
N3525: Polymorphic Allocators Page 1 of 22

Doc No: N3525
Date: 2013-03-18

Author: Pablo Halpern

 phalpern@halpernwightsoftware.com

Polymorphic Allocators

Abstract

A significant impediment to effective memory management in C++ has been the
inability to use allocators in non-generic contexts. In large software systems, most of

the application program consists of non-generic procedural or object-oriented code
that is compiled once and linked many times. Allocators in C++, however, have

historically relied solely on compile-time polymorphism, and therefore have not been
suitable for use in vocabulary types, which are passed through interfaces between
separately-compiled modules, because the allocator type necessarily affects the type

of the object that uses it. This proposal builds upon the improvements made to
allocators in C++11 and describes a set of facilities for runtime polymorphic

allocators that interoperate with the existing compile-time polymorphic ones. In
addition, this proposal improves the interface and allocation semantics of some of

library classes, such as std::function, that use type erasure for allocators.

Contents

1 Document Conventions .. 2

2 Motivation .. 2

3 Summary of Proposal ... 3

3.1 Namespace std::polyalloc ... 3

3.2 Abstract base class memory_resource ... 3

3.3 Class Template polymorphic_allocator<T> ... 4

3.4 Aliases for container classes ... 4

3.5 Class template resource_adaptor<Alloc> ... 4

3.6 Typedef new_delete_resource .. 4

3.7 Function new_delete_resource_singleton() ... 5

3.8 Functions get_default_resource() and set_default_resource() 5

3.9 Idiom for Type-Erased Allocators .. 5

4 Usage Example ... 5

5 Impact on the standard .. 8

6 Implementation Experience .. 8

7 Formal Wording .. 8

7.1 Utility Classes .. 8

7.2 Polymorphic Allocator... 9

7.3 Allocator Type Erasure ... 17

7.4 Containers Aliases Using Polymorphic Allocators .. 19

8 Appendix: Section 4.3 from N1850 .. 20

8.1 Template Implementation Policy ... 20

N3525: Polymorphic Allocators Page 2 of 22

9 Acknowledgements ... 22

10 References ... 22

1 Document Conventions

All section names and numbers are relative to the November 2012 Working Draft,
N3485.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with red

strikeouts for deleted text and green underlining for inserted text within the indented blue original text. When

describing the addition of entirely new sections, the underlining is omitted for ease of reading.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is

expected that changes resulting from such guidance will be minor and will not delay
acceptance of this proposal in the same meeting at which it is presented.

2 Motivation

Back in 2005, I argued in N1850 that the C++03 allocator model hindered the
usability of allocators for managing memory use by containers and other objects that
allocate memory. Although N1850 conflated them, the proposals in that paper could

be broken down into two separate principles:

1. The allocator used to construct a container should also be used to construct

the elements within that container.

2. An object’s type should be independent of the allocator it uses to obtain
memory.

In subsequent proposals, these principles were separated. The first principle
eventually became known as the scoped allocator model and is embodied in the

scoped_allocator_adaptor template in Section [allocator.adaptor] (20.12) of the

2011 standard (and the same section of the current WP).

Unfortunately, creating a scoped allocator model that was compatible with C++03

and acceptable to the committee, as well as fixing other flaws in the allocator section
of the standard, proved a time-consuming task, and library changes implementing
the second principle were not proposed in time for standardization in 2011.

This paper proposes new library facilities to address the second principle. Section
4.3 of N1850 (excerpted in the appendix of this paper) gives a detailed description of
why it is undesirable to specify allocators as class template parameters. Key among

the problems of allocator template parameters is that they inhibit the use of
vocabulary types by altering the type of specializations that would otherwise be the

same. For example, std::basic_string<char, char_traits<char>,

Alloc1<char>> and std::basic_string<char, char_traits<char>,

Alloc2<char>> are different types in C++ even though they are both string types

capable of representating the same set of (mathematical) values.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3485.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1850.pdf

N3525: Polymorphic Allocators Page 3 of 22

Some new vocabulary types introduced into the 2011 standard, including function,

promise, and future use type erasure (see [jsmith]) as a way to get the benefits of

allocators without the allocator contaminating their type. Type erasure is a powerful
technique, but has its own flaws, such as that the allocators can be propagated
outside of the scope in which they are valid and also that there is no way to query an

object for its type-erased allocator. More importantly, even if type erasure were a
completely general solution, it cannot be applied to existing container classes

because they would break backwards compatibility with the existing interfaces and
binary compatibility with existing implementations. Moreover, even for programmers
creating their own classes, unconstrained by existing usage, type-erasure is a

relatively complex and time-consuming technique and requires the creation of a

polymorphic class hierarchy much like the memory_resource and

resource_adaptor class hierarchy proposed for standardization below. Given that

type erasure is expensive to implement not general even when it is feasible, we must
look to other solutions.

Fortunately, the changes to the allocator model made in 2011 (especially full support

for stateful allocators and scoped allocators) make this problem with allocators
relatively easy to solve in a more general way. The solution presented in this paper is

to create a single allocator type, polymorphic_allocator, which can be used

ubiquitously for instantiating containers. The polymorphic_allocator will, as its

name suggests, have polymorphic runtime behavior. Thus objects of the same type

can have different allocators, achieving the goal of making an object’s type
independent of the allocator it uses to obtain memory, and thereby allowing them to
be interoperable when used with precompiled libraries.

3 Summary of Proposal

3.1 Namespace std::polyalloc

All new components introduced in this proposal are in a new namespace, polyalloc,

nested within namespace std.

