
Document Number: N3360=12-0050
Date: 2012-02-03
Reply to: Christopher Kohlhoff <chris@kohlhoff.com>

Networking Library Status Report
Since the revised TR2 proposal based on Boost.Asio (N2175) was submitted in 2007, the use and
application of the library has greatly expanded among C++ programmers. As the author would
like to see the TR2 proposal revived, the purpose of this document is to give an overview of what
has happened in the interim.

1. Expanded User Base
The library has found a home in thousands of software projects, including:
• The small — mobile and embedded applications
• The large — highly scalable internet-facing servers
• The fast — ultra-low latency applications, utilising InfiniBand and 10 Gb Ethernet
• The widely-used — online games; business, consumer and professional software
The library has been used to create abstractions for a range of different network protocols. A small
selection of some freely-available protocol implementations is listed below:
• HTTP — Pion (http://www.pion.org)
• DNS — BIND 10 (http://www.isc.org/bind10)
• XMPP — Swift IM (http://swift.im)
• WebSockets — websocketpp (http://github.com/zaphoyd/websocketpp)
• BitTorrent — libtorrent (http://www.libtorrent.org)
• Distributed Network Protocol 3 — dnp3 (http://code.google.com/p/dnp3/)
• FIX Adapted for Streaming (FAST Protocol) — QuickFAST (http://code.google.com/p/quickfast/)

2. Improved Implementation
Much effort has been spent on reducing the abstraction penalty, in particular:
• Improving single-threaded performance
• Improving scalability across multiple processors
• Minimising latency
• Reducing compile times
• Reducing generated code size
Most of this work has been accomplished without changes to the library’s interface. In fact, other
than the new features described below, the library interface and core concepts have changed little.

3. Wider Platform Support
The Boost.Asio library now supports (or, via end-user patches, has supported) many different
operating systems and platforms, including Windows, Linux, Mac OS X, FreeBSD, NetBSD, AIX,
Solaris, HP-UX, iOS, Android, Windows CE, QNX Neutrino, VxWorks and Symbian.

1 of 3

mailto:chris@kohlhoff.com
mailto:chris@kohlhoff.com
http://www.pion.org
http://www.pion.org
http://www.isc.org/bind10
http://www.isc.org/bind10
http://swift.im
http://swift.im
http://github.com/zaphoyd/websocketpp
http://github.com/zaphoyd/websocketpp
http://www.libtorrent.org
http://www.libtorrent.org
http://code.google.com/p/dnp3/
http://code.google.com/p/dnp3/
http://code.google.com/p/quickfast/
http://code.google.com/p/quickfast/

4. Added Platform Features
Since 2007, feature coverage has expanded beyond basic networking facilities (i.e. TCP and UDP
sockets, IP version independence, buffer management, etc.) to include:
• Raw sockets and ICMP
• Sequenced packet sockets
• UNIX domain sockets
• POSIX file descriptors
• Serial ports
• Signals
• Windows overlapped I/O (such as files, named pipes, TransmitFile, etc.)

• Windows kernel objects (such as anonymous pipes, events, semaphores, etc.)
In addition, people have expanded with their own offerings, including support for:
• Directory and file monitoring
• Packet Capture
• Process management
While these are not currently intended for inclusion in a standards proposal for networking, it
demonstrates that the library allows extensibility without impacting the core API.

5. C++11 Support
In the past year, the library interface has been modified to make use of certain C++11 features.

5.1. Movable I/O Objects
I/O objects such as sockets, while they remain non-copyable, now support move construction and
move assignment.

5.2. Movable Completion Handlers
As an optimisation, user-defined completion handlers may provide move constructors, and
Boost.Asio’s implementation will use a handler’s move constructor in preference to its copy
constructor. In certain circumstances, Boost.Asio may be able to eliminate all calls to a handler’s
copy constructor.
In conjunction with the library’s custom memory allocation facility, this makes it possible to write
programs that use std::shared_ptr<> for safe memory management, but perform no ongoing
memory allocations or reference counting. Experience also shows that this approach works well
with composition to create efficient higher-level abstractions.

5.3. Chrono Support
New timer interfaces have been added which, rather using the Boost.DateTime library, are based
around C++11’s clocks, durations and time points.

5.4. Variadic templates
Where possible, multiple overloads to support variable numbers of arguments have been updated
to use variadic template functions.

6. New Usage Styles
Asynchronous operations in Boost.Asio are built around the concept of completion handlers, a.k.a.
function objects as callbacks. As of 2007, most applications implemented these using hand-rolled

N3360=12-0050 - Networking Library Status Report

2 of 3

function objects, or by using function object binders (boost::bind, std::tr1::bind and now
std::bind). For example:

void my_class::read_handler(const error_code& ec, size_t length)
{
 ...
}
...
my_socket.async_read_some(my_buffer,
 std::bind(&my_class::read_handler, this, _1, _2));

Since then, library users have explored and used other approaches, some of which are illustrated
below.

1. C++11 Lambdas
C++11’s monomorphic lambdas may be used to implement the completion handler’s code at the
point where the operation is initiated:

my_socket.async_read_some(my_buffer,
 [&](const error_code& ec, size_t length)
 {
 ...
 });

2. Promises and Futures
C++11’s promises and futures may be used to perform a synchronous wait for an asynchronous
operation:

auto p = make_shared<promise<size_t>>();
my_socket.async_read_some(my_buffer, my_promise_adapter(p));
size_t result = p->get_future().get();

3. “Stackless” Coroutines
By employing a Duff’s Device-like approach, and some suitably defined macros, more complex
chains of asynchronous operations may be written in a concise fashion:

while (!ec)
{
 yield my_socket->async_read_some(my_buffer, *this);
 if (ec) break;
 yield async_write(*my_socket, buffer(my_buffer, length), *this);
}

4. “Stackful” Coroutines
Similarly, libraries like the recently accepted Boost.Context may also be used to undo the inversion
of control, with the added benefit of preserving the call stack at the point where an asynchronous
operation is initiated:

while (!ec_)
{
 my_socket->async_read_some(my_buffer, *this);
 my_continuation->suspend();
 if (ec_) break;
 async_write(*my_socket, buffer(my_buffer, length_), *this);
 my_continuation->suspend();
}

N3360=12-0050 - Networking Library Status Report

3 of 3

