
Document: N3530
Date: 2013-03-15
References: ISO/IEC JTC 1/SC 22/WG14/N1682
Authors: Darryl Gove (darryl.gove@oracle.com)

Nawal Copty (nawal.copty@oracle.com)
Michael Wong (michaelw@ca.ibm.com)

Subject: Leveraging OpenMP infrastructure for language level
parallelisation

 1 Introduction

This proposal suggests how language level parallelisation can be achieved using the existing
OpenMP infrastructure. OpenMP is a mature, well established and widely used specification
for writing portable multi-threaded applications on a shared memory system. All leading
compilers (Oracle, Intel, IBM, gcc, Microsoft, PGI, etc.) already support OpenMP.

It has been around for over 15 years, the first formal version was published in 1997, the 4.0
version of the specifications is due to be released in 2013. The 4.0 specification will also
include support for cc-NUMA systems and heterogeneous hardware architectures, like DSP
and GPU accelerators.

OpenMP uses compiler directives to express the parallelism. However, the implementation of
an OpenMP program relies on a library interface that can programmatically query the run-time
system, alter settings and control how the parallelisation is undertaken.

This paper contains a proposal to leverage existing OpenMP infrastructure as part of a future
language standard for parallelisation. In this proposal we have assumed some familiarity with
OpenMP. A reader who is not familiar with OpenMP would be advised to read the brief
overview contained in the appendix before reading the proposal.

 2 Leveraging OpenMP as part of a language standard

The big advantage that OpenMP has over other approaches is that it is already supported by
all major compilers. So there would be a low barrier to using its infrastructure as part of
language specified parallelism. This would ensure timely availability in a wide range of
compilers. It would also reduce the amount of new code needed to support the feature, which,
together with the large reuse of existing debugged code, would ensure that initial
implementations were of high quality.

Moreover, many developers are already familiar with the features of OpenMP. Language
specified parallelism that used similar features would accelerates adoption, and greatly
reduce the learning curve for users.

Although OpenMP uses #pragma based controls to describe the parallelism, this is not
necessary to leverage the existing OpenMP infrastructure. It is trivial to formulate an
alternative way of passing that information to the compiler and runtime.

The core of this proposal is that the language standards could adopt the already available run

Leveraging OpenMP infrastructure for language level parallelisation ISO/IEC JTC 1/SC 22/WG21/N3530

Darryl Gove 1

mailto:darryl.gove@oracle.com
mailto:michaelw@ca.ibm.com
mailto:nawal.copty@oracle.com

time OpenMP API and use keywords, or some other mechanism, instead of using #pragmas
for identifying parallel regions.

For example, to define a parallel loop, the keyword “parallelfor” could be used instead of
“#pragma omp parallel for”. The example in Figure 1 illustrates this:

parallelfor (i=0; i<1000; i++)
{
 ...
}

Figure 1: Example of a parallel loop

As with OpenMP programs, the control of the characteristics of the parallel region could be
set through the OpenMP API (optionally renamed to avoid confusion between specifications).
In Figure 2, the developer uses the call to function “omp_set_schedule()” to control the
distribution of the loop iterations over the threads. If the developer left out this function call,
the loop would still execute in parallel, but the run time details would be decided by the
system.

omp_set_schedule(omp_sched_dynamic,100);

parallelfor (i=0; i<1000; i++)
{
 ...
}

Figure 2: Use of the OpenMP API

The advantages of this approach are:

• Leverages the existing OpenMP infrastructure – this ensures rapid adoption by
compilers.

• Does not require compiler vendors to support another parallelisation mechanism.

• All concepts and constructs are familiar to many developers already, greatly reducing
the learning curve and accelerate user adoption of the new standard.

• Uses keywords rather than #pragma directives.

• Is compatible with OpenMP, without being constrained by OpenMP’s decisions.

 3 Mapping from OpenMP to language level parallelism

This section proposes how the language could be extended to leverage OpenMP features,
without using the directive based approach favoured by OpenMP.

