
Doc No: WG21 N3451 = .16 12-0141
Date: 2012-09-23
Reply to: Herb Sutter (hsutter@microsoft.com)
Subgroup: SG1 – Concurrency

async and ~future
Herb Sutter

C++11 futures are a hit – their most important benefit is that they provide a wonderfully useful lingua

franca type for combining asynchronous operations from multiple libraries, and they are gaining

widespread adoption and usage experience.

Practical field experience with futures has demonstrated one major problem, which was discussed in

May 2012 at the SG1 meeting in Bellevue.

~future/~shared_future Must Never Block
“Blocking is evil.” – Various

The good news is that the Standard’s specification of future and shared_future destructors specifies that

they never block. This is vital.

The bad news is that the Standard specifies that the associated state of an operation launched by

std::async (only!) does nevertheless cause future destructors to block. This is very bad for several

reasons, three of which are summarized below in rough order from least to most important.

Example 1: Consistency
First, consider these two pieces of code:

// Example 1

// (a) // (b)

{ {

 async([]{ f(); }); auto f1 = async([]{ f(); });

 async([]{ g(); }); auto f2 = async([]{ g(); });

} }

Users are often surprised to discover that (a) and (b) do not have the same behavior, because normally

we ignore (and/or don’t look at) return values if we end up deciding we’re not interested in the value

and doing so does not change the meaning of our program.

The two cannot have the same behavior if ~future joins.

Example 2: Correctness
Consider the following natural code, with surprising(?) semantics:

// Example 2: “Async, async everywhere! but…”

{

 async(launch::async, []{ f(); });

 async(launch::async, []{ g(); });

}

Users are often surprised to discover that there is no concurrency at all in this “async-rich” code and the

standard requires it to be executed sequentially. They did not care about the return values, only wanted

to launch some work (fire-and-forget).

Example 3: Composability (major)
The most important benefit of std:: futures is that they provide a single common lingua franca type for

combining asynchronous operations from multiple libraries.

The fact that std:: future destructors sometimes block strikes at the heart of their most important

strength. Consider: What does this code do? In particular, does it block?

void func() {

 future<int> f = start_some_work();

 /*... more code that doesn’t f.get() or f.wait() */

}

The answer is different depending on whether the function (transitively) chose to launch its work via a

std::async or via anything else (such as a std::thread). But it should not matter, because if the caller ends

up not caring to know the value, it shouldn’t have to block on the operation that produces the value.

Note the situation would be worse (in degree only, not in kind) if the above code instead used a

shared_future, because then whichever thread happens to be unlucky enough to run last will be the one

that blocks.

This is not composable – when the primary purpose of std:: futures is composability – because this

potential blocking makes it difficult or impossible to use standard futures in many common situations.

We must always be able to tell if code might block. For example, because ~future might block, this code

cannot reliably be called (transitively!) on a thread that must remain responsive, such as a GUI thread –

not func, not even start_some_work. The workaround is to put the future on the heap (strange) or not

use std:: futures (a defeat for futures).

Objections
There were two main arguments that caused the current design where ~future blocks if the future was

produced by std::async. We feel these are either not well motivated, or are solving a valid problem in the

wrong place.

Objection 1: Detachment
First, it was felt that because the returned future was the only handle to the async operation, if it did not

block then there would be no way to join with the async operation, leading to a detached task that could

run beyond the end of main off into static destruction time, which was considered anathema.

However, this argument fails to motivate a blocking ~future because:

 It’s not true that the program has no way to join, because it might use some other method such

as signaling at the end of the async operation’s body.

 Even if the problem were real, the right place to fix it would be to provide what is actually

desired, namely a way to join with async tasks, such as to provide a join_all_asyncs function that

the user could call at the end of main, or indeed require the end of main to implicitly join with all

unjoined async tasks.

Objection 2: Reference Capture of Locals
Similarly, it was felt that it was too easy for a lambda spawned by an async operation to capture a local

variable by reference but then outlive the function. For example:

However, this argument likewise fails to motivate a blocking ~future because:

 It’s not true that the program has no way to join, because it might use some other method such

as signaling at the end of the async operation’s body.

 The problem is not specific to lambdas passed to std::async or std::thread, it applies to all

lambdas since they could be returned, or copied to a non-stack location, or otherwise outlive the

function. The right place to address the problem would more generally be to warn (or prevent

where possible) whenever a lambda that captures a local variable by reference or any pointer or

reference to a local variables captured or taken by any other means outlives the local variable’s

scope by asynchronous launching or any other means including by return value, out parameter,

or any other write to a non-local location.

Aside About ~thread
For similar reasons to the two objections above, we are in the peculiar situation where ~thread calls

terminate if not joined. That too is a defect; ~thread should either join implicitly, or do nothing. But

that’s another paper, and fixing async and especially ~future is much more important because they are

the default launcher and the cornerstone of composability, respectively.

Proposed Resolution
Remove the requirement that releasing the shared state of a future spawned by async shall block.