The name, polyalloc, and all other identifiers introduced in this proposal are

subject to change. If this proposal is accepted, we can have the bicycle-shed
discussion of names. If you think of a better name, send a suggestion to the email
address at the top of this paper.

3.2 Abstract base class memory_resource

An abstract base class, memory_resource, describes a memory resource from which

blocks can be allocated and deallocated. It provides pure virtual functions

allocate(), deallocate(), and is_equal(). Derived classes of memory_resource

contain the machinery for actually allocating and deallocating memory. Note that

memory_resource, not being a template, operates at the level of raw bytes rather

than objects. The caller is responsible for constructing objects into the allocated

memory and destroying the objects before deallocating the memory.

http://www.cplusplus.com/forum/articles/18756/

N3525: Polymorphic Allocators Page 4 of 22

3.3 Class Template polymorphic_allocator<T>

An instance of polymorphic_allocator<T> is a wrapper around an

memory_resource pointer that gives it a C++11 allocator interface. It is this adaptor

that achieves the goal of separating an object’s type from its allocator. Two objects x

and y of type list<int, polymorphic_allocator<int>> are the same type, but

may use different memory allocation mechanisms.

Polymorphic allocators use scoped allocator semantics. Thus, a list containing strings

can be built to use the same memory resource throughout if polymorphic allocators
are used ubiquitously.

3.4 Aliases for container classes

There would be an alias in the polyalloc namespace for each standard container

(except array). The alias would not take an allocator parameter but instead would

use polymorphic_allocator<T> as the allocator. For example, the <vector>

header would contain the following declaration:

namespace std {

namespace polyalloc {

template <class T>

 using vector<T> = std::vector<T, polymorphic_allocator<T>>;

} // namespace polyalloc

} // namespace std

Thus, std::polyalloc::vector<int> would be a vector that uses a polymorphic

allocator. Consistent use of his aliases would allow std::polyalloc::vector<int>

to be used as a vocabulary type, interoperable with all other instances of

std::polyalloc::vector<int>.

3.5 Class template resource_adaptor<Alloc>

An instance of resource_adaptor<Alloc> is a wrapper around a C++11 allocator

type that gives it an memory_resource interface. In a sense, it is the complementary

adaptor to polymorphic_allocator<T>. The adapted allocator, Alloc, is required

to use normal (raw) pointers, rather than shared-memory pointers or pointers to

some other kind of weird memory. (I have floated the term, Euclidean Allocator, to

describe allocators such as these .) The resource_adaptor template is actually an

alias template designed such that resource_adaptor<X<T>> and

resource_adaptor<X<U>> are the same type for any T and U.

3.6 Typedef new_delete_resource

new_delete_resource is a typedef for resource_adaptor<allocator<char>>. In

other words, it is a type derived from memory_resource that uses operator new()

and operator delete() to manage memory.

N3525: Polymorphic Allocators Page 5 of 22

3.7 Function new_delete_resource_singleton()

Since std::allocator is stateless, all instances of new_delete_resource are

equivalent. The new_delete_resource_singleton() function simply returns a

pointer to a singleton of that type.

3.8 Functions get_default_resource() and set_default_resource()

Namespace-scoped functions get_default_resource() and

set_default_resource() are used to get and set a specific memory resource to be

used by certain classes when an explicit resource is not specified to the class’s

constructor. The ability to change the default resource used when constructing an
object is extremely useful for testing and can also be useful for other purposes such
as preventing DoS attacks by limiting the maximum size of an allocation.

If set_default_resource() is never called, the “default default” memory resource is

new_delete_resource_singleton().

3.9 Idiom for Type-Erased Allocators

Type-erased allocators, which are used by std::function, std::promise, and

std::packaged_task are already implemented internally using polymorphic

wrappers. In this proposal, the implicit use of polymorphic wrappers is made explicit
(reified). When one of these types is constructed, the caller may supply either a

C++11 allocator or a pointer to memory_resource. A new member function,

get_memory_resource() will return a pointer to the memory resource or, in the case

that a C++11 allocator was provided at construction, a pointer to a

resource_adaptor containing the original allocator. This pointer can be used to

create other objects using the same allocator. If no allocator or resource was

provided at construction, the value of get_default_resource() is used. To

complete the idiom, classes that use type-erased allocators will declare

typedef erased_type allocator_type;

indicating that the class uses allocators, but that the allocator is type-erased.

(erased_type is an empty class that exists solely for this purpose.)

4 Usage Example

Suppose we are processing a series of shopping lists (where a shopping list is a
container of strings), and storing them in a collection (a list) of shopping lists. Each
shopping list being processed uses a bounded amount of memory that is needed for a

short period of time, while the collection of shopping lists uses an unbounded
amount of memory and will exist for a longer period of time. For efficiency, we can
use a more time-efficient memory allocator based on a finite buffer for the temporary

shopping lists. However, this time-efficient allocator is not appropriate for the longer
lived collection of shopping lists. This example shows how those temporary shopping

lists, using a time-efficient allocator, can be used to populate the long lived collection
of shopping lists, using a general purpose allocator, something that would not be

N3525: Polymorphic Allocators Page 6 of 22

possible without the polymorphic allocators in this proposal.

First, we define a class, ShoppingList, that contains a vector of strings. It is not a

template, so it has no Allocator template argument. Instead, it uses

memory_resource as a way to allow clients to control its memory allocation:

#include <polymorphic_allocator>

#include <vector>

#include <string>

class ShoppingList {

 // Define a vector of strings using polymorphic allocators. Because polymorphic_allocator is scoped,

 // every element of the vector will use the same allocator as the vector itself.

 typedef std::polyalloc::string string_type; // string uses polymorphic allocator

 typedef std::polyalloc::vector<string_type> strvec_type;

 strvec_type m_strvec;

 public:

 // This type makes uses_allocator<ShoppingList, memory_resource*>::value true.

 typedef std::polyalloc::memory_resource *allocator_type;

 // Construct with optional memory_resource. If alloc is not specified, uses polyalloc::get_default_resource().
 ShoppingList(allocator_type alloc = nullptr)

 : m_strvec(alloc) { }

 // Copy construct with optional memory_resource.

