
Doc No: WG21 N3424 = .16 12-0114
Date: 2012-09-23
Reply to: Herb Sutter (hsutter@microsoft.com)
Subgroup: EWG – Evolution

Lambda Correctness and Usability Issues
Herb Sutter

Lambda functions are a hit – they are wonderfully useful, and increasingly widely used, so that we are

now gaining real-world experience with them in large code bases.

Practical field experience with lambdas has demonstrated two issues with existing lambdas1 that are

responsible for the majority of usability and correctness problems in practice. This paper summarizes

these two issues, which are characterized by:

 they are sources of ongoing correctness problems (people accidentally writing bugs) and

usability problems (programmer surprise); and

 they require some breaking changes2 to fix what are arguably (important but fortunately small)

design bugs.

This is a discussion paper that aims to expose the problems for EWG discussion in Portland.

Capturing this
“We use lambdas extensively in our very large code base. The vast majority of errors

we encounter in practice are because of the implicit capture of this.” – Customer

There is only one variable that can be captured without mentioning its name: this. This is causing

ongoing confusion because:

1 Not counting extension requests, such as move capture or generic/polymorphic lambdas, some of which are the subjects of

other papers in this mailing.
2 Breaking changes of the kind proposed in this paper can be dealt with via bumping __cplusplus in the standard and normal

compiler migration techniques in implementations, such as has been used effectively in the past for breaking changes such as

when we changed the lifetime for for-loop scoped variables: transition users by permitting the old semantics under a

compatibility switch, and progress through the usual migration phases (e.g., warning-optional -> warn-by-default -> error-by-

default -> unsupported) across multiple releases of the compiler so users can choose when to adapt. Note that it can be (and

has been) argued that when we changed the lifetime of for-loop scope variables there technically was no standard and so we

did not create an incompatibility or breaking change in the standard, and that doing so in a published standard is different, this

argument is on a mere technicality: what matters most is the effect of breaking changes in practice on real user code, and in the

case of the for-loop scope change the committee and the user community knew well that the change would and did in practice

break a lot of code (far more than would be affected by the changes proposed herein), and viewed the breaking change as a

positive thing.

 it captures something invisible, and that most programmers are not aware of because it relies on

what is arguably an implementation detail of C++ name lookup (i.e., that in a member function

the name of a member variable m is rewritten this->m);

 it causes member variables to be captured as if by reference, which is especially confusing in [=]

lambdas where users think they said to explicitly capture everything by value; and

 in fact, member variables cannot be captured by value at all, but this is not evident in the syntax,

which allows their capture via this and syntactically implies that they are captured by value.

For example, if x and y are local variables and z is a member variable:

void myclass::myfunc(int x) {

 yeti y;

 auto lambda = [=] {

 f(x); // x captured by value

 y.g(); // y captured by value

 cout << z; // this captured by value if z is a member variable…

 // … and z is captured as if by reference

 };

}

The mention of z compiles but does not cause capture of z(!), it actually captures this which is never

mentioned, and it has the semantics of capturing z effectively by reference. (If z had been a local

variable, it would have been captured by value. But because z happens to be a member variable, is it

captured as if by reference.)

How extensive is this problem? I’ve encountered it myself many times and encountered many customers

who’ve complained about it, but what prompted me to write this paper was two particular data points at

C++ and Beyond in August 2012: a prominent instructor felt compelled to include these surprising

semantics and workarounds on a list of first-order usability issues to teach people about in C++11; and

one company attending the event reported that they use (and love) lambdas extensively in their large

code base, empirically measured the sources of problems with lambdas, and have found that the vast

majority of their lambda problems and bugs are due to this one problem. Further, it turns out that

programmers do want to capture member variables by value, and currently have no direct way to do so.

Here are three possible resolutions, each of which would require a breaking change.

(Poor) Option 1: Require capture of this to be explicit. That is, [=] or [&] would not capture this, and the

programmer would be required to write [this]. The above example would have to be written as:

// Option 1: Require [this]

void myclass::myfunc(int x) {

 yeti y;

 auto lambda = [=, this] {

 f(x); // x captured by value

 y.g(); // y captured by value

 cout << z; // this captured by value if z is a member variable…

 // … and z is captured as if by reference

 };

}

This makes it slightly clearer to the programmer what’s actually going on (he is told to add ‘, this’, but the

captured variable is still invisible at point of use). However, it arguably creates a new asymmetry (‘the

capture default applies to all variables, er, well all except one’), and it does not address by-value capture

of members.