Leveraging OpenMP infrastructure for language level parallelisation ISO/IEC JTC 1/SC 22/WG21/N3530

Darryl Gove 2

 3.1 Parallelisation

Of the three approaches to parallel work that OpenMP supports, we are proposing the
adoption of two: parallel for and parallel task. The third approach, parallel
sections, can be implemented using parallel task, so does not warrant inclusion.

The first approach we have already met in Figure 1, which is the parallelfor. As proposed
it could be translated directly to “#pragma omp parallel for \ for” by a preprocessor.
It is not imagined that any implementation would do that direct translation. The index variable
would naturally be scoped as private, as it currently is for OpenMP, in the example shown
in Figure 3, the variable i would be scoped as private so each thread had a separate copy.

parallelfor (i=0; i<1000; i++)
{
 ...
}

Figure 3: Example of parallelfor

Although we are using parallelfor as a single keyword, there is no reason why it could
not be a parallel keyword that could be placed before or after the existing for keyword.
The objective here is to map the language level concept onto the existing OpenMP
infrastructure, not for us to define a rigid specification for the language.

In the parallelfor keyword we are omitting support for OpenMP clauses that refine the
behaviour in the parallel region. We are also combining the OpenMP concepts of a parallel
region and a parallelisation directive. Finally we are not addressing here how variables should
be scoped within the parallelfor loop.

It is important to realise that parallel for is probably the most widely used OpenMP
parallelisation directive. Incorporating an equivalent into the language standard will enable the
development of a significant number of parallel applications.

The second parallelisation approach is the parallel task. The keyword paralleltask
would be used to indicate a block of code that should be placed on the task queue and
executed by either the current thread or one of the threads available in the thread pool.

The user can insert a call to the taskwait() function to explicitly wait until all child tasks
have completed. An example is shown in Figure 4.

Leveraging OpenMP infrastructure for language level parallelisation ISO/IEC JTC 1/SC 22/WG21/N3530

Darryl Gove 3

int fib(int n)
{
 int i, j;
 if (n<2)
 return n;
 else
 {
 paralleltask { i=fib(n-1); }
 paralleltask { j=fib(n-2); }
 taskwait();
 return i+j;
 }
}

Figure 4: Example of paralleltask

 3.2 Controlling parallelisation behaviour

OpenMP has a set of clauses that control how parallelisation is performed within a parallel
region. As an example, there is a clause that determines how the work is distributed across
the threads, and another clause that determines how many threads are used to perform the
work.

Fortunately OpenMP also defines an API that provides the same facilities for reading and
modifying the runtime behaviour of parallel constructs. Rather than enumerate these routines,
it is probably more useful to describe the set of facilities that the API provides:

• Obtaining and setting the number of available threads. This allows a program to
change the number of threads used in the next parallel construct depending on runtime
requirements. It would also allow a developer to change the algorithm depending on
the number of threads available.

• Obtaining the id of the currently executing thread.

• Obtaining the number of processors available. This allows an application to spawn an
appropriate number of threads for the given hardware.

• Determining whether a function is executing in a parallel or serial context.

• The scheduling for the next parallel region can be read or modified. Appropriate
scheduling algorithms allow the program to ensure that the workload is evenly
distributed across all available threads.

 3.3 Variable scoping

OpenMP defines some default variable scoping rules, it also defines a set of clauses that can
adjust the scoping of variables within parallel regions. The two most common scopes are
shared and private. Fortunately these are very easy to accommodate within the current
language defined variable scoping rules.

Variables that are defined outside of a parallel construct would naturally be shared within that

Leveraging OpenMP infrastructure for language level parallelisation ISO/IEC JTC 1/SC 22/WG21/N3530

Darryl Gove 4

construct, and variables which are defined inside a parallel construct would naturally be
private to that construct. An example of this variable scoping can be seen in Figure 5. In the
example, the variables length, in, and out are shared between the threads. The variable
tmp is private to each thread.

void compute(int length, double * in, double * out)
{
 parallelfor (int i=0; i<length; i++)
 {
 double tmp = in[i];
 if (tmp>507.0) { tmp = tmp/2.0; } else { tmp = tmp * 2.0; }
 out[i]=tmp;
 }
}

Figure 5: Example of simple variable scoping

It is proposed that, like OpenMP, the loop induction variable is automatically private to the
each thread.