 // If alloc is not specified, uses polyalloc::get_default_resource().
 ShoppingList(const ShoppingList& other) = default;

 ShoppingList(std::allocator_arg_t, allocator_type a,

 const ShoppingList& other)

 : m_strvec(other, a) { }

 allocator_type get_allocator() const

 { return m_strvec.get_allocator().resource(); }

 void add_item(const string_type& item){ m_strvec.push_back(item); }

 ...

};

bool operator==(const ShoppingList &a, const ShoppingList &b);

Next, we create an allocator resource, FixedBufferResource, that allocates memory

from a fixed-size buffer supplied at construction. The FixedBufferResource is not

responsible for reclaiming this externally managed buffer, and consequently its

deallocate method and destructor are no-ops. This makes allocations and

deallocations very fast, and is useful when building up an object of a bounded size
that will be destroyed all at once (such as one of the short lived shopping lists in this

example).

class FixedBufferResource : public std::polyalloc::memory_resource

{

 void *m_next_alloc;

 std::size_t m_remaining;

N3525: Polymorphic Allocators Page 7 of 22

 public:

 FixedBufferResource(void *buffer, std::size_t size)

 : m_next_alloc(buffer), m_remaining(size) { }

 virtual void *allocate(std::size_t sz, std::size_t alignment)

 {

 if (std::align(alignment, sz, m_next_alloc, m_remaining))

 return m_next_alloc;

 else

 throw std::bad_alloc();

 }

 virtual void deallocate(void *, std::size_t, std::size_t) { }

 virtual bool is_equal(std::polyalloc::memory_resource& other) const

 noexcept

 {

 return this == &other;

 }

};

Now, we use the ShoppingList and FixedBufferResource defined above to

demonstrate processing a short lived shopping list into a collection of shopping lists.

We define a collection of shopping lists, folder, that will use the default allocator.

The temporary shopping list temporaryShoppingList will use the

FixedBufferResource to allocator memory, since the items being added to the list

are of a fixed size.

std::polyalloc::list<ShoppingList> folder; // Default allocator resource

{

 char buffer[1024];

 FixedBufferResource buf_rsrc(&buffer, 1024);

 ShoppingList temporaryShoppingList(&buf_rsrc);

 assert(&buf_rsrc == temporaryShoppingList.get_allocator());

 temporaryShoppingList.add_item("salt");

 temporaryShoppingList.add_item("pepper");

 if (processShoppingList(temporaryShoppingList)) {

 folder.push_back(temporaryShoppingList);

 assert(std::polyalloc::get_default_resource() ==

 folder.back().get_allocator());

 }

 // temporaryShoppingList, buf_rsrc, and buffer go out of scope

}

Notice that the shopping lists within folder use the default allocator resource

whereas the shopping list temporaryShoppingList uses the short-lived but very fast

buf_rsrc. Despite using different allocators, you can insert

temporaryShoppingList into folder because they have the same ShoppingList

type. Also, while ShoppingList uses memory_resource directly,

std::polyalloc::list, std::polyalloc::vector, and std::polyalloc::string

N3525: Polymorphic Allocators Page 8 of 22

all use polymorphic_allocator. The resource passed to the ShoppingList

constructor is propagated to the vector and each string within that ShoppingList.

Similarly, the resource used to construct folder is propagated to the constructors of

the ShoppingLists that are inserted into the list (and to the strings within those

ShoppingLists). The polymorphic_allocator template is designed to be almost

interchangeable with a pointer to memory_resource, thus producing a “bridge”

between the template-policy style of allocator and the polymorphic-base-class style of
allocator.

5 Impact on the standard

The facilities proposed here are mostly pure extensions to the library except for minor

changes to the uses_allocator trait and to types that use type erasure for

allocators: function, packaged_task, future, promise and the upcoming

filepath type in the file-system TS [N3399]. No core language changes are proposed.

6 Implementation Experience

The implementation of the new memory_resource, resource_adaptor, and

polymorphic_allocator features is very straightforward. A prototype

implementation based on this paper is available at
http://www.halpernwightsoftware.com/WG21/polymorphic_allocator.tgz. The

prototype also includes a rework of the gnu function class template to add the

functionality described in this proposal. Most of the work in adapting function was

in adding allocator support without breaking binary (ABI) compatibility.

The memory_resource and polymorphic_allocator classed described in this

proposal are minor variations of the facilities that have been in use at Bloomberg for
over a decade. These facilities have made dramatically improved testability of

software (through the use of test allocators) and provided performance benefits when
using special-purpose allocators such as arena allocators and thread-specific

allocators.

7 Formal Wording

7.1 Utility Classes

In section [utility] (20.2), Header <utility> synopsis, add a new type declaration:

// 20.2.x, erased-type placeholder
struct erased_type { };

Although the first (and currently only) use of erased_type is in the context of

memory allocation, the concept of type erasure is not allocator-specific. Since there

may be new uses for this type in the future, I elected to put it in <utility> instead

of <memory>.

