wording
additions (marked in green text) and deletions (marked in red, usually struck as well) in the order
shown. Editorial notes are displayed against a gray background .

Append the following new paragraph to [depr.c.headers]:

Use of function rand, function srand, and macro RAND_MAX is deprecated when these names are
introduced via the <cstdlib> header. Use of function std::rand and function std::srand is
deprecated when these names are introduced into the std namespace via the header <stdlib.h>.

Copy all of the current [alg.random.shuffle] to a new section in Annex D, applying the changes
shown below.

Random shuffle [depr.alg.random.shuffle]

The following templates are in addition to those specified in Clause [alg.random].

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first, RandomAccessIterator last,

RandomNumberGenerator&& rand);

template<class RandomAccessIterator, class UniformRandomNumberGenerator>
void shuffle(RandomAccessIterator first, RandomAccessIterator last,

UniformRandomNumberGenerator&& g);

Effects: Permutes the elements in the range [first, last) such that each possible permutation
of those elements has equal probability of appearance.

Requires: RandomAccessIterator shall satisfy the requirements of ValueSwappable (17.6.3.2).
The random number generating function object rand shall have a return type that is convert-
ible to iterator_traits<RandomAccessIterator>::difference_type, and the call rand(n)
shall return a randomly chosen value in the interval [0, n), for n > 0 of type iterator_traits<
RandomAccessIterator>::difference_type. The type UniformRandomNumberGenerator shall
meet the requirements of a uniform random number generator (26.5.1.3) type whose return type
is convertible to iterator_traits<RandomAccessIterator>::difference_type.

Complexity: Exactly (last − first)− 1 swaps.

6 N3547: Three <random>-related Proposals

Remarks: To the extent that the implementation of these functions makes use of random numbers,
the implementation shall use the following sources of randomness:

The underlying source of random numbers for the first form of the function is implementation-
defined. An implementation may use the rand function from the standard C library.

In the second form of the function, the function object rand shall serve as the implementation’s
source of randomness.

In the third shuffle form of the function, the object g shall serve as the implementation’s source
of randomness.

In the synopsis in [algorithms.general], (a) remove both overloads of random_shuffle, and
(b) insert = global_urng() as the default value for the last parameter of shuffle.

Change the heading of [alg.random.shuffle] as follows and then make the remaining indicated
adjustments to the retitled section’s text:

25.3.12 Random shuffleing and sampling [alg.random.shuffle]

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first, RandomAccessIterator last,

RandomNumberGenerator&& rand);

template<class RandomAccessIterator, class UniformRandomNumberGenerator>
void shuffle(RandomAccessIterator first, RandomAccessIterator last,

UniformRandomNumberGenerator&& g=global_urng());

Effects: Permutes the elements in the range [first, last) such that each possible permutation
of those elements has equal probability of appearance.

Requires: RandomAccessIterator shall satisfy the requirements of ValueSwappable (17.6.3.2).
The random number generating function object rand shall have a return type that is convertible
to iterator_traits<RandomAccessIterator>::difference_type, and the call rand(n) shall
return a randomly chosen value in the interval [0, n), for n > 0 of type iterator_traits<Rando
mAccessIterator>::difference_type. The type UniformRandomNumberGenerator shall meet
the requirements of a uniform random number generator (26.5.1.3) type whose return type is
convertible to iterator_traits<RandomAccessIterator>::difference_type.

Complexity: Exactly (last − first)− 1 swaps.

Remarks: To the extent that the implementation of these this functions makes use of random
numbers, the implementation shall use the following sources of randomness:

The underlying source of random numbers for the first form of the function is implementation-de-
fined. An implementation may use the rand function from the standard C library.

In the second form of the function, the function object rand shall serve as the implementation’s
source of randomness.

In the third shuffle of the function, the object g shall serve as the implementation’s source of
randomness.

N3547: Three <random>-related Proposals 7

Append the following text to the newly retitled [alg.random], also incorporating the signature into
the header <algorithm> synopsis at the beginning of [algorithms].

template <class PopulationIterator, class SampleIterator,
class Distance, class URNG>

SampleIterator sample(PopulationIterator first, PopulationIterator last,
SampleIterator out, Distance n,
UniformRandomNumberGenerator&& g=global_urng());

Requires:

• PopulationIterator shall meet the requirements of an InputIterator type.
• If PopulationIterator meets the additional requirements of a ForwardIterator type,
SampleIterator shall meet the requirements of an OutputIterator type. Otherwise,
SampleIterator shall meet the requirements of a RandomAccessIterator type.