 3.4 Complex variable scoping

OpenMP also defines more complex OpenMP variables scopings of firstprivate,
lastprivate, and reduction. Of these, reduction is the most important, this enables
multiple threads to work together in reducing a volume of data down to a single value. The
most recent version of the OpenMP specification enables a developer to provide user-defined
reductions.

Ideally variable scoping would be included using some kind of language support. However, it
is easy enough to support these variable scoping variants using local arrays. To do this each
thread uses a single index into the array to hold its current value for the target variable. If we
assume that the activethreads() call returns the number of threads that are available to
execute the parallel region and the mythreadid() call returns the ID of the current thread,
then we can get each thread to update its index into an array, and leave the serial code to
manage initialising the array, and the finalisation. The example in Figure 6 shows a reduction
operation coded this way.

Leveraging OpenMP infrastructure for language level parallelisation ISO/IEC JTC 1/SC 22/WG21/N3530

Darryl Gove 5

double compute(int length, double * values)
{
 double total=0.0;
 double totalarray[activethreads()];

 // serial initialisation
 for (int i=0; i<activethreads(); i++) { totalarray[i] = 0.0; }

 parallelfor (int i=0; i<length; i++) // parallel computation
 {
 totalarray[mythreadid()] += values[i];
 }

 for (int i=0; i<activethreads(); i++) // serial finalisation
 {
 total += totalarray[i];
 }
 return total;
}

Figure 6: Reduction using thread-indexed arrays

One issue with the code as shown in Figure 6 is that there is false sharing of the array
elements, which will have a performance impact. This indicates that although we can write
functionally correct code, it might be more effective with language support. This initial
proposal does not include a preferred approach to specifying variable scoping in a parallel
region, although this would be addressed as part of a subsequent proposal.

 4 Concluding remarks

Proposed here there are two approaches to parallelism, parallel for and parallel
task. There is some syntax around how these are described, and there are some things we
can do at the language level that make the use of these features easier.

The key take away from this proposal is that, through their OpenMP runtime libraries, all
compilers already have the infrastructure to support language level parallelisation. What is
proposed here is the outline of how we can leverage the existing code base to get
parallelisation into the language.

The reuse of existing infrastructure reduces costs for compiler vendors, leading to more rapid
availability across platforms, and a more robust implementation.

Using the same infrastructure also means that we can mix code written using the language
provided parallelisation with code written using OpenMP. This will make it easier for people to
adopt the language parallelisation constructs, and it will enable people to leverage the leading
edge constructs provided by OpenMP if they need to.

Leveraging OpenMP infrastructure for language level parallelisation ISO/IEC JTC 1/SC 22/WG21/N3530

Darryl Gove 6

 5 What next?

This is a relatively bare-bones proposal. There are quite a few places where the details are
undefined. The next step would be to produce a more detailed proposal and corresponding
specification. Input on refinements to the specification would be welcomed.

 6 Further reading

The current version of the OpenMP specification can be found at the OpenMP website
http://www.openmp.org/

The current (3.1) specification can be found at

http://www.openmp.org/mp-documents/OpenMP3.1.pdf

The current draft of the 4.0 specification can be found at

http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf

Leveraging OpenMP infrastructure for language level parallelisation ISO/IEC JTC 1/SC 22/WG21/N3530

Darryl Gove 7

http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/

Appendix

 1 An overview of OpenMP features

 1.1 The benefits of OpenMP

OpenMP is a combination of compiler directives and a supporting runtime library. The
directives describe how the code should be made parallel, and the compiler works with the
runtime library to make this happen.

Since the compiler and runtime library manage the threads, parallelisation can be applied to
just the region of code where there is expected to be a benefit. This is known as incremental
parallelisation since a developer can work through their application piecemeal. Similarly
parallelisation can be applied in the main executable or libraries.