Add a new subsection under 20.2:

20.2.x erased-type placeholder [utility.erased_type]

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3399.html
http://www.halpernwightsoftware.com/WG21/polymorphic_allocator.tgz

N3525: Polymorphic Allocators Page 9 of 22

namespace std {

 struct erased_type { };

}

The erased_type struct is an empty struct used to as a placeholder for a type that is not known due

to type erasure. Specifically, the nested type, allocator_type, is an alias for erased_type in classes

that use type-erased allocators (see [type.erased.allocator]).

Modify section [allocator.uses] (2.6.7) as follows:

20.6.7 uses_allocator [allocator.uses]

20.6.7.1 uses_allocator trait [allocator.uses.trait]

template <class T, class Alloc> struct uses_allocator;

Remark: automatically detects whether T has a nested allocator_type that is convertible from

Alloc. Meets the BinaryTypeTrait requirements (20.9.1). The implementation shall provide a definition

that is derived from true_type if a type T::allocator_type exists and either

is_convertible<Alloc, T::allocator_type>::value != false or

T::allocator_type is an alias for erased_type ([utility.erased_type]), otherwise it shall be

derived from false_type. A program may specialize this template to derive from true_type for a

user-defined type T that does not have a nested allocator_type but nonetheless can be constructed

with an allocator where either:

— the first argument of a constructor has type allocator_arg_t and the second argument has type

Alloc or

— the last argument of a constructor has type Alloc.

20.6.7.2 uses-allocator construction [allocator.uses.construction]

Uses-allocator construction with allocator Alloc refers to the construction of an object obj of type T, using

constructor arguments v1, v2, ..., vN of types V1, V2, ..., VN, respectively, and an allocator

alloc of type Alloc (where Alloc either meets the requirements of an allocator ([allocator.requirements] or

is a pointer to polyalloc::memory_resource or to a class derived from

polyalloc::memory_resource ([polymorphic.allocator]), according to the following rules:

The new text for Uses-allocator construction is not strictly necessary, but it is

intended to clarify that two different kinds of thing can be passed as alloc in uses-

allocator construction.

7.2 Polymorphic Allocator

Add a new subsection after section 20 [utilities] for the polymorphic allocator.

20.x Polymorphic Allocators [polymorphic.allocator]

20.x.1 Header <polymorphic_allocator> synopsis [polymorphic.allocator.syn]

namespace std {

namespace polyalloc {

 class memory_resource;

 bool operator==(const memory_resource& a,

 const memory_resource& b);

N3525: Polymorphic Allocators Page 10 of 22

 bool operator!=(const memory_resource& a,

 const memory_resource& b);

 template <class Tp> class polymorphic_allocator;

 template <class T1, class T2>

 bool operator==(const polymorphic_allocator<T1>& a,

 const polymorphic_allocator<T2>& b);

 template <class T1, class T2>

 bool operator!=(const polymorphic_allocator<T1>& a,

 const polymorphic_allocator<T2>& b);

 // The name resource_adaptor_imp is for exposition only.
 template <class Allocator> class resource_adaptor_imp;

 template <class Allocator>

 using resource_adaptor = resource_adaptor_imp<

 allocator_traits<Allocator>::rebind_alloc<char>>;

 typedef resource_adaptor<allocator<char>> new_delete_resource;

 new_delete_resource* new_delete_resource_singleton() noexcept;

 memory_resource *set_default_resource(memory_resource *r)

 noexcept;

 memory_resource *get_default_resource() noexcept;

} // namespace polyalloc

} // namespace std

20.x.2 Polymorphic Memory Resource [polymorphic.resource]

The memory_resource class is an abstract interface to an unbounded set of classes encapsulating memory

resources.

namespace std {

namespace polyalloc {

 class memory_resource

 {

 public:

 virtual ~memory_resource();

 virtual void* allocate(size_t bytes, size_t alignment = 0) = 0;

 virtual void deallocate(void *p, size_t bytes,

 size_t alignment = 0) = 0;

 virtual bool is_equal(const memory_resource& other) const

 noexcept = 0;

 };

} // namespace polyalloc

N3525: Polymorphic Allocators Page 11 of 22

} // namespace std

20.x.2.1 memory_resource virtual member functions [polymorphic.resource.mem]

~memory_resource();

Effects: Destroys the memory_resource base class.

void* allocate(size_t bytes, size_t alignment = 0) = 0;

Preconditions: alignment is either zero or a power of two.

Returns: A derived class shall implement this function to return a pointer to allocated storage (3.7.4.2)

with a size of at least bytes and an implementation-defined alignment of Q. [Note to editor: 3.7.4.2 does

not seem to actually define allocated storage, even though it is referenced in 3.8. I could not find an

actual definition of this term, but from the usage, it seems to mean storage that does not currently have an

object constructed in it.] If 0 < alignment && alignment <= sizeof(max_align_t), then

Q shall be not less than alignment. If alignment > sizeof(max_align_t), the Q shall be not

less than sizeof(max_align_t). [Note: ideally, a user-defined derived class will always choose Q

== alignment. – end note] If alignment == 0, then Q shall be no less than the maximum

possible alignment required for an object of size bytes assuming no extended alignment (3.11

[basic.align]). [Note: The maximum alignment possible for an object of size bytes is the largest power

of two ≤ sizeof(max_align_t) that evenly divides bytes. Thus, it is possible for Q to be less than

both bytes and sizeof(max_align_t). – end note]

Throws: a derived class implementation shall throw an appropriate exception if it is unable to allocate

memory with the requested size and alignment.

void deallocate(void *p, size_t bytes, size_t alignment = 0) = 0;

Preconditions: p was allocated from a prior call to allocate (bytes, alignment) and has not

already been deallocated.

Effects: A derived class shall implement this function to dispose of allocated storage.