• PopulationIterator’s value type shall be Assignable, and shall be writable to out.
• Distance shall be an integer type.
• UniformRandomNumberGenerator shall meet the requirements of a uniform random number

generator ([rand.req.urng]) type whose return type is convertible to Distance.
• out shall not be in the range [first, last).

Effects: Copies min(last−first, n) elements (the sample) from [first, last) (the population) to
out such that each possible sample has equal probability of appearance.

Returns: The end of the resulting sample range.

Complexity: No worse than O(n).

Remarks:

• Stable if and only if PopulationIterator meets the requirements of a ForwardIterator.
• To the extent that the implementation of this function makes use of random numbers, the

object g shall serve as the implementation’s source of randomness.

Append the following text as a new subsection under [rand.util]:

Global URNG functions [rand.util.global]

see below& global_urng();

Effects: Ensures the instantiation of an object u that has static storage duration and whose
implementation-specified type meets the requirements of a uniform random number generator
[rand.req.urng] type. [Note: The implementation may select this type on the basis of performance,
size, quality, or any combination of such factors, so as to provide at least acceptable behavior for
relatively casual, inexpert, and/or lightweight use. — end note] The extent to which u’s initial
state can be predicted or can ever be reproduced is unspecified.

Synchronization: It is implementation-defined whether this function may introduce data races
[res.on.data.races].

Returns: An lvalue reference to u.

void randomize();

Effects: Sets the uniform random number generator given by global_urng() to an (ideally)
unpredictable state.

8 N3547: Three <random>-related Proposals

int pick_a_number(int from, int thru);
double pick_a_number(double from, double upto);

Returns: Returns a variate uniformly distributed (a) in the closed range [from, thru], for the
first form of the function, and (b) in the half-open range [from, upto), for the second form of the
function.

Remarks: To the extent that the implementation of these functions makes use of random numbers,
the implementation shall use, as its source of randomness, the uniform random number generator
given by global_urng().

5 Summary and conclusion

This paper has proposed three modest changes to the C++11 standard, each related to the
random number facility. The proposals are largely independent of each other, but we respectully
recommend their adoption together via approval of the paper in its entirety.

6 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments, and to
Matt Austern for the original proposal of the sampling algorithms.

7 Bibliography

[Ale07] Andrei Alexandrescu: “Re: Conveniently generating random numbers with TR1 random.”
comp.std.c++, 2007-06-11.

[Aus08a] Matt Austern: “More STL algorithms.” ISO/IEC JTC1/SC22/WG21 document N2569 ((
mailing)post-Bellevue mailing), 2008-02-29.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2569.pdf.

[Aus08b] Matt Austern: “More STL algorithms (revision 2).” ISO/IEC JTC1/SC22/WG21 document N2666
((mailing)post-Sophia mailing), 2008-06-11.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2666.pdf.

[Bec08] Pete Becker: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/SC22/
WG21 document N2691 ((mailing)post-Sophia mailing), 2008-06-27.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2691.pdf.

[Daw08] Beman Dawes et al.: “Thread-Safety in the Standard Library (Rev 2).” ISO/IEC JTC1/SC22/WG21
document N2669 ((mailing)post-Sophia mailing), 2008-06-13.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2669.pdf.

[DuT12] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N3485 ((mailing)post-Portland mailing), 2012-11-02.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3485.pdf.

[Hin12] Howard Hinnant: Untitled response to posted query. 2012-31-07.
http://stackoverflow.com/questions/11717433/tutorial-or-example-code-for-extending-c11-
random-with-generators-and-distribu.

[Knu97] Donald E. Knuth: The Art of Computer Programming, Volume 2: Seminumerical Algorithms (Third
Edition). Addison-Wesley, 1997. ISBN 0-201-89684-2.

[LWG08] “Library Working Group: Wednesday.” Minutes of LWG meeting, Sophia-Antipolis, France. 2008-
06.
http://wiki.edg.com/twiki/bin/view/Wg21sophiaAntipolis/LibraryWorkingGroup.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2569.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2666.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2691.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2669.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3485.pdf
http://stackoverflow.com/questions/11717433/tutorial-or-example-code-for-extending-c11-random-with-generators-and-distribu
http://stackoverflow.com/questions/11717433/tutorial-or-example-code-for-extending-c11-random-with-generators-and-distribu
http://wiki.edg.com/twiki/bin/view/Wg21sophiaAntipolis/LibraryWorkingGroup

N3547: Three <random>-related Proposals 9

8 Revision history

Revision Date Changes

1.0 2013-03-12 • Published as N3547.

	1 Additions to <algorithm>
	2 Additions to <random>
	3 Deprecations in <cstdlib> and <stdlib.h>
	4 Proposed wording
	5 Summary and conclusion
	6 Acknowledgments
	7 Bibliography
	8 Revision history