The OpenMP specification has a set of default behaviours, but enables a developer to
override these. For example, a developer could specify that a region of code only be executed
in parallel if there is sufficient work. This gives a developer a considerable amount of control
over where and how an application is made parallel.

 1.2 The parallel region

The parallel region is the key construct in OpenMP. Code within a parallel region is executed
by all threads. Code outside of the parallel region is executed by a single thread.

Within the parallel region, the developer has a wealth of constructs to distribute the work over
the threads, control synchronization, guard updates of shared data, etc. Often the parallel
region is combined into a single directive that defines the region and defines the type of
parallelisation used in the region; the examples shown in this paper use this approach.

In the remainder of this section we touch upon a subset of the features provided by OpenMP.

 1.3 Types of parallelisation

OpenMP supports three mechanisms to specify the parallelism in an application

• Parallel sections

• Parallel for

• Parallel tasks

 1.4 Parallel sections.

This is where the developer describes multiple sections of independent code. The run time
system assigns a thread to each section and wraps around if there are fewer threads than
sections.

Leveraging OpenMP infrastructure for language level parallelisation ISO/IEC JTC 1/SC 22/WG21/N3530

Darryl Gove 8

For example, if an application needed a client thread and a server thread, then parallel
sections could be used to start the two threads in parallel. An example of parallel
sections is shown in Figure 7.

#pragma omp parallel sections
{
 #pragma omp section
 {
 // Client thread
 ...
 }
 #pragma omp section
 {
 // Server thread
 ...
 }
}

Figure 7: Example of two parallel sections

Although parallel sections are useful, they can be replicated using parallel tasks, which
will introduce shortly. Therefore it is not proposed that parallel sections form the basis
for any language level concepts.

 1.5 Parallel for loops.

A for loop can be described as being parallel, and optional clauses on the directive can
specify how the loop should be scheduled, the number of threads to be used etc. Defaults are
used in the absence of any clauses. The parallel for is the most widely used OpenMP
parallelisation directive. An example of a parallel for loop is shown in Figure 8.

#pragma omp parallel for
for (...)
{
 ...
}

Figure 8: Example of a parallel for loop

A constraint on the parallel for is that the iteration count for the loop must be known
before the loop is entered. This constraint makes the parallel for construct less suitable
for a more dynamic execution flow, e.g. a while loop. For this, the “tasking” concept has
been supported since the OpenMP 3.0 specification.

 1.6 Parallel tasks.

A task is a dynamically generated block of code that gets scheduled for completion some
time in the future, either by the thread that created the task, or by another thread. For
example, a web server could generate a task to handle each new request as it arrives.

Leveraging OpenMP infrastructure for language level parallelisation ISO/IEC JTC 1/SC 22/WG21/N3530

Darryl Gove 9

An example of creating a parallel task is shown in Figure 9.

#pragma omp task
{
 ...
}

Figure 9: Example of parallel task

Parallel tasks are a great example of the general philosophy of OpenMP. All the developer
needs to do to express concurrency is to embed the independent parts of the code in a task.
From there on the compiler and run time system take care of generating and executing the
tasks.

Tasks are completed in the parallel region where they are introduced. If needed, an explicit
task execution point can be inserted, which forces all pending children tasks to be completed.

 1.7 Other OpenMP directives

OpenMP also provides other directives for things like synchronisation. A selection of these
are:

• The critical directive which indicates an optionally named critical section that only a
single thread can enter at any one time.

• An atomic directive that indicates that the following operation should be completed
atomically.

• A barrier directive which causes threads to wait until all threads have reached that
point.

• A taskwait directive that causes a thread to wait until the completion of all its child
tasks.

• A single directive delineates a block of code in a parallel region that will only be
executed by one of the threads, by default the other threads will wait for this thread to
complete the code. Similarly a master directive indicates a block of code that will only
be executed by the master thread. [The master thread is the first thread that was
created – it is responsible for executing the serial code in the application.]

 1.8 Usage of variables

One of the very flexible features of OpenMP is the recognition that variables can be used in
different ways in different regions of code. For example, a variable could be used to hold a
running total in one region of code, and in the next region of code that same variable could be
used to scale a vector to proportions of the total (see Figure 11).