Throws: nothing

Although this function throws nothing, it is not declared noexcept because it has a

narrow interface. An implementation may choose to throw if a defensive test of the
preconditions fails.

bool is_equal(const memory_resource& other) const noexcept = 0;

Returns: A derived class shall implement this function to return true if memory allocated from this

can be deallocated from other and vice-versa; otherwise it shall return false. [Note: The most-derived

type of other might not match the type of this. Tor a derived class, D, a typical implementation of

this function will compute dynamic_cast<D*>(&other) and go no further (i.e., return false) if it

returns nullptr. – end note]

20.x.2.2 memory_resource equality [polymorphic.resource.eq]

bool operator==(const memory_resource& a, const memory_resource& b);

Returns: equivalent to &a == &b || a.is_equal(b).

bool operator!=(const memory_resource& a, const memory_resource& b);

N3525: Polymorphic Allocators Page 12 of 22

Returns: equivalent to ! (a == b).

20.x.3 Class template polymorphic_allocator [polymorphic.allocator.class]

A specialization of class template polyalloc::polymorphic_allocator conforms to the Allocator

requirements ([allocator.requirements] 17.6.3.5). Constructed with different memory resources, different

instances of the same specialization of polyalloc::polymorphic_allocator can exhibit entirely

different allocation behavior. This runtime polymorphisms allows objects that use

polymorphic_allocator to behave as if they used different allocator types at run time even though they

use the same static allocator type.

namespace std {

namespace polyalloc {

 template <class Tp>

 class polymorphic_allocator

 {

 memory_resource* m_resource; // For exposition only

 public:

 typedef Tp value_type;

 polymorphic_allocator();

 polymorphic_allocator(memory_resource *r);

 template <class U>

 polymorphic_allocator(const polymorphic_allocator<U>& other);

 Tp *allocate(size_t n);

 void deallocate(Tp *p, size_t n);

 template <typename T, typename... Args>

 void construct(T* p, Args&&... args);

 // Specializations for pair using piecewise construction
 template <class T1, class T2, class Args1..., Args2...>

 void construct(std::pair<T1,T2>* p, piecewise_construct_t,

 tuple<Args1...> x, tuple<Args2...> y);

 template <class T1, class T2>

 void construct(std::pair<T1,T2>* p);

 template <class T1, class T2, class U, class V>

 void construct(std::pair<T1,T2>* p, U&& x, V&& y);

 template <class T1, class T2, class U, class V>

 void construct(std::pair<T1,T2>* p,

 const std::pair<U, V>& pr);

 template <class T1, class T2, class U, class V>

 void construct(std::pair<T1,T2>* p, std::pair<U, V>&& pr);

 template <typename T>

 void destroy(T* p);

N3525: Polymorphic Allocators Page 13 of 22

 // Return a default-constructed allocator (no allocator propagation)
 polymorphic_allocator select_on_container_copy_construction()

 const;

 memory_resource *resource() const;

 };

} // namespace polyalloc

} // namespace std

20.x.3.1 polymorphic_allocator constructors [polymorphic.allocator.ctor]

polymorphic_allocator();

Effects: set m_resource to get_default_resource().

polymorphic_allocator(memory_resource *r);

Effects: If r is non-null, set m_resource to r; otherwise set m_resource to

get_default_resource().

Note: This constructor acts as an implicit conversion from memory_resource*.

template <class U>

 polymorphic_allocator(const polymorphic_allocator<U>& other);

Effects: sets m_resource to other.resource().

Note: This constructor acts as both a copy constructor and a conversion constructor from

polymorphic_allocators with different value_types.

20.x.3.2 polymorphic_allocator member functions [polymorphic.allocator.mem]

Tp *allocate(size_t n);

Returns: Equivalent of static_cast<Tp*>(m_resource->allocate(n * sizeof(Tp),

alignof(Tp))).

void deallocate(Tp *p, size_t n);

Preconditions: p was allocated from an allocator, x, equal to *this using x.allocate(n).

Effects: Equivalent to m_resource->deallocate(p, n * sizeof(Tp), alignof(Tp)).

Throws: Nothing.

template <typename T, typename... Args>

 void construct(T* p, Args&&... args);

Effects: Construct a T object at p by uses-allocator construction with allocator this->resource()

([allocator.uses.construction] 20.6.7.2) and constructor arguments

std::forward<Args>(args).... If uses-allocator construction is ill-formed, then the call to

construct is ill-formed.

Throws: Nothing unless the constructor for T throws.

template <class T1, class T2, class Args1..., Args2...>

 void construct(std::pair<T1,T2>* p, piecewise_construct_t,

 tuple<Args1...> x, tuple<Args2...> y);

N3525: Polymorphic Allocators Page 14 of 22

Effects: [Note: The following description can be summarized as constructing a std::pair<T1,T2>

object at p as if by separate uses-allocator construction with allocator this->resource()

([allocator.uses.construction] 20.6.7.2) of p->first using the elements of x and p->second using the

elements of y. – end note]

Constructs a tuple, xprime, from x by the following rules:

— If uses_allocator<T1,memory_resource*>::value is false and

is_constructible<T,Args1...>::value is true, then xprime is x.

— Otherwise, if (uses_allocator<T1,memory_resource*>::value is true and
is_constructible<T1,allocator_arg_t,memory_resource*,Args1...

>::value) is true, then xprime is tuple_cat(tuple<allocator_arg_t,

memory_resource*>(allocator_arg, this->resource()), move(x)).

— Otherwise, if (uses_allocator<T1,memory_resource*>::value is true and

is_constructible<T1,Args1...,memory_resource*>::value) is true, then

xprime is tuple_cat(move(x),

tuple<memory_resource*>(this->resource())).