(Fair) Option 2: Require use of this to be explicit. That is,

// Option 2: Require this->

void myclass::myfunc(int x) {

 yeti y;

 auto lambda = [=] {

 f(x); // x captured by value

 y.g(); // y captured by value

 cout << this->z; // this captured by value (clearer that z is captured as if by reference)

 };

}

This makes it clear to the programmer what’s actually going on. However, it also creates an asymmetry

(this-> is not otherwise required in member functions), and still does not address by-value capture of

members.

(Good) Option 3: Add support for capture of member variables with the obvious semantics.

Programmers already expect this, and are surprised when it does not happen. Even better, this can be

viewed as a supserset of Option 2 – as in Option 2, the explicit this-> syntax is likewise supported and is

the only way to capture this, and we are adding a pure extension to Option 2 in the capability of

capturing the member variables directly as well.

In Option 3, the above example would have its semantics be changed to value capture, and explicit this->

capture is also allowed:

// Option 3: Support member variable capture – note [this] is still allowed

void myclass::myfunc(int x) {

 yeti y;

 auto lambda = [=] {

 f(x); // x captured by value

 y.g(); // y captured by value

 cout << z; // z captured by value

 cout << this->z; // this captured by value (clearer that z is captured as if by reference)

 };

}

This makes it clear to the programmer what is going on, matches what experience has shown to be many

programmers’ expectation (namely that z be captured by value), and addresses by-value capture of

members. However, it is still a breaking change because it changes the meaning of existing code that

mentions member variables; existing code that uses as-if-by-reference capture of member variables

would now get a by-value copy capture instead.

The best part of Option 3 is that it’s what all programmers I’ve worked with actually think is supposed to

happen when they first use the feature.

Breaking change impact assessment:

 All valid code that (a) captures by [=] default, and also (b) captures this implicitly by using a

member variable name without this-> in the lambda body, will now capture copies of member

variables instead of references to them. In some cases this will fix bugs; but in cases where the

by-reference capture was desired, the user should either capture the member variables by

reference or else use this-> explicitly in the lambda body.

Implementation efficiency note: If the user specifies capturing multiple member variables by reference,

instead of storing one pointer/reference for each member, an implementation could still store only a

single copy of the this pointer as an optimization.

The odd couple: Capture by value’s injected const and quirky mutable
Consider this strawman example, where the programmer captures a local variable by value and tries to

modify the captured value (which is a member variable of the lambda object):

int val = 0;

auto x = [=](item e) // look ma, [=] means explicit copy

 { use(e, ++val); }; // error: count is const, need ‘mutable’

auto y = [val](item e) // darnit, I really can’t get more explicit

 { use(e, ++val); }; // same error: count is const, need ‘mutable’

This feature appears to have been added out of a concern that the user might not realize he got a copy,

and in particular that since lambdas are copyable he might be changing a different lambda’s copy.

However, the user explicitly asked for a copy, and in practice what has proven to be actually surprising to

users is that the code is not allowed. Users we have observed expect the code to work and to modify the

captured copy. Fortunately it doesn’t come up often because typically lambdas don’t try to use their

copied captures as local variables, but when they users do want to do that for convenience they are

regularly surprised that: (a) they can’t modify the copy; and (b) what they have to write to make the

code compile (“mutable? … what, really? … and where?”).

Users tend to view this as nannying, and disallowing it is exactly the same as if we disallowed the

following (which I suspect no one would tolerate):

void f(int count) { // pass by value – explicit copy

 …

 do_something_with(++count); // ok, modify my copy – no weird ‘mutable’ needed

 …

}

int count = 0;

f(count); // ok, pass a copy

So there are three problems:

 Usability: It is surprising to users that the normal use of a captured variable is not allowed, and

that const is injected without being mentioned anywhere.

 Clarity: The current syntax is ugly, and invents a new and different use of mutable (also a

consistency issue).

 Consistency: The current syntax is inconsistent with the rest of the language, because nowhere

do we disallow modifying an explicitly copied value.

Here is a possible resolution, which requires a breaking change.

(Good) Option 1: Do not make captured copies implicitly const. (And, since there is then no longer a

need for the baroque mutable, remove that too.) The above examples would be allowed as written.

Breaking change impact assessment:

 All valid code that captures by value and does not use mutable continue to compile, but may

select non-const overloads.

 All valid code that captures by value and does use mutable would only need to remove the now-

extraneous mutable.