In keeping with the idea that OpenMP is a syntactic layer added to an application to make it
parallel, the specification allows the developer to define how a variable should be treated
within in each parallel region. The example in Figure 10 uses the variable “total“ in a

Leveraging OpenMP infrastructure for language level parallelisation ISO/IEC JTC 1/SC 22/WG21/N3530

Darryl Gove 10

reduction.

#pragma omp parallel for reduction(+:total)
for (i=0; i<1000; i++)
{
 total += a[i];
}

Figure 10: Example of scoping a variable as a reduction

The simple “reduction” clause describes a fairly complex process that is handled by the
compiler. With this clause, each thread performs the reduction operation on a private copy of
the variable. Upon completion, the run time system merges these partial results and delivers
the final result (“total” in this example).

The reduction clause is actually more general than what this example might suggest and
support for user defined reductions is included in the 4.0 specification.

In a subsequent region a variable can be differently scoped, for example in Figure 11, the
variable “total“ is scoped in two different ways in two different parallel regions.

#pragma omp parallel for reduction(+:total)
for (i=0; i<1000; i++)
{
 total += a[i];
}
#pragma omp parallel for shared(total)
for (i=0; i<1000; i++)
{
 a[i] /= total;
}

Figure 11: Example of changing the scope of a variable between parallel regions

OpenMP has rules for the default scoping of variables in parallel regions. The shared
scoping of “total” in Figure 11 is unnecessary, as it would be scoped as a shared variable
by default.

OpenMP defines a number of variable scoping directives:

• A variable can be shared which means that all threads see, and can modify, the same
variable. Used carelessly, this has the potential for introducing dataraces. Variables
declared outside of a parallel region are (typically) shared by default.

• A variable can be private, so that each thread gets its own copy of the variable.
Variables declared within a parallel region are, naturally, thread private.

• A variable can be firstprivate, which means that it is private, but it is initialised
with the value that the original variable had before entering the parallel region.

• A variable can be lastprivate, which means that each thread gets a copy of the

Leveraging OpenMP infrastructure for language level parallelisation ISO/IEC JTC 1/SC 22/WG21/N3530

Darryl Gove 11

variable, and the last value, in program order, calculated within the parallel region gets
propagated back to the original variable after the parallel region has been executed.

• Finally, a variable can be scoped as a reduction. This gives each thread a private
copy of the variable, and the value propagated to the original variable is the
accumulation of the values from all these private copies.

There are a couple of other ways that variables can be manipulated using OpenMP directives:

A variable can be declared as threadprivate, this is equivalent to declaring a persistent
thread local variable. The copyin directive can be used to copy the value of the master
thread’s threadprivate variable to all the other threads’ values of the same variable.

A copyprivate clause can be combined with the single directive to broadcast the value of
a variable, computed in the region declared by the single directive, to the other threads.

 1.9 OpenMP environment variables

A set of diverse Operating System environment variables are available to define settings prior
to program execution. Examples are OMP_NUM_THREADS to specify the number of threads
and OMP_STACKSIZE to control the stack space allocated to each thread.

 1.10 OpenMP runtime functions

OpenMP requires compiler support, together with an OpenMP specific runtime library. The
runtime library provides extensive support to query the environment, change settings and
alter run time execution behaviour.

For example the application can query the number of threads that are used to execute the
next parallel region. This function is shown in Figure 12.

threads = omp_get_max_threads();

Figure 12: Example of querying number of threads

There are other programmatic interfaces that for example set the number of threads, allow the
application to execute nested parallel regions, etc.

An example of a setting to change the run time behaviour is shown in Figure 13 where the
developer specifies how the iterations of the next parallel loop are to be scheduled.

omp_set_schedule(omp_sched_dynamic,100);

Figure 13: Example of programmatically setting scheduling

Leveraging OpenMP infrastructure for language level parallelisation ISO/IEC JTC 1/SC 22/WG21/N3530

Darryl Gove 12