— Otherwise the program is ill formed.

and constructs a tuple, yprime, from y by the following rules:

— If uses_allocator<T2,memory_resource*>::value is false and

is_constructible<T,Args2...>::value is true, then yprime is y.

— Otherwise, if (uses_allocator<T2,memory_resource*>::value is true and
is_constructible<T2,allocator_arg_t,memory_resource*,Args2...

>::value) is true, then yprime is tuple_cat(tuple<allocator_arg_t,

memory_resource*>(allocator_arg, this->resource()), move(y)).

— Otherwise, if (uses_allocator<T2,memory_resource*>::value is true and

is_constructible<T2,Args2...,memory_resource*>::value) is true, then

yprime is tuple_cat(move(y),

tuple<memory_resource*>(this->resource())).

— Otherwise the program is ill formed.

then this function constructs a std::pair<T1,T2> object at p using constructor arguments
piecewise_construct, xprime, yprime.

The description above is almost identical to that in scoped_allocator_adaptor

because a polymorphic_allocator is scoped. It differs in that, instead of passing

*this down to the constructed object, it passes this->resource().

The non-normative comment at the beginning is new. Does it help?

template <class T1, class T2>

 void construct(std::pair<T1,T2>* p);

Effects: equivalent to this->construct(p, piecewise_construct, tuple<>(),
tuple<>());

template <class T1, class T2, class U, class V>

 void construct(std::pair<T1,T2>* p, U&& x, V&& y);

N3525: Polymorphic Allocators Page 15 of 22

Effects: equivalent to this->construct(p, piecewise_construct,
forward_as_tuple(std::forward<U>(x)), forward_as_tuple(std::forward<V>(y)));

template <class T1, class T2, class U, class V>

 void construct(std::pair<T1,T2>* p, const std::pair<U, V>& pr);

Effects: equivalent to this->construct(p, piecewise_construct,
forward_as_tuple(x.first), forward_as_tuple(x.second));

template <class T1, class T2, class U, class V>

 void construct(std::pair<T1,T2>* p, std::pair<U, V>&& pr);

Effects: equivalent to this->construct(p, piecewise_construct,
forward_as_tuple(std::forward<U>(x.first)),

forward_as_tuple(std::forward<V>(x.second)));

template <typename T>

 void destroy(T* p);

Effects: p->~T().

polymorphic_allocator select_on_container_copy_construction() const;

Returns: polymorphic_allocator().

memory_resource *resource() const;

Returns: m_resource.

20.x.3.3 polymorphic_allocator equality [polymorphic.allocator.eq]

template <class T1, class T2>

 bool operator==(const polymorphic_allocator<T1>& a,

 const polymorphic_allocator<T2>& b);

Returns: *a.resource() == *b.resource().

template <class T1, class T2>

 bool operator!=(const polymorphic_allocator<T1>& a,

 const polymorphic_allocator<T2>& b);

Returns: *a.resource() != *b.resource().

20.x.4 resource_adaptor [polymorphic. adaptor]

An instance of resource_adaptor<Allocator> is an adaptor that wraps an memory_resource

interface around Allocator. In order that resource_adaptor<X<T>> and

resource_adaptor<X<U>> are the same type for any allocator template X and types T and U,

resource_adaptor<Allocator> is rendered as an alias to a class template such that Allocator is

rebound to a char value type in every specialization of the class template. The requirements on this class

template are defined below. The name of the class template, resource_adaptor_imp is for exposition

only and is not normative, but the definition of the members of that class, whatever its name, are normative.

In addition to the Allocator requirements ([allocator.requirements] 17.6.3.4), the parameter to

resource_adaptor shall meet the following additional requirements:

N3525: Polymorphic Allocators Page 16 of 22

- allocator_traits<Allocator>::pointer shall be identical to

allocator_traits<Allocator>::value_type*.

- allocator_traits<Allocator>::const_pointer shall be identical to

allocator_traits<Allocator>::value_type const*.

- allocator_traits<Allocator>::void_pointer shall be identical to void*.

- allocator_traits<Allocator>::const_void_pointer shall be identical to void

const*.

namespace std {

namespace polyalloc {

 // The name resource_adaptor_imp is for exposition only.
 template <class Allocator>

 class resource_adaptor_imp : public memory_resource {

 Allocator m_alloc; // for exposition only

 public:

 typedef Allocator allocator_type;

 resource_adaptor_imp() = default;

 resource_adaptor_imp(const resource_adaptor_imp&) = default;

 // Does not participate in overload resolution unless

 // is_convertible<Allocator2, Allocator>::value != false
 template <class Allocator2> resource_adaptor_imp(Allocator2&& a2);

 virtual void *allocate(size_t bytes, size_t alignment = 0);

 virtual void deallocate(void *p, size_t bytes, size_t alignment =0);

 virtual bool is_equal(const memory_resource& other) const;

 allocator_type get_allocator() const { return m_alloc; }

 };

template <class Allocator>

 using resource_adaptor = resource_adaptor_imp<

 allocator_traits<Allocator>::rebind_alloc<char>>;

} // namespace polyalloc

} // namespace std

20.x.4.1 resource_adaptor_imp constructor [polymorphic. adaptor.ctor]

template <class Allocator2> resource_adaptor_imp(Allocator2&& a2);

Effects: Initializes m_alloc with forward<Allocator2>(a2).

N3525: Polymorphic Allocators Page 17 of 22

20.x.4.2 resource_adaptor_imp member functions [polymorphic. adaptor.mem]

virtual void *allocate(size_t bytes, size_t alignment = 0);

Returns: Allocated memory obtained by calling m_alloc.allocate(). The size and alignment of

the allocated memory shall meet the requirements for a class derived from memory_resource

([polymorphic.resource]).

virtual void deallocate(void *p, size_t bytes, size_t alignment =0);

Requires: p was previously allocated using allocate() and not deallocated.

Effects: Returns memory the allocator using m_alloc.deallocate().

virtual bool is_equal(const memory_resource& other) const;

Returns: false if dynamic_cast<const

resource_adaptor_imp*>(addressof(other)) is null, otherwise the value of m_alloc ==

dynamic_cast<const resource_adaptor_imp&>(other).m_alloc.

20.x.5 Access to program-wide memory_resource objects [polymorphic.globals]

new_delete_resource* new_delete_resource_singleton() noexcept;

Returns: A pointer to a static-duration object of new_delete_resource type that can be used as a

resource for allocating memory using operator new and operator delete. The same value is

returned every time this function is called.

memory_resource *set_default_resource(memory_resource *r) noexcept;

Effects: If r is non-null, sets the value of the default memory resource pointer to r, otherwise set the

default memory resource pointer to new_delete_resource_singleton().

We have found it is convenient to use nullptr as a surrogate for the “default-default”

handler in various interfaces. The use here simply provides consistency and makes it
easy to reset the default resource to its initial state.

Returns: The previous value of the default memory resource pointer.

Remarks: The initial default memory resource pointer is new_delete_resource_singleton().

Calling the set_default_resource and get_default_resource functions shall not incur a

data race. A call to set_default_resource function shall synchronize with subsequent calls to the

set_default_resource and get_default_resource functions.

These synchronization requirements are the same as for set/get_new_handler and
set/get_terminate.

memory_resource *get_default_resource() noexcept;

Returns: The current default memory resource pointer.

7.3 Allocator Type Erasure

Insert a new section into the standard as follows:

N3525: Polymorphic Allocators Page 18 of 22

The following describes an idiom that is followed by several types in the standard. It
is unclear where in the standard this description belongs. Should it arranged as a

set of requirement and added to section 17.6.3? If so, what is it a requirement of, the
allocator parameter? Should it be a definition, like INVOKE and COPY_DECAY or

uses-allocator construction. Please advise. Once it is correctly categorized, I can
complete tweaking the wording and format.

x.y.z Allocator type erasure [allocator.type.erasure]

Allocator type erasure is the process of obtaining a pointer r to a polyalloc::memory_resource

([polymorphic.resource]) from an argument alloc to a constructor template for some object X of class T.

Throughout its lifetime, X uses r to allocate any needed memory (i.e., for internal data structures). The process

by which this r is computed from alloc depends on the type of alloc and is described in Table Q:

Table Q – memory_resource for Allocator type erasure

If the type of alloc is then the value of r is

non-existent – no alloc specified polyalloc::get_default_resource()

nullptr_t polyalloc::get_default_resource()

pointer convertible to
polyalloc::memory_resource*

static_cast<

polyalloc::memory_resource*>(r)

polyalloc::polymorphic_allocator<U> alloc.resource()

a type meeting the Allocator requirements

([allocator.requirements])

a pointer to a value of type

polyalloc::resource_adaptor<A> where A is

the type of alloc. r remains valid only for the

lifetime of X

None of the above The program is ill-formed

Additionally, a class C that uses allocator type erasure shall meet the following requirements:

- C::allocator_type shall be identical to erased_type.

- X.get_memory_resource() returns r.

In 20.8.11.2 [func.wrap.func], add the following declarations to class template

function:

 typedef erase_type allocator_type;

 polyalloc::memory_resource *get_memory_resource();

Change the first paragraph of section 20.8.11.2.1 [func.wrap.func.con] as follows:

When any function constructor that takes a first argument of type allocator_arg_t is invoked, the

second argument shall be handled in accordance with allocator type erasure ([allocator.type.erasure]). have a

type that conforms to the requirements for Allocator (Table 17.6.3.5). A copy of the allocator argument is used

to allocate memory, if necessary, for the internal data structures of the constructed function object. If the

constructor moves or makes a copy of a function object (including an instance of the function class

template), then that move or copy shall be performed by using-allocator construction with allocator

get_memory_resource().

And correct the definitions of operator= as follows:

function& operator=(const function& f);

N3525: Polymorphic Allocators Page 19 of 22

Effects: function(allocator_arg, get_memory_resource(), f).swap(*this);

Returns: *this

function& operator=(function&& f);

Effects: Replaces the target of *this with the target of f. function(allocator_arg,
get_memory_resource(), std::move(f)).swap(*this);

Returns: *this

function& operator=(nullptr_t);

Effects: If *this != NULL, destroys the target of this.

Postconditions: !(*this).

Returns: *this

template<class F> function& operator=(F&& f);

Effects: function(allocator_arg, get_memory_resource(),
std::forward<F>(f)).swap(*this);

Returns: *this

template<class F> function& operator=(reference_wrapper<F> f) noexcept;

Effects: function(allocator_arg, get_memory_resource(), f).swap(*this);

Returns: *this

7.4 Containers Aliases Using Polymorphic Allocators

In section 21.3 [string.classes], Header <string> synopsis, add aliases as follows:

// basic_string typedef names
typedef basic_string<char> string;

typedef basic_string<char16_t> u16string;

typedef basic_string<char32_t> u32string;

typedef basic_string<wchar_t> wstring;

namespace polyalloc {

// basic_string using polymorphic allocator in namespace polyalloc
template <class charT, class traits = char_traits<charT>>

 using basic_string =

 std::basic_string<charT, traits, polymorphic_allocator<charT>>;

// basic_string typedef names using polymorphic allocator in namespace polyalloc
typedef basic_string<char> string;

typedef basic_string<char16_t> u16string;

typedef basic_string<char32_t> u32string;

typedef basic_string<wchar_t> wstring;

} // namespace polyalloc

N3525: Polymorphic Allocators Page 20 of 22

With this change polyalloc::wstring is a wstring that uses a polymorphic

allocator.

In section 23.3.3.1 [deque.overview], add polymorphic allocator aliases as follows:

// specialized algorithms:
template <class T, class Allocator>

 void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);

// deque with polymorphic allocator

namespace polyalloc {

template <class T>

 using deque = std::deque<T, polymorphic_allocator<T>>;

}

Continue in this way for remaining containers.

8 Appendix: Section 4.3 from N1850

8.1 Template Implementation Policy

The first problem most people see with the allocator mechanism as specified in the
Standard is that the choice of allocator affects the type of a container. Consider, for
example, the following type and object definitions:

typedef std::list<int, std::allocator<int> > NormIntList;

typedef std::list<int, MyAllocator<int> > MyIntList;

NormIntList list1(5, 3);

MyIntList list2(5, 3);

list1 and list2 are both lists of integers, and both contain five copies of the

number 3. Most people would say that they have the same value. Yet they belong to

different types and you cannot substitute one for the other. For example, assume we
have a function that builds up a list:

int build(std::list<int>& theList);

Because we did not specify an allocator parameter for the argument type, the default,

std::allocator<int> is used. Thus, theList is a reference to the same type as

list1. We can use build to put values into list1, but we cannot use it to put

values into list2 because MyIntList is not compatible with std::list<int>. The

following operations are also not supported:

list1 == list2

list1 = list2

MyIntList list3(list1);

NormIntList* p = &list2;

// etc.

Now, some would argue that the solution to the build function problem is to

templatize build:

template <typename Alloc>

N3525: Polymorphic Allocators Page 21 of 22

int build(std::list<int, Alloc>& theList);

or, better yet:

template <typename OutputIterator>

int build(OutputIterator theIter);

Both of these templatized solutions have their place, but both add substantial
complexity to the development process. Templates, if overused, lead to long compile

times and, sometimes, bloated code. If build were a template and passed its

arguments on to other functions, those functions would also need to be templates.
This chained instantiation of templates produces a deep compile-time dependency
such that a change to any of those modules would result in a recompilation of a

significant part of the system. For thorough coverage of the benefits of reducing
physical dependencies, see [Lakos96].

Even if the templatization solution were acceptable, once a nested container (e.g. a
list of strings) is involved, even the simplest operations require many layers of code to
bridge the type-interoperablity gap. Consider trying to compare a shared list of

shared strings with a regular list of regular strings:

typedef std::basic_string<

 char,

 std::char_traits<char>,

 shared_alloc<char>

 > shared_string;

std::list<shared_string, shared_alloc<shared_string> > SharedList;

std::list<std::string> TestList;

Not only will SharedList == TestList fail to compile, but employing iterators and

standard algorithms will not work either:

bool same = std::range_equal(SharedList.begin(), SharedList.end(),

 TestList.begin(), TestList.end());

The types to which the iterators refer are not equality-compatible (std::string vs.

shared_string). The interoperability barrier caused by the use of template

implementation policies impedes the straightforward use of vocabulary types –
ubiquitous types used throughout the internal interfaces of a program. For example,

to declare a string, s using MyAllocator we would need to write

std::basic_string<char, std::char_traits<char>, MyAllocator<char> > s;

Many people find this hard to read, but the more important fact is that s is not an

std::string object and cannot be used wherever std::string is expected. Similar

problems exist for other common types like std::vector<int>. The use of a well-

defined set of vocabulary types like string and vector lends simplicity and clarity to

a piece of code. Unfortunately, their use hinders the effective use of STL-style
allocators and vice-versa.

Finally, template code is much harder to test than non-template code. Templates do

not produce executable machine code until instantiated. Since there are an

N3525: Polymorphic Allocators Page 22 of 22

unbounded number of possible instantiations for any given template, the number of
test cases needed to ensure that every path is covered can grow by an order of

magnitude for each template parameter. Subtle assumptions that the template
writer makes about the template’s parameters may not become apparent until

someone instantiates the template with an innocent-looking, but not-quite-
compatible parameter, long after the engineer who created the template has left the
project.

Template implementation policies can be very useful when constructing mechanisms,
as in the case of a function object (functor) type being used to specify an
implementation policy for a standard algorithm template. Alexandrescu makes a

compelling case for the use of template class policies in situations where
instantiations are not expected to interoperate. However, template implementation

policies are detrimental when used to control the memory allocation mechanisms of
basic types that could otherwise interoperate.

9 Acknowledgements

I’d like to thank John Lakos for his careful review of my introductory text and for
showing me what allocators can really do, if correctly conceived. Also, a big thank
you to the members of my former team at Bloomberg for your help in defining the

concepts in this paper and reviewing the result, especially Alexander Beels, Henry
Mike Verschell, and Alisdair Merideth, who reworked the usage example for me.

10 References

N1850 Towards a Better Allocator Model, Pablo Halpern, 2005

jsmith C++ Type Erasure, JSmith, Published on www.cplusplus.org, 2010-01-27

N3399 Filesystem Library Proposal (Revision 3), Beman Dawes, 2012-09-21

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1850.pdf
http://www.cplusplus.com/forum/articles/18756/
http://www.cplusplus.org/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3399.html

